单例模式(Singleton)

单例模式是一种常见的设计模式,在 Cocoa 开发中也经常使用。

一个简单的单例模式示例代码如下:

/* Singleton.h */ 
#import "Foundation/Foundation.h"
@interface Singleton : NSObject 
+ (Singleton *)shardInstance; 
@end 

/* Singleton.m */ 
#import "Singleton.h" 
static Singleton *instance = nil; 

@implementation Singleton 
+ (Singleton *)sharedInstance { 
    if (!instance) { 
        instance = [[super allocWithZone:NULL] init]; 
    } 
    return instance; 
} 

Cocoa 库本身在一些地方也使用了单例模式,例如[NSNotificationCenter defaultCenter][UIColor redColor]等。

这种写法的优点是,可以延迟加载,按需分配内存以节省开销。

但是,这并非一个线程安全的写法,比如两个或多个线程并发的调用 sharedInstance 方法,有可能会得到多个实例,这里列出两种方法来创建一个线程安全的单例。

@synchronized

可以使用@synchronized进行加锁,代码如下:

/* Singleton.h */
#import <Foundation/Foundation.h>
@interface Singleton : NSObject
+ (Singleton *)sharedInstance;
@end
/* Singleton.m */
#import "Singleton.h"
static Singleton *instance = nil;
@implementation Singleton 
+ (Singleton *)sharedInstance { 
    @synchronized (self) {
        if (!instance) { 
            instance = [[super alloc] init];
        } 
    }
    return instance; 
}

这种写法也是懒加载,不过虽然保证了线程安全但是由于锁的存在当多线程访问时,性能会降低。

GCD

这里主要利用GCD中的dispatch_once方法,这是最普遍也是苹果最推荐的方法,函数原型如下:

void dispatch_once(
   dispatch_once_t *predicate,
   dispatch_block_t block);

单例实现代码如下:

/* Singleton.h */
#import <Foundation/Foundation.h>
@interface Singleton : NSObject
+ (Singleton *)sharedInstance;
@end
/* Singleton.m */
#import "Singleton.h"
static Singleton *instance = nil;
@implementation Singleton 
+ (Singleton *)sharedInstance { 
    static dispatch_once_t predicate;
    dispatch_once(&predicate, ^{
        instance = [[Singleton alloc] init];
    });
    return instance; 
}

这样的方法有很多优势,首先满足了线程安全问题,其次很好满足静态分析器要求。

GCD 可以确保以更快的方式完成这些检测,它可以保证 block 中的代码在任何线程通过 dispatch_once 调用之前被执行,但它不会强制每次调用这个函数都让代码进行同步控制。

苹果的文档 documentation for dispatch_once 是这么说的:

The predicate must point to a variable stored in global or static scope. The result of using a predicate with automatic or dynamic storage (including Objective-C instance variables) is undefined.

所以,如果你的 predicate 不是静态的、不是全局的,还是不能用GCD。其实如果去看这个函数所在的头文件,你会发现目前它的实现其实是一个宏。

工厂模式(Factory)

工厂模式是另一种常见的设计模式,本质上是使用方法来简化类的选择和初始化过程。

下面是一个网上到处都是的简单工厂模式的例子:

//
//  OperationFactory.m
//  FactoryPattern

#import "OperationFactory.h"
#import "Operation.h"
#import "OperationAdd.h"
#import "OperationSub.h"
#import "OperationMul.h"
#import "OperationDiv.h"

@implementation OperationFactory

+ (Operation *) createOperat:(char)operate{
    Operation *oper = nil;
    switch (operate) {
        case '+':
        {
            oper = [[OperationAdd alloc] init];
            break;
        }
        case '-':
        {
            oper = [[OperationSub alloc] init];
            break;
        }
        case '*':
        {
            oper = [[OperationMul alloc] init];
            break;
        }
        case '/':
        {
            oper = [[OperationDiv alloc] init];
            break;
        }
        default:
            break;
    }
    return oper;
}
@end

由于 Objective-C 本身的动态特性,还可以用反射来改写:

@implementation OperationFactory
+ (Operation *) createOperat:(NSString *)operate{
    Operation *oper = nil;
    Class class = NSClassFromString(operate);
    oper = [(Operation *)[class alloc] init];
    if ([oper respondsToSelector:@selector(getResult)]) {
        [oper getResult];
    }
    return oper;
}
@end

使用时,可以传入类名,来获取对应类的对象:

Operation *oper = [OperationFactory createOperat: @"OperationAdd"];
oper.numberA = 10;
oper.numberB = 20;
NSLog(@"%f", oper.getResult);

委托模式(Delegate)

委托模式是 Cocoa 中十分常见的设计模式,在 Cocoa 库中被大量的使用。在 Objective-C 中,委托模式通常使用协议(protocol)来实现。

委托模式的示例代码:

@protocol PrintDelegate <NSObject>
- (void)print;
@end


@interface AClass : NSObject<PrintDelegate>
@property id<PrintDelegate> delegate;
@end

@implementation AClass

-(void)sayHello {
    [self.delegate print];
}

-(void)print {
    NSLog(@"Do Print");
}
@end

// 使用 AClass
int main(int argc, const char * argv[]) {
    @autoreleasepool {
        AClass * a = [AClass new];
        a.delegate = a;
        [a sayHello];
    }
    return 0;
}

这里对象a的 delegate 设置为自己,也可以是任何一个实现了 PrintDelegate 协议的对象。

观察者模式(Observer)

Cocoa 中提供了两种用于实现观察者模式的办法,一直是使用NSNotification,另一种是KVO(Key Value Observing)

NSNotification

NSNotification 基于 Cocoa 自己的消息中心组件 NSNotificationCenter 实现。

观察者需要统一在消息中心注册,说明自己要观察哪些值的变化。观察者通过类似下面的函数来进行注册:

[[NSNotificationCenter defaultCenter] addObserver:self
                         selector:@selector(printName:)
                             name: @"messageName"
                           object:nil];

上面的函数表明把自身注册成 "messageName" 消息的观察者,当有消息时,会调用自己的 printName 方法。

消息发送者使用类似下面的函数发送消息:

[[NSNotificationCenter defaultCenter] postNotificationName:@"messageName"
                                    object:nil
                                  userInfo:nil];

KVO(Key Value Observing)

KVO的实现依赖于 Objective-C 本身强大的 KVC(Key Value Coding) 特性,可以实现对于某个属性变化的动态监测。

示例代码如下:

// Book类
@interface Book : NSObject

@property NSString *name;
@property CGFloat price;

@end

// AClass类
@class Book;
@interface AClass : NSObject

@property (strong) Book *book;

@end

@implementation AClass

- (id)init:(Book *)theBook {
    if(self = [super init]){
        self.book = theBook;
        [self.book addObserver:self forKeyPath:@"price" options:NSKeyValueObservingOptionOld|NSKeyValueObservingOptionNew context:nil];
    }
    return self;
}

- (void)observeValueForKeyPath:(NSString *)keyPath
                      ofObject:(id)object
                        change:(NSDictionary *)change
                       context:(void *)context{
    if([keyPath isEqual:@"price"]){
        NSLog(@"------price is changed------");
        NSLog(@"old price is %@",[change objectForKey:@"old"]);
        NSLog(@"new price is %@",[change objectForKey:@"new"]);
    }
}

- (void)dealloc{
    [self.book removeObserver:self forKeyPath:@"price"];
}
@end

// 使用 KVO
int main(int argc, const char * argv[]) {
    @autoreleasepool {
        Book *aBook = [Book new];
        aBook.price = 10.9;
        AClass * a = [[AClass alloc] init:aBook];
        aBook.price = 11; // 输出 price is changed
    }
    return 0;
}

参考资料

iOS 隐形水印之 LSB 实现

在音视频的领域里,其涵盖的知识点繁多,学习方向也很多。而本篇就是一篇比较入门的文章它简单地介绍如何在 iOS 上读取图片 RGB 数据,并通过修改最后一位 bit 来记录数字水印的信息下面就介绍《隐形水印之 iOS 实现》

发布于:18天以前  |  62次阅读  |  详细内容 »

声明式 UIKit 在有赞美业的实践

随着 Flutter 的出现,UI 开发形式也越来越趋向相同,Flutter,SwiftUI,RN,Weex 等新兴UI框架无一意外都使用了声明式的 UI 开发模式,和支持了FlexBox的布局系统。

发布于:18天以前  |  64次阅读  |  详细内容 »

iOS 架构谈:剖析 Uber 的 RIB 架构

加入 UBER 是我的 iOS 工程师职业的新篇章,所有这一切都始于称为 RIB 的新架构。该架构背后的主要思想是,应用程序应由业务逻辑而不是视图驱动。展示 RIB 的最佳方法是一棵树:每个 RIB 都是一个节点,并且它可以不包含子节点,也可以包括一个或多个子节点。

发布于:19天以前  |  66次阅读  |  详细内容 »

如何调试支付宝(iOS)

最近在做的一件事情,从代码层面分析下各家小程序(微信、头条、支付宝、百度)的启动性能,探究各家小程序的实现细节和差异。

发布于:21天以前  |  110次阅读  |  详细内容 »

iOS GPUImage源码解读(一)

最近在不断学习、使用的过程中,有了更深刻的理解,特来写一篇源码解读的文章详细介绍下核心代码的具体实现。至于括号里的“一”,主要是觉得GPUImage还有很多值得深入学习和分享的内容,后续的学习和使用过程中有新的心得体会还会继续给大家分享。

发布于:23天以前  |  87次阅读  |  详细内容 »

iOS开发之Masonry框架源码解析

Masonry是iOS在控件布局中经常使用的一个轻量级框架,Masonry让NSLayoutConstraint使用起来更为简洁。Masonry简化了NSLayoutConstraint的使用方式,让我们可以以链式的方式为我们的控件指定约束。本篇博客的主题不是教你如何去使用Masonry框架的,而是对Masonry框架的源码进行解析,让你明白Masonry是如何对NSLayoutConstraint进行封装的,以及Masonry框架中的各个部分所扮演的角色是什么样的。在Masonry框架中,仔细的品味干货还是很多的。Masonry框架是Objective-C版本的,如果你的项目是Swift语言的,那么就得使用SnapKit布局框架了。SnapKit其实就是Masonry的Swift版本,两者虽然实现语言不同,但是实现思路大体一致。

发布于:23天以前  |  89次阅读  |  详细内容 »

iOS 验证码输入一种实现思路

如图所示,现在很多App采用了类似下划线、方块等方式的验证码输入,直观美观!对于这种效果的实现方式,大概有以下几种方式:

发布于:1月以前  |  100次阅读  |  详细内容 »

最多阅读

快速配置 Sign In with Apple 11月以前  |  2361次阅读
给数组NSMutableArray排序 1年以前  |  2092次阅读
开篇 关于iOS越狱开发 1年以前  |  1934次阅读
UITableViewCell高亮效果实现 1年以前  |  1928次阅读
在越狱的iPhone设置上使用lldb调试 1年以前  |  1914次阅读
APP适配iOS11 1年以前  |  1832次阅读
关于Xcode不能打印崩溃日志 1年以前  |  1631次阅读
App Store 审核指南[2017年最新版本] 1年以前  |  1618次阅读
所有iPhone设备尺寸汇总 1年以前  |  1599次阅读
使用ssh访问越狱iPhone的两种方式 1年以前  |  1550次阅读
使用 GPUImage 实现一个简单相机 1年以前  |  1503次阅读
使用ssh 访问越狱iPhone的两种方式 1年以前  |  1492次阅读
UIDevice的简单使用 1年以前  |  1439次阅读
为对象添加一个释放时触发的block 1年以前  |  1362次阅读
使用最高权限操作iPhone手机 1年以前  |  1291次阅读