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Foreword

Programmers sometimes say that they “cook a patch” rather than “implement a patch”. I’ve been 
fascinated with programming since my school years. To produce good code the programmer 
needs to pick the best “ingredients”. While different programming languages offer various 
building blocks, “ingredients”, when it comes to Linux kernel programming, there is nothing but 
the kernel itself.

In 2012 I had to add a set of kernel features, but the “ingredients” I needed did not then exist. I 
could have started writing building blocks inside the kernel. They would be ready to use years 
later. Instead, I decided to create a “universal ingredient” that when in the hands of a skilled 
programmer could be both a layer 2 networking bridge and a layer 3 networking router inside the 
kernel.

I had some important requirements: The “universal ingredient” had to be safe to consume, no 
matter the programming skills. A malicious or inexperienced developer should not be able to 
prepare a virus out of it. The “universal ingredient” shouldn’t allow it.

There was something already in the Linux kernel which had similar properties called BPF 
(Berkeley Packet Filter): A minimal instruction set that can be used to filter packets before they are 
seen by an application such as tcpdump. I borrowed that name for my “ingredient” and called it 
eBPF, where ‘e’ stands for ‘extended’.

Several years later the distinction between eBPF and classic BPF has vanished. My “universal 
ingredient” has taken over under the name BPF. Well-known corporations have built large systems 
out of it to provide services to billions of people like you and me. Its foundational principle of 
safety by design allows many “cooks” to become world-renowned “chefs”.

The first BPF chef was Brendan Gregg. He saw that in addition to its uses in networking and 
security BPF could be used for performance analysis, introspection, and observability. Making 
such tools and interpreting their measurements requires practice and knowledge though.

I hope this book will become your favorite “cookbook” where you can learn from master chef how 
to use BPF in your Linux kitchen.

—Alexei Starovoitov 
Seattle, Washington

August, 2019
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Preface

“extended BPF use cases: …crazy stuff.”

—Alexei Starovoitov, creator of the new BPF, February 2015 [1]

In July 2014, Alexei Starovoitov visited the Netflix offices in Los Gatos, California, to discuss a 
fascinating new technology that he was developing: extended Berkeley Packet Filter (abbreviated 
eBPF or just BPF). BPF was an obscure technology for improving packet filter performance, and 
Alexei had a vision of extending it far beyond packets. Alexei had been working with another 
network engineer, Daniel Borkmann, to turn BPF into a general-purpose virtual machine, 
capable of running advanced networking and other programs. It was an incredible idea. A use 
case that interested me was performance analysis tools, and I saw how this BPF could provide the 
programmatic capabilities I needed. We made an agreement: If Alexei made it connect to more 
than just packets, I’d develop the performance tools to use it.

BPF can now attach to any event source, and it has become the hot new technology in systems 
engineering, with many active contributors. To date, I have developed and published more than 70 
BPF performance analysis tools which are in use worldwide and are included by default on servers 
at Netflix, Facebook, and other companies. For this book, I’ve developed many more, and I’ve also 
included tools from other contributors. It’s my privilege to share this work here in BPF Performance 
Tools to give you practical tools that you can use for performance analysis, troubleshooting, and 
more.

As a performance engineer, I am obsessed with using performance tools in a quest to leave no stone 
unturned. Blind spots in systems are where performance bottlenecks and software bugs hide. My 
prior work used the DTrace technology, and included my 2011 Prentice Hall book DTrace: Dynamic 
Tracing in Oracle Solaris, Mac OS X, and FreeBSD, where I shared the DTrace tools I had developed for 
those operating systems. It’s exciting to now be able to share similar tools for Linux—tools that can 
do and see even more.

Why Do You Need BPF Performance Tools?

BPF performance tools can help you get the most out of your systems and applications, by helping 
you improve performance, reduce costs, and solve software issues. They can analyze much further 
than traditional tools, and allow you to pose arbitrary questions of the system and get answers 
immediately, in production environments.

About This Book

This book is about BPF tools as used primarily for observability and performance analysis, but these 
tools have other uses as well: software troubleshooting, security analysis, and more. The hardest part 
about learning BPF is not how to write the code: you can learn any of the interfaces in a day or so. 
The hard part is knowing what to do with it: What should you trace out of the many thousands of 
available events? This book helps to answer that question by giving you the necessary background 
for performance analysis and then analyzing many different software and hardware targets using 
BPF performance tools, with example output from Netflix production servers.
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BPF observability is a superpower, but only because it is extending our visibility into systems and 
applications—not duplicating it. For you to wield BPF efficiently, you need to understand when 
to use traditional performance analysis tools, including iostat(1) and perf(1), and when to use 
BPF tools. The traditional tools, also summarized in this book, may solve performance problems 
outright, and when they do not, they provide useful context and clues for further analysis 
with BPF.

Many of this book’s chapters include learning objectives to guide you to the most important take-
aways. The material in this book is also used for an internal Netflix training class on BPF analysis, 
and some chapters include optional exercises.1

Many of the BPF tools in this book are from the BCC and bpftrace repositories, which are part 
of the Linux Foundation IO Visor project. These are open source and available for free, not only 
from the repository websites but also packaged for various Linux distributions. I have also written 
many new bpftrace tools for this book, and I include their source code here.

These tools were not created to arbitrarily demonstrate various BPF capabilities. They were created 
to do battle in production environments. These are the tools I’ve needed for solving production 
issues beyond the abilities of the current analysis toolset.

For the tools written in bpftrace, the source code has been included in the book. If you wish to 
modify or develop new bpftrace tools, you can learn the bpftrace language from Chapter 5, and 
you can also learn by example from the many source code listings here. This source code helps 
explain what each tool is doing and the events they instrument: It is like including pseudocode 
that you can run.

The BCC and bpftrace front ends are reaching maturity, but it is possible that future changes will 
cause some of the source code included in this book to stop working and require updates. If a tool 
originates in BCC or bpftrace, check those repositories for updated versions. If a tool originated in 
this book, check this book’s website: http://www.brendangregg.com/bpf-performance-tools-book.
html. What matters most is not that a tool works, but that you know about the tool and want it 
to work. The hardest part with BPF tracing is knowing what to do with it; even broken tools are a 
source of useful ideas.

New Tools

To provide you with a comprehensive set of analysis tools that double as code examples, more 
than 80 new tools were developed for this book. Many of them are pictured in Figure P-1. In this 
diagram, preexisting tools appear in black text, and the new tools created for this book appear in 
red or gray (depending on the version of the book you’re reading). Both preexisting and new tools 
are covered in this book, though many later diagrams do not use the red/gray/black color scheme 
to differentiate them.

1 There are also mode switches: Linux syscalls that do not block may only (depending on the processor) need to switch 

modes between user- and kernel-mode.

xxviiPreface
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Figure P-1 BPF performance tools: Preexisting and new tools written for this book

About GUIs

Some of the BCC tools have already become sources of metrics for GUIs—providing time series 
data for line graphs, stack traces for flame graphs, or per-second histograms for heat maps. 
I expect that more people will use these BPF tools via GUIs than will use the tools directly. 
Regardless of how you end up using them, they can provide a wealth of information. This book 
explains their metrics, how to interpret them, and how to create new tools yourself.

About Linux Versions

Throughout this book, many Linux technologies are introduced, often with the kernel version 
number and year they appeared. I’ve sometimes named the developers of the technology as well 
so that you can recognize supporting materials written by the original authors.

Extended BPF was added to Linux in parts. The first part was added in Linux 3.18 in 2014, and more 
has been added throughout the Linux 4.x and 5.x series since then. To have sufficient capabilities 
available to run the BPF tools in this book, Linux 4.9 or higher is recommended. The examples in this 
book are taken from Linux 4.9 to 5.3 kernels.

xxviii Preface
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Work has begun to bring extended BPF to other kernels, and a future edition of this book may 
cover more than just Linux.

What This Book Does Not Cover

BPF is a large topic, and there are many use cases outside BPF performance tools that are not 
covered in this book. These include BPF for software-defined networking, firewalls, container 
security, and device drivers.

This book focuses on using bpftrace and BCC tools, as well as on developing new bpftrace tools, 
but it does not cover developing new BCC tools. The BCC source listings are usually too long to 
include, but some examples have been provided as optional content in Appendix C. There are 
also examples of tool development using C programming in Appendix D and BPF instructions in 
Appendix E, which may also be useful for those wishing to gain a deeper understanding of how 
BPF tools work.

This book does not specialize in the performance of one language or application. Other books 
do that, and they also cover language debugging and analysis tools. You are likely to use some 
of these other tools alongside BPF tools to solve problems, and you will find that the different 
toolsets can be complementary, each providing different clues. Basic systems analysis tools from 
Linux are included here, so that you can find easy wins without having to reinvent any wheels 
before moving to BPF tools that can help you see further.

This book includes a brief summary of the background and strategy for each analysis target. These 
topics are explained in more detail in my earlier Prentice Hall book, Systems Performance: Enterprise 
and the Cloud [Gregg 13b].

How This Book Is Structured

There are three parts to this book. The first part, Chapters 1 to 5, covers the background needed 
for BPF tracing: performance analysis, kernel tracing technologies, and the two core BPF tracing 
front ends: BCC and bpftrace.

The second part spans Chapters 6 to 16 and covers BPF tracing targets: CPUs, memory, file 
systems, disk I/O, networking, security, languages, applications, the kernel, containers, and 
hypervisors. While you could study these chapters in order, the book is designed to support 
skipping to a chapter of particular interest to you. These chapters all follow a similar format: 
background discussion, analysis strategy suggestions, and then specific BPF tools. Functional 
diagrams are included to guide you through complex topics and help you build mental maps of 
what you are instrumenting.

The last part, spanning Chapters 17 and 18, covers some additional topics: other BPF tools, and 
tips, tricks, and common problems.

The appendixes provide bpftrace one-liners and a bpftrace cheat sheet, introductions for BCC 
tool development, C BPF tool development including via perf(1) (the Linux tool), and a BPF 
instructions summary.

xxixPreface
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This book uses numerous terms and abbreviations. Where possible, they are explained. See the 
Glossary for a full reference.

For further sources of information, see the Supplemental Material and References section at the 
end of this Preface, as well as the Bibliography at the end of the book.

Intended Audience

This book is designed to be useful to a wide range of people. No coding is necessary to use the BPF 
tools in this book: You can use it as a cookbook of prewritten tools that are ready for you to run. 
If you do wish to write code, all the included code and Chapter 5 will help you learn to quickly 
write your own tools.

A background in performance analysis is also not necessary; each chapter summarizes the 
necessary background details.

Specific audiences for this book include:

 ■ Systems administrators, site reliability engineers, database administrators, 
performance engineers, and support staff responsible for production systems can use this 
book as a resource for diagnosing performance issues, understanding resource usage, and 
troubleshooting problems.

 ■ Application developers can use these tools to analyze their own code and instrument their 
code along with system events. For example, disk I/O events can be examined along with 
the application code that triggered them. This provides a more complete view of behavior, 
beyond application-specific tools that have no direct visibility into kernel events.

 ■ Security engineers can learn how to monitor all events to find suspicious behavior and 
create whitelists of normal activity (see Chapter 11).

 ■ Performance monitoring developers can use this book to get ideas about adding new 
observability to their products.

 ■ Kernel developers can learn how to write bpftrace one-liners for debugging their own 
code.

 ■ Students studying operating systems and applications can use BPF instrumentation to 
analyze the running system in new and custom ways. Instead of learning about abstract 
kernel technologies on paper, students can trace them and see how they operate live.

So that this book can focus on the application of BPF tools, it assumes a minimum knowledge 
level for the topics covered—including basic networking (such as what an IPv4 address is) and 
command line usage.

xxx Preface
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Source Code Copyright

This book contains the source code to many BPF tools. Each tool has a footnote to explain its 
origin: whether it comes from BCC, bpftrace, or was written for this book. For any tool from BCC 
or bpftrace, see its full source in the respective repository for applicable copyright notices.

The following is the copyright notice for the new tools I developed for this book. This notice is 
included in the full source of these tools released in the book repository, and this notice should 
not be removed when sharing or porting these tools:

/*

 * Copyright 2019 Brendan Gregg.

 * Licensed under the Apache License, Version 2.0 (the "License").

 * This was originally created for the BPF Performance Tools book

 * published by Addison Wesley. ISBN-13: 9780136554820

 * When copying or porting, include this comment.

 */

It is expected that some of these tools will be included in commercial products to provide 
advanced observability, as has been the case with my earlier tools. If a tool originated from 
this book, please provide attribution in the production documentation for this book, the BPF 
technology, and me.

Figure Attributions

Figures 17-02 to 17-09: Vector screenshots, © 2016 Netflix, Inc.

Figure 17-10: grafana-pcp-live screenshot, Copyright 2019 © Grafana Labs

Figures 17-11 to 17-14: Grafana screenshots, Copyright 2019 © Grafana Labs

Supplemental Material and References

Readers are encouraged to visit the website for this book:

http://www.brendangregg.com/bpf-performance-tools-book.html 

All the tools contained in the book, as well as book errata and reader feedback, can be 
downloaded from this site.

Many of the tools discussed in this book are also in source code repositories where they are 
maintained and enhanced. Refer to these repositories for the latest versions of these tools:

https://github.com/iovisor/bcc

https://github.com/iovisor/bpftrace

These repositories also contain detailed reference guides and tutorials, which I created and the 
BPF community maintains and updates.
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 Conventions Used in This Book

This book discusses different types of technology, and the way it presents material provides more 
context.

For tool output, bold text indicates the command that was executed or, in some cases, highlights 
something of interest. A hash prompt (#) signifies that the command or tool has been run as the 
root user (administrator). For example:

# id

uid=0(root) gid=0(root) groups=0(root)

A dollar prompt ($) signifies running the command or tool as a non-root user:

$ id

uid=1000(bgregg) gid=1000(bgregg) groups=1000(bgregg),4(adm),27(sudo)

Some prompts include a directory name prefix to show the working directory:

bpftrace/tools$ ./biolatency.bt

Italic is used to highlight new terms, and is sometimes used to show placeholder text.

Most of the tools in this book require root access or equivalent privileges to run, shown by the 
repeated use of hash prompts. If you are not root, one way to execute tools as root is to prefix 
them with sudo for the sudo(8) command (super-user do).

Some commands are executed in single quotation marks to prevent unnecessary (albeit unlikely) 
shell expansions. It is a good habit to form. For example:

# funccount 'vfs_*' 

A Linux command name or system call is followed by the man page chapter enclosed in 
parentheses—for example, the ls(1) command, the read(2) system call, and the funccount(8) 
system administration command. Empty parentheses signify function calls from a programming 
language—for example, the vfs_read() kernel function. When commands with arguments are 
included in paragraphs, they use a monospace font.

Command output that is truncated includes an ellipsis in square brackets ([...]). A single line 
containing ^C indicates that Ctrl-C was typed to terminate the program.

Bibliography references for websites are numbered: e.g., [123].
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Chapter 1
Introduction

This chapter introduces some key terminology, summarizes technologies, and demonstrates 
some BPF performance tools. These technologies will be explained in more detail in the following 
chapters.

1.1 What Are BPF and eBPF?

BPF stands for Berkeley Packet Filter, an obscure technology first developed in 1992 that improved 
the performance of packet capture tools [McCanne 92]. In 2013, Alexei Starovoitov proposed 
a major rewrite of BPF [2], which was further developed by Alexei and Daniel Borkmann and 
included in the Linux kernel in 2014 [3]. This turned BPF into a general-purpose execution 
engine that can be used for a variety of things, including the creation of advanced performance 
analysis tools.

BPF can be difficult to explain precisely because it can do so much. It provides a way to run mini 
programs on a wide variety of kernel and application events. If you are familiar with JavaScript, 
you may see some similarities: JavaScript allows a website to run mini programs on browser events 
such as mouse clicks, enabling a wide variety of web-based applications. BPF allows the kernel 
to run mini programs on system and application events, such as disk I/O, thereby enabling new 
system technologies. It makes the kernel fully programmable, empowering users (including non-
kernel developers) to customize and control their systems in order to solve real-world problems.

BPF is a flexible and efficient technology composed of an instruction set, storage objects, and 
helper functions. It can be considered a virtual machine due to its virtual instruction set speci-
fication. These instructions are executed by a Linux kernel BPF runtime, which includes an 
interpreter and a JIT compiler for turning BPF instructions into native instructions for execu-
tion. BPF instructions must first pass through a verifier that checks for safety, ensuring that the 
BPF program will not crash or corrupt the kernel (it doesn’t, however, prevent the end user from 
writing illogical programs that may execute but not make sense). The components of BPF are 
explained in detail in Chapter 2.

So far, the three main uses of BPF are networking, observability, and security. This book focuses on 
observability (tracing).



ptg30854589

2 Chapter 1  Introduction

Extended BPF is often abbreviated as eBPF, but the official abbreviation is still BPF, without 
the “e,” so throughout this book I use BPF to refer to extended BPF. The kernel contains only 
one execution engine, BPF (extended BPF), which runs both extended BPF and “classic” BPF 
programs.1

1.2 What Are Tracing, Snooping, Sampling, Profiling, 

and Observability?

These are all terms used to classify analysis techniques and tools.

Tracing is event-based recording—the type of instrumentation that these BPF tools use. You 
may have already used some special-purpose tracing tools. Linux strace(1), for example, records 
and prints system call events. There are many tools that do not trace events, but instead measure 
events using fixed statistical counters and then print summaries; Linux top(1) is an example. 
A hallmark of a tracer is its ability to record raw events and event metadata. Such data can be 
voluminous, and it may need to be post-processed into summaries. Programmatic tracers, which 
BPF makes possible, can run small programs on the events to do custom on-the-fly statistical 
summaries or other actions, to avoid costly post-processing.

While strace(1) has “trace” in its name, not all tracers do. tcpdump(8), for example, is another 
specialized tracer for network packets. (Perhaps it should have been named tcptrace?) The Solaris 
operating system had its own version of tcpdump called snoop(1M)2, so named because it was 
used to snoop network packets. I was first to develop and publish many tracing tools, and did 
so on Solaris, where I (perhaps regrettably) used the “snooping” terminology for my earlier 
tools. This is why we now have execsnoop(8), opensnoop(8), biosnoop(8), etc. Snooping, event 
dumping, and tracing usually refer to the same thing. These tools are covered in later chapters.

Apart from tool names, the term tracing is also used, especially by kernel developers, to describe 
BPF when used for observability.

Sampling tools take a subset of measurements to paint a coarse picture of the target; this is also 
known as creating a profile or profiling. There is a BPF tool called profile(8) that takes timer-based 
samples of running code. For example, it can sample every 10 milliseconds, or, put differently, it 
can take 100 samples per second (on every CPU). An advantage of samplers is that their perfor-
mance overhead can be lower than that of tracers, since they only measure one out of a much 
larger set of events. A disadvantage is that sampling provides only a rough picture and can miss 
events.

Observability refers to understanding a system through observation, and classifies the tools 
that accomplish this. These tools includes tracing tools, sampling tools, and tools based on fixed 
counters. It does not include benchmark tools, which modify the state of the system by perform-
ing a workload experiment. The BPF tools in this book are observability tools, and they use BPF 
for programmatic tracing.

1 Classic BPF programs (which refers to the original BPF [McCanne 92]) are automatically migrated to the extended BPF 

engine by the kernel for execution. Classic BPF is also not being developed further.

2 For Solaris, section 1M of the man pages is for maintenance and administration commands (section 8 on Linux).
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1.3 What Are BCC, bpftrace, and IO Visor?

It is extremely tedious to code BPF instructions directly, so front ends have been developed that 
provide higher-level languages; the main ones for tracing are BCC and bpftrace.

Figure 1-1 BCC, bpftrace, and BPF

BCC (BPF Compiler Collection) was the first higher-level tracing framework developed for BPF. It 
provides a C programming environment for writing kernel BPF code and other languages for the 
user-level interface: Python, Lua, and C++. It is also the origin of the libbcc and current libbpf 
libraries,3 which provide functions for instrumenting events with BPF programs. The BCC reposi-
tory also contains more than 70 BPF tools for performance analysis and troubleshooting. You can 
install BCC on your system and then run the tools provided, without needing to write any BCC 
code yourself. This book will give you a tour of many of these tools.

bpftrace is a newer front end that provides a special-purpose, high-level language for develop-
ing BPF tools. bpftrace code is so concise that tool source code is usually included in this book, to 
show what the tool is instrumenting and how it is processed. bpftrace is built upon the libbcc and 
libbpf libraries.

BCC and bpftrace are pictured in Figure 1-1. They are complementary: Whereas bpftrace is ideal 
for powerful one-liners and custom short scripts, BCC is better suited for complex scripts and 
daemons, and can make use of other libraries. For example, many of the Python BCC tools use the 
Python argparse library to provide complex and fine control of tool command line arguments.

Another BPF front end, called ply, is in development [5]; it is designed to be lightweight and 
require minimal dependencies, which makes it a good fit for embedded Linux environments. 
If ply is better suited to your environment than bpftrace, you will nonetheless find this book 

3 The first libbpf was developed by Wang Nan for use with perf [4]. libbpf is now part of the kernel source.
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useful as a guide for what you can analyze with BPF. Dozens of the bpftrace tools in this book can 
be executed using ply after switching to ply’s syntax. (A future version of ply may support the 
bpftrace syntax directly.) This book focuses on bpftrace because it has had more development and 
has all the features needed to analyze all targets.

BCC and bpftrace do not live in the kernel code base but in a Linux Foundation project on github 
called IO Visor. Their repositories are:

https://github.com/iovisor/bcc

https://github.com/iovisor/bpftrace

Throughout this book I use the term BPF tracing to refer to both BCC and bpftrace tools.

1.4 A First Look at BCC: Quick Wins

Let’s cut to the chase and look at some tool output for some quick wins. The following tool traces 
new processes and prints a one-line summary for each one as it begins. This particular tool, 
execsnoop(8) from BCC, works by tracing the execve(2) system call, which is an exec(2) variant 
(hence its name). Installation of BCC tools is covered in Chapter 4, and later chapters will intro-
duce these tools in more detail.

# execsnoop 

PCOMM            PID    PPID   RET ARGS

run              12983  4469     0 ./run

bash             12983  4469     0 /bin/bash 

svstat           12985  12984    0 /command/svstat /service/httpd

perl             12986  12984    0 /usr/bin/perl -e $l=<>;$l=~/(\d+) sec/;print $1||0

ps               12988  12987    0 /bin/ps --ppid 1 -o pid,cmd,args

grep             12989  12987    0 /bin/grep org.apache.catalina

sed              12990  12987    0 /bin/sed s/^ *//;

cut              12991  12987    0 /usr/bin/cut -d  -f 1

xargs            12992  12987    0 /usr/bin/xargs

echo             12993  12992    0 /bin/echo

mkdir            12994  12983    0 /bin/mkdir -v -p /data/tomcat

mkdir            12995  12983    0 /bin/mkdir -v -p /apps/tomcat/webapps

^C

#

The output reveals which processes were executed while tracing: processes that may be so short-
lived that they are invisible to other tools. There are many lines of output, showing standard Unix 
utilities: ps(1), grep(1), sed(1), cut(1), etc. What you can’t see just from looking at this output on 

https://github.com/iovisor/bcc
https://github.com/iovisor/bpftrace
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the page is how quickly it is printed. The -t option can be used with execsnoop(8) to print a time-
stamp column:

# execsnoop -t

TIME(s) PCOMM        PID    PPID   RET ARGS

0.437   run          15524  4469     0 ./run

0.438   bash         15524  4469     0 /bin/bash 

0.440   svstat       15526  15525    0 /command/svstat /service/httpd

0.440   perl         15527  15525    0 /usr/bin/perl -e $l=<>;$l=~/(\d+) sec/;prin...

0.442   ps           15529  15528    0 /bin/ps --ppid 1 -o pid,cmd,args

[...]

0.487   catalina.sh  15524  4469     0 /apps/tomcat/bin/catalina.sh start

0.488   dirname      15549  15524    0 /usr/bin/dirname /apps/tomcat/bin/catalina.sh

1.459   run          15550  4469     0 ./run

1.459   bash         15550  4469     0 /bin/bash 

1.462   svstat       15552  15551    0 /command/svstat /service/nflx-httpd

1.462   perl         15553  15551    0 /usr/bin/perl -e $l=<>;$l=~/(\d+) sec/;prin...

[...]

I’ve truncated the output (as indicated by the […]), but the timestamp column shows a new clue: 
The time between new processes jumps by one second, and this pattern repeats. By browsing the 
output, I could see that 30 new processes were launched every second, followed by a one-second 
pause between these batches of 30 processes.

The output shown here is taken from a real-world issue at Netflix that I debugged using 
execsnoop(8). This was occurring on a server used for micro-benchmarking, but the bench-
mark results showed too much variance to be trusted. I ran execsnoop(8) when the system was 
supposed to be idle, and discovered that it wasn’t! Every second these processes were launched, 
and they were perturbing our benchmarks. The cause turned out to be a misconfigured service 
that was attempting to launch every second, failing, and starting again. Once the service was 
deactivated, these processes stopped (as confirmed using execsnoop(8)), and then the benchmark 
numbers became consistent.

The output from execsnoop(8) aids a performance analysis methodology called workload 
characterization, which is supported by many other BPF tools in this book. This methodology is 
simple: Define what workload is being applied. Understanding the workload is often sufficient for 
solving problems, and avoids needing to dig deeper into latencies or to do drill-down analysis. In 
this case, it was the process workload applied to the system. Chapter 3 introduces this and other 
methodologies.

Try running execsnoop(8) on your systems and leave it running for an hour. What do you find?

execsnoop(8) prints per-event data, but other tools use BPF to calculate efficient summaries. 
Another tool you can use for quick wins is biolatency(8), which summarizes block device I/O 
(disk I/O) as a latency histogram.
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The following is output from running biolatency(8) on a production database that is sensitive 
to high latency as it has a service level agreement to deliver requests within a certain number of 
milliseconds.

# biolatency -m

Tracing block device I/O... Hit Ctrl-C to end.

^C

     msecs               : count     distribution

         0 -> 1          : 16335    |****************************************|

         2 -> 3          : 2272     |*****                                   |

         4 -> 7          : 3603     |********                                |

         8 -> 15         : 4328     |**********                              |

        16 -> 31         : 3379     |********                                |

        32 -> 63         : 5815     |**************                          |

        64 -> 127        : 0        |                                        |

       128 -> 255        : 0        |                                        |

       256 -> 511        : 0        |                                        |

       512 -> 1023       : 11       |                                        |

While the biolatency(8) tool is running, block I/O events are instrumented and their latencies are 
calculated and summarized by BPF. When the tool stops running (when the user presses Ctrl-C), 
the summary is printed. I used the -m option here to print the summary in milliseconds.

There are interesting details in this output, which shows a bi-modal distribution as well as latency 
outliers. The largest mode (as visualized by the ASCII distribution) is for the 0- to 1-millisecond 
range, with 16,355 I/O in that range while tracing. This is fast, and likely due to on-disk cache hits 
as well as flash memory devices. The second mode stretches to the 32- to 63-millisecond range, 
which is much slower than expected from these storage devices and suggests queuing. More BPF 
tools can be used to drill deeper to confirm. Finally, for the 512- to 1023-millisecond range, there 
were 11 I/O. These very slow I/O are termed latency outliers. Now that we know they exist, they can 
be examined in more detail with other BPF tools. For the database team, these are the priority to 
study and solve: If the database is blocked on these I/O, the database will exceed its latency target.

1.5 BPF Tracing Visibility

BPF tracing gives you visibility across the full software stack and allows new tools and instrumen-
tation to be created on demand. You can use BPF tracing in production immediately, without 
needing to reboot the system or restart applications in any special mode. It can feel like having 
X-ray vision: When you need to examine some deep kernel component, device, or application 
library, you can see into it in a way that no one ever has before—live and in production.

To illustrate, Figure 1-2 shows a generic system software stack that I’ve annotated with BPF-based 
performance tools for observing different components. These tools are from BCC, bpftrace, and 
this book. Many of them will be explained in later chapters.
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Figure 1-2 BPF performance tools and their visibility

Consider the different tools you would use to examine components such as the kernel CPU 
scheduler, virtual memory, file systems, and so on. By simply browsing this diagram, you might 
discover former blindspots that you can observe with BPF tools.

The traditional tools used to examine these components are summarized in Table 1-1, along with 
whether BPF tracing can observe these components.

Table 1-1 Traditional Analysis Tools

Components Traditional Analysis Tools BPF Tracing

Applications with language runtimes: 
Java, Node.js, Ruby, PHP

Runtime debuggers Yes, with runtime support

Applications using compiled code: C, 
C++, Golang

System debuggers Yes

System libraries: /lib/* ltrace(1) Yes

System call interface strace(1), perf(1) Yes

Kernel: Scheduler, file systems, TCP, IP, etc Ftrace, perf(1) for sampling Yes, in more detail

Hardware: CPU internals, devices perf, sar, /proc counters Yes, direct or indirect4

4 BPF may not be able to directly instrument the firmware on a device, but it may be able to indirectly infer behavior 

based on tracing of kernel driver events or PMCs.
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Traditional tools can provide useful starting points for analysis, which you can explore in more 
depth with BPF tracing tools. Chapter 3 summarizes basic performance analysis with system tools, 
which can be your starting point. 

1.6 Dynamic Instrumentation: kprobes and uprobes

BPF tracing supports multiple sources of events to provide visibility of the entire software stack. 
One that deserves special mention is dynamic instrumentation (also called dynamic tracing)—
the ability to insert instrumentation points into live software, in production. Dynamic instru-
mentation costs zero overhead when not in use, as software runs unmodified. It is often used by 
BPF tools to instrument the start and end of kernel and application functions, from the many 
tens of thousands of functions that are typically found running in a software stack. This provides 
visibility so deep and comprehensive that it can feel like a superpower.

Dynamic instrumentation was first created in the 1990s [Hollingsworth 94], based on a technique 
used by debuggers to insert breakpoints at arbitrary instruction addresses. With dynamic instru-
mentation, the target software records information and then automatically continues execution 
rather than passing control to an interactive debugger. Dynamic tracing tools (e.g., kerninst 
[Tamches 99]) were developed, and included tracing languages, but these tools remained obscure 
and little used. In part because they involved considerable risk: Dynamic tracing requires modifi-
cation of instructions in an address space, live, and any error could lead to immediate corruption 
and process or kernel crashes.

Dynamic instrumentation was first developed for Linux in 2000 as DProbes by a team at IBM, but 
the patch set was rejected.5 Dynamic instrumentation for kernel functions (kprobes) was finally 
added to Linux in 2004, originating from DProbes, although it was still not well known and was 
still difficult to use.

Everything changed in 2005, when Sun Microsystems launched its own version of dynamic 
tracing, DTrace, with its easy-to-use D language, and included it in the Solaris 10 operating 
system. Solaris was known and trusted for production stability, and including DTrace as a default 
package install helped prove that dynamic tracing could be made safe for use in production. It 
was a turning point for the technology. I published many articles showing real-world use cases 
with DTrace and developed and published many DTrace tools. Sun marketing also promoted 
the technology, as did Sun sales; it was thought to be a compelling competitive feature. Sun 
Educational Services included DTrace in the standard Solaris courses and taught dedicated DTrace 
courses. All of these efforts caused dynamic instrumentation to move from an obscure technology 
to a well-known and in-demand feature.

Linux added dynamic instrumentation for user-level functions in 2012, in the form of uprobes. 
BPF tracing tools use both kprobes and uprobes for dynamic instrumentation of the full software 
stack.

5 The reasons for Linux rejecting DProbes are discussed as the first case study in On submitting kernel patches by Andi 

Kleen, which is referenced in the Linux source in Documentation/process/submitting-patches.rst [6].
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To show how dynamic tracing is used, Table 1-2 provides examples of bpftrace probe specifiers 
that use kprobes and uprobes. (bpftrace is covered in Chapter 5.)

Table 1-2 bpftrace kprobe and uprobe Examples

Probe Description

kprobe:vfs_read Instrument the beginning of the kernel vfs_read() function

kretprobe:vfs_read Instrument the returns6 of the kernel vfs_read() function

uprobe:/bin/bash:readline Instrument the beginning of the readline() function in /bin/bash

uretprobe:/bin/bash:readline Instrument the returns of the readline() function in /bin/bash

1.7 Static Instrumentation: Tracepoints and USDT

There is a downside to dynamic instrumentation: It instruments functions that can be renamed 
or removed from one software version to the next. This is referred to as an interface stability issue. 
After upgrading the kernel or application software, you may suddenly find that your BPF tool no 
longer works properly. Perhaps it prints an error about being unable to find functions to instru-
ment, or maybe it prints no output at all. Another issue is that compilers may inline functions as 
a compiler optimization, making them unavailable for instrumentation via kprobes or uprobes.7

One solution to both the stability and inlining problem is to switch to static instrumentation, 
where stable event names are coded into the software and maintained by the developers. BPF 
tracing supports tracepoints for kernel static instrumentation, and user-level statically defined 
tracing (USDT) for user-level static instrumentation. The downside of static instrumentation is 
that these instrumentation points become a maintenance burden for the developers, so if any 
exist, they are usually limited in number.

These details are only important if you intend to develop your own BPF tools. If so, a recom-
mended strategy is to try using static tracing first (using tracepoints and USDT) and then switch 
to dynamic tracing (using kprobes and uprobes) when static tracing is unavailable.

Table 1-3 provides examples of bpftrace probe specifiers for static instrumentation using 
tracepoints and USDT. The open(2) tracepoint mentioned in this table is used in Section 1.8.

Table 1-3 bpftrace Tracepoint and USDT Examples

Probe Description

tracepoint:syscalls:sys_enter_open Instrument the open(2) syscall

usdt:/usr/sbin/mysqld:mysql:
query__start

Instrument the query__start probe from /usr/sbin/mysqld

6 A function has one beginning but can have multiple ends: It can call return from different places. Return probes 

instrument all the return points. (See Chapter 2 for an explanation of how this works.)

7 A workaround is function offset tracing, but as an interface it is even less stable than function entry tracing.
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1.8 A First Look at bpftrace: Tracing open()

Let’s start by using bpftrace to trace the open(2) system call (syscall). There is a tracepoint for 
it (syscalls:sys_enter_open8), and I’ll write a short bpftrace program at the command line: a 
one-liner.

You aren’t expected to understand the code in the following one-liner yet; the bpftrace language 
and install instructions are covered in Chapter 5. But you may be able to guess what the program 
does without knowing the language as it is quite intuitive (an intuitive language is a sign of good 
design). For now, just focus on the tool output.

# bpftrace -e 'tracepoint:syscalls:sys_enter_open { printf("%s %s\n", comm,

    str(args->filename)); }'

Attaching 1 probe...

slack /run/user/1000/gdm/Xauthority

slack /run/user/1000/gdm/Xauthority

slack /run/user/1000/gdm/Xauthority

slack /run/user/1000/gdm/Xauthority

^C

#

The output shows the process name and the filename passed to the open(2) syscall: bpftrace is 
tracing system-wide, so any application using open(2) will be seen. Each line of output summa-
rizes one syscall, and this is an example of a tool that produces per-event output. BPF tracing can 
be used for more than just production server analysis. For example, I’m running it on my laptop 
as I write this book, and it’s showing files that a Slack chat application is opening. 

The BPF program was defined within the single forward quotes, and it was compiled and run as 
soon as I pressed Enter to run the bpftrace command. bpftrace also activated the open(2) trace-
point. When I pressed Ctrl-C to stop the command, the open(2) tracepoint was deactivated, and 
my small BPF program was removed. This is how on-demand instrumentation by BPF tracing 
tools work: They are only activated and running for the lifetime of the command, which can be as 
short as seconds.

The output generated was slower than I was expecting: I think I’m missing some open(2) syscall 
events. The kernel supports a few variants of open, and I traced only one of them. I can use 
bpftrace to list all the open tracepoints by using -l and a wildcard:

# bpftrace -l 'tracepoint:syscalls:sys_enter_open*'

tracepoint:syscalls:sys_enter_open_by_handle_at

tracepoint:syscalls:sys_enter_open

tracepoint:syscalls:sys_enter_openat

8 These syscall tracepoints require the Linux CONFIG_FTRACE_SYSCALLS build option to be enabled.
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Ah, I think the openat(2) variant is used more often nowadays. I’ll confirm with another bpftrace 
one-liner:

# bpftrace -e 'tracepoint:syscalls:sys_enter_open* { @[probe] = count(); }'

Attaching 3 probes...

^C

 

@[tracepoint:syscalls:sys_enter_open]: 5

@[tracepoint:syscalls:sys_enter_openat]: 308

Again, the code in this one-liner will be explained in Chapter 5. For now, it’s only important 
to understand the output. It is now showing a count of these tracepoints rather than a line 
per event. This confirms that the openat(2) syscall is called more often—308 times while 
tracing—whereas the open(2) syscall was called only five times. This summary is calculated 
efficiently in the kernel by the BPF program.

I can add the second tracepoint to my one-liner to trace both open(2) and openat(2) at the same 
time. However, the one-liner will start getting a little long and unwieldy at the command line, 
and at that point, it would be better to save it to a script (an executable file), so that it can be 
more easily edited using a text editor. This has already been done for you: bpftrace ships with 
opensnoop.bt, which traces both the start and end of each syscall, and prints the output as 
columns:

# opensnoop.bt

Attaching 3 probes...

Tracing open syscalls... Hit Ctrl-C to end.

PID    COMM               FD ERR PATH

2440   snmp-pass           4   0 /proc/cpuinfo

2440   snmp-pass           4   0 /proc/stat

25706  ls                  3   0 /etc/ld.so.cache

25706  ls                  3   0 /lib/x86_64-linux-gnu/libselinux.so.1

25706  ls                  3   0 /lib/x86_64-linux-gnu/libc.so.6

25706  ls                  3   0 /lib/x86_64-linux-gnu/libpcre.so.3

25706  ls                  3   0 /lib/x86_64-linux-gnu/libdl.so.2

25706  ls                  3   0 /lib/x86_64-linux-gnu/libpthread.so.0

25706  ls                  3   0 /proc/filesystems

25706  ls                  3   0 /usr/lib/locale/locale-archive

25706  ls                  3   0 .

1744   snmpd               8   0 /proc/net/dev

1744   snmpd              -1   2 /sys/class/net/lo/device/vendor

2440   snmp-pass           4   0 /proc/cpuinfo

^C

#
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The columns are process ID (PID), process command name (COMM), file descriptor (FD), error 
code (ERR), and the path of the file that the syscall attempted to open (PATH). The opensnoop.bt 
tool can be used to troubleshoot failing software, which may be attempting to open files from the 
wrong path, as well as to determine where config and log files are kept, based on their accesses. It 
can also identify some performance issues, such as files being opened too quickly, or the wrong 
locations being checked too frequently. It is a tool with many uses.

bpftrace ships with more than 20 such ready-to-run tools, and BCC ships with more than 70. In 
addition to helping you solve problems directly, these tools provide source code that shows how 
various targets can be traced. Sometimes there are gotchas, as we saw with tracing the open(2) 
syscall, and their source code may show solutions to these.

1.9 Back to BCC: Tracing open()

Now let’s look at the BCC version of opensnoop(8):

# opensnoop 

PID    COMM               FD ERR PATH

2262   DNS Res~er #657    22   0 /etc/hosts

2262   DNS Res~er #654   178   0 /etc/hosts

29588  device poll         4   0 /dev/bus/usb

29588  device poll         6   0 /dev/bus/usb/004

29588  device poll         7   0 /dev/bus/usb/004/001

29588  device poll         6   0 /dev/bus/usb/003

^C

#

The output here looks very similar to the output of the earlier one-liner—at least it has the same 
columns. But this opensnoop(8) output has something that the bpftrace version does not: It can 
be invoked with different command line options:

# opensnoop -h

usage: opensnoop [-h] [-T] [-x] [-p PID] [-t TID] [-d DURATION] [-n NAME]

                    [-e] [-f FLAG_FILTER]

 

Trace open() syscalls

 

optional arguments:

  -h, --help            show this help message and exit

  -T, --timestamp       include timestamp on output

  -x, --failed          only show failed opens

  -p PID, --pid PID     trace this PID only

  -t TID, --tid TID     trace this TID only

  -d DURATION, --duration DURATION

                        total duration of trace in seconds
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  -n NAME, --name NAME  only print process names containing this name

  -e, --extended_fields

                        show extended fields

  -f FLAG_FILTER, --flag_filter FLAG_FILTER

                        filter on flags argument (e.g., O_WRONLY)

 

examples:

    ./opensnoop           # trace all open() syscalls

    ./opensnoop -T        # include timestamps

    ./opensnoop -x        # only show failed opens

    ./opensnoop -p 181    # only trace PID 181

    ./opensnoop -t 123    # only trace TID 123

    ./opensnoop -d 10     # trace for 10 seconds only

    ./opensnoop -n main   # only print process names containing "main"

    ./opensnoop -e        # show extended fields

    ./opensnoop -f O_WRONLY -f O_RDWR  # only print calls for writing

While bpftrace tools are typically simple and do one thing, BCC tools are typically complex and 
support a variety of modes of operation. While you could modify the bpftrace tool to only show 
failed opens, the BCC version already supports that as an option (-x):

# opensnoop -x

PID    COMM               FD ERR PATH

991    irqbalance         -1   2 /proc/irq/133/smp_affinity

991    irqbalance         -1   2 /proc/irq/141/smp_affinity

991    irqbalance         -1   2 /proc/irq/131/smp_affinity

991    irqbalance         -1   2 /proc/irq/138/smp_affinity

991    irqbalance         -1   2 /proc/irq/18/smp_affinity

20543  systemd-resolve    -1   2 /run/systemd/netif/links/5

20543  systemd-resolve    -1   2 /run/systemd/netif/links/5

20543  systemd-resolve    -1   2 /run/systemd/netif/links/5

[...]

This output shows repeated failures. Such patterns may point to inefficiencies or 
misconfigurations that can be fixed.

BCC tools often have several such options for changing their behavior, making them more 
versatile than bpftrace tools. This makes them a good starting point: hopefully they can solve 
your needs without you needing to write any BPF code. If, however, they do lack the visibility 
you need, you can then switch to bpftrace and create custom tools, as it is an easier language to 
develop.
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A bpftrace tool can later be converted to a more complex BCC tool that supports a variety of 
options, like opensnoop(8) shown previously. BCC tools can also support using different events: 
using tracepoints when available, and switching to kprobes when not. But be aware that BCC 
programming is far more complex and is beyond the scope of this book, which focuses on 
bpftrace programming. Appendix C provides a crash course in BCC tool development.

1.10 Summary

BPF tracing tools can be used for performance analysis and troubleshooting, and there are two 
main projects that provide them: BCC and bpftrace. This chapter introduced extended BPF, BCC, 
bpftrace, and the dynamic and static instrumentation that they use.

The next chapter dives into these technologies in much more detail. If you are in a hurry to solve 
issues, you might want to skip Chapter 2 for now and move on to Chapter 3 or a later chapter 
that covers the topic of interest. These later chapters make heavy use of terms, many of which are 
explained in Chapter 2, but they are also summarized in the Glossary.
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Chapter 2
Technology Background

Chapter 1 introduced various technologies used by BPF performance tools. This chapter explains 
them in more detail: their histories, interfaces, internals, and use with BPF.

This is the most technically deep chapter in the book, and for the sake of brevity, it assumes some 
knowledge of kernel internals and instruction-level programming.1

The learning objectives are not to memorize every page in this chapter, but for you to:

 ■ Know the origins of BPF, and the role of extended BPF today

 ■ Understand frame pointer stack walking and other techniques

 ■ Understand how to read flame graphs

 ■ Understand the use of kprobes and uprobes, and be familiar with their stability caveats

 ■ Understand the role of tracepoints, USDT probes, and dynamic USDT

 ■ Be aware of PMCs and their use with BPF tracing tools

 ■ Be aware of future developments: BTF, other BPF stack walkers

Understanding this chapter will improve your comprehension of later content in this book, 
but you may prefer to skim through this chapter now and return to it for more detail as needed. 
Chapter 3 will get you started on using BPF tools to find performance wins.

2.1 BPF Illustrated

Figure 2-1 shows many of the technologies in this chapter and their relationships to each other.

1 To learn necessary kernel internals, refer to any guide that covers syscalls, kernel and user mode, tasks/threads, 

virtual memory, and VFS, such as [Gregg 13b].
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Figure 2-1 BPF tracing technologies

2.2 BPF

BPF was originally developed for the BSD operating system, and is described in the 1992 paper “The 
BSD Packet Filter: A New Architecture for User-level Packet Capture” [McCanne 92]. This paper was 
presented at the 1993 USENIX Winter conference in San Diego, alongside “Measurement, Analysis, 
and Improvement of UDP/IP Throughput for the DECstation 5000” [7]. DECstations are long gone, 
but BPF has survived as the industry standard solution for packet filtering.

BPF works in an interesting way: A filter expression is defined by the end user using an instruction 
set for a BPF virtual machine (sometimes called the BPF bytecode) and then passed to the kernel 
for execution by an interpreter. This allows filtering to occur in the kernel level without costly 
copies of each packet going to the user-level processes, improving the performance of packet 
filtering, as used by tcpdump(8). It also provides safety, as filters from user space can be verified as 
being safe before execution. Given that early packet filtering had to occur in kernel space, safety 
was a hard requirement. Figure 2-2 shows how this works.

Figure 2-2 tcpdump and BPF
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You can use the -d option to tcpdump(8) to print out the BPF instructions it is using for the filter 
expression. For example:

# tcpdump -d host 127.0.0.1 and port 80

(000) ldh      [12]

(001) jeq      #0x800           jt 2      jf 18

(002) ld       [26]

(003) jeq      #0x7f000001      jt 6      jf 4

(004) ld       [30]

(005) jeq      #0x7f000001      jt 6      jf 18

(006) ldb      [23]

(007) jeq      #0x84            jt 10     jf 8

(008) jeq      #0x6             jt 10     jf 9

(009) jeq      #0x11            jt 10     jf 18

(010) ldh      [20]

(011) jset     #0x1fff          jt 18     jf 12

(012) ldxb     4*([14]&0xf)

(013) ldh      [x + 14]

(014) jeq      #0x50            jt 17     jf 15

(015) ldh      [x + 16]

(016) jeq      #0x50            jt 17     jf 18

(017) ret      #262144

(018) ret      #0

The original BPF, now referred to as “classic BPF,” was a limited virtual machine. It had two regis-
ters, a scratch memory store consisting of 16 memory slots, and a program counter. These were all 
operating with a 32-bit register size.2 Classic BPF arrived in Linux in 1997, for the 2.1.75 kernel [8].

Since the addition of BPF to the Linux kernel, there have been some important improvements. 
Eric Dumazet added a BPF just-in-time (JIT) compiler in Linux 3.0, released in July 2011 [9], 
improving performance over the interpreter. In 2012, Will Drewry added BPF filters for seccomp 
(secure computing) syscall policies [10]; this was the first use of BPF outside of networking, and it 
showed the potential for BPF to be used as a generic execution engine.

2.3 Extended BPF (eBPF)

Extended BPF was created by Alexei Starovoitov while he worked at PLUMgrid, as the company 
was investigating new ways to create software-defined networking solutions. This would be the 
first major update to BPF in 20 years, and one that would extend BPF to become a general-purpose 
virtual machine.3 While it was still a proposal, Daniel Borkmann, a kernel engineer at Red Hat, 

2 For classic BPF on a 64-bit kernel, addresses are 64-bit, but the registers only ever see 32-bit data, and the loads are 

hidden behind some external kernel helper functions.

3 While BPF is often called a virtual machine, that only describes its specification. Its implementation in Linux (its 

runtime) has an interpreter and a JIT-to-native code compiler. The term virtual machine may imply that there is another 

machine layer on top of the processor, but there isn’t. With JIT compiled code, instructions run directly on the processor 

just like any other native kernel code. Note that after the Spectre vulnerability, some distributions unconditionally enable 

the JIT for x86, which removes the interpreter entirely (as it gets compiled out).
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helped rework it for inclusion in the kernel and as a replacement for the existing BPF.4 This 
extended BPF was successfully included and has since had contributions from many other 
developers (see the Acknowledgments).

Extended BPF added more registers, switched from 32-bit to 64-bit words, created flexible BPF 
“map” storage, and allowed calls to some restricted kernel functions.5 It was also designed to 
be JITed with a one-to-one mapping to native instructions and registers, allowing prior native 
instruction optimization techniques to be reused for BPF. The BPF verifier was also updated to 
handle these extensions and reject any unsafe code.

Table 2-1 shows the differences between classic BPF and extended BPF.

Table 2-1 Classic BPF Versus Extended BPF

Factor Classic BPF Extended BPF

Register count 2: A, X 10: R0–R9, plus R10 as a read-only 
frame pointer

Register width 32-bit 64-bit

Storage 16 memory slots: M[0–15] 512 bytes of stack space, plus infinite 
“map” storage

Restricted kernel calls Very limited, JIT specific Yes, via the bpf_call instruction

Event targets Packets, seccomp-BPF Packets, kernel functions, user functions, 
tracepoints, user markers, PMCs

Alexei’s original proposal was a patchset in September 2013 titled “extended BPF” [2]. By 
December 2013, Alexei was already proposing its use for tracing filters [11]. After discussion and 
development with Daniel, the patches began to merge in the Linux kernel by March 2014 [3][12].6 
The JIT components were merged for the Linux 3.15 release in June 2014, and the bpf(2) syscall for 
controlling BPF was merged for the Linux 3.18 release in December 2014 [13]. Later additions in 
the Linux 4.x series added BPF support for kprobes, uprobes, tracepoints, and perf_events.

In the earliest patchsets, the technology was abbreviated as eBPF, but Alexei later switched to 
calling it just BPF.7 All BPF development on the net-dev mailing list [14] now refers to it as just BPF.

4 Alexei and Daniel have since changed companies. They are also currently the kernel “maintainers” for BPF: a role 

where they provide leadership, review patches, and decide what gets included.

5 Without needing to overload instructions, a workaround used with classic BPF that was complicated as every JIT 

needed to be changed to handle it.

6 Early on, it was also called “internal BPF,” before it was exposed via the bpf(2) syscall. Since BPF was a networking 

technology, these patches were sent to and accepted by the networking maintainer David S. Miller. Today, BPF has grown 

into a larger kernel community of its own, and all BPF-related patches are merged into their own bpf and bpf-next kernel 

trees. Tradition is steady that BPF tree pull requests are still accepted by David S. Miller.

7 I also suggested to Alexei that we come up with a different and better name. But naming is hard, and we’re 

engineers, so we’re stuck with “it’s eBPF but really just BPF, which stands for Berkeley Packet Filter although today it 

has little to do with Berkeley, packets, or filtering.” Thus, BPF should be regarded now as a technology name rather than 

as an acronym.
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The architecture of the Linux BPF runtime is illustrated in Figure 2-3, which shows how BPF 
instructions pass the BPF verifier to be executed by a BPF virtual machine. The BPF virtual 
machine implementation has both an interpreter and a JIT compiler: the JIT compiler generates 
native instructions for direct execution. The verifier rejects unsafe operations, including 
unbounded loops: BPF programs must finish in a bounded time.

Figure 2-3 BPF runtime internals

BPF can make use of helpers for fetching kernel state, and BPF maps for storage. The BPF program 
is executed on events, which include kprobes, uprobes, and tracepoints.

The next sections discuss why performance tools need BPF, extended BPF programming, viewing 
BPF instructions, the BPF API, BPF limitations, and BTF. These sections provide a basis for under-
standing how BPF works when using bpftrace and BCC. In addition, Appendix D covers BPF 
programming in C directly, and Appendix E covers BPF instructions.

2.3.1 Why Performance Tools Need BPF

Performance tools use extended BPF in part for its programmability. BPF programs can execute 
custom latency calculations and statistical summaries. Those features alone would make for an 
interesting tool, and there are plenty of other tracing tools that have those features. What makes 
BPF different is that it is also efficient and production safe, and it is built into the Linux kernel. 
With BPF, you can run these tools in production environments without needing to add any new 
kernel components.
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Let’s look at some output and a diagram to see how performance tools use BPF. This example 
comes from an early BPF tool I published called bitehist, which shows the size of disk I/O as a 
histogram [15]:

# bitehist

Tracing block device I/O... Interval 5 secs. Ctrl-C to end.

 

     kbytes          : count     distribution

       0 -> 1        : 3        |                                      |

       2 -> 3        : 0        |                                      |

       4 -> 7        : 3395     |************************************* |

       8 -> 15       : 1        |                                      |

      16 -> 31       : 2        |                                      |

      32 -> 63       : 738      |*******                               |

      64 -> 127      : 3        |                                      |

     128 -> 255      : 1        |                                      |

Figure 2-4 shows how BPF improves the efficiency of this tool.

Figure 2-4 Generating histograms before and after using BPF
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The key change is that the histogram can be generated in kernel context, which greatly reduces 
the amount of data copied to user space. This efficiency gain is so great that it can allow tools to 
run in production that would otherwise be too costly. In detail:

Prior to BPF, the full steps to produce this histogram summary were8:

 1. In the kernel: enable instrumentation for disk I/O events.

 2. In the kernel, for each event: write a record to the perf buffer. If tracepoints are used (as is 
preferred), the record contains several fields of metadata about the disk I/O.

 3. In user space: periodically copy the buffer of all events to user space.

 4. In user space: step over each event, parsing the event metadata for the bytes field. Other 
fields are ignored.

 5. In user space: generate a histogram summary of the bytes field.

Steps 2 to 4 have high performance overhead for high-I/O systems. Imagine transferring 10,000 
disk I/O trace records to a user-space program to parse and summarize—every second.

With BPF, the steps for the bitesize program are:

 1. In the kernel: enable instrumentation for disk I/O events and attach a custom BPF program, 
defined by bitesize.

 2. In the kernel, for each event: run the BPF program. It fetches the bytes field alone and saves 
it into a custom BPF map histogram.

 3. In user space: read the BPF map histogram once and print it out.

This method avoids the cost of copying events to user space and reprocessing them. It also avoids 
copying metadata fields that are not used. The only data copied to user space is shown in the 
previous output: the "count" column, which is an array of numbers.

2.3.2 BPF Versus Kernel Modules

Another way to understand the benefits of BPF for observability is to compare it to kernel 
modules. kprobes and tracepoints have been available for many years, and they can be used 
from loadable kernel modules directly. The benefits of using BPF over kernel modules for tracing 
purposes are:

 ■ BPF programs are checked via a verifier; kernel modules may introduce bugs (kernel panics) 
or security vulnerabilities.

 ■ BPF provides rich data structures via maps.

8 These are the best steps available, but they don’t show the only method. You could install an out-of-tree tracer, like 

SystemTap, but, depending on your kernel and distribution, that could be a rocky experience. You could also modify the 

kernel code, or develop a custom kprobe module, but both of these methods involve challenges and carry their own 

risks. I developed my own workaround that I called the “hacktogram,” which involved creating multiple perf(1) stat 

counters with range filters for each row in the histogram [16]. It was horrible.
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 ■ BPF programs can be compiled once and then run anywhere, as the BPF instruction 
set, map, helpers, and infrastructure are a stable ABI. (However, this is not possible with 
some BPF tracing programs that introduce unstable components, such as kprobes that 
instrument kernel structures; see Section 2.3.10 for work on a solution.)

 ■ BPF programs do not require kernel build artifacts to be compiled.

 ■ BPF programming is easier to learn than the kernel engineering required to develop kernel 
modules, making it accessible to more people.

Note that there are additional benefits when BPF is used for networking, including the ability to 
replace BPF programs atomically. A kernel module would need to first unload out of the kernel 
entirely and then reload the new version into the kernel, which could cause service disruptions.

A benefit of kernel modules is that other kernel functions and facilities can be used, without the 
restriction to BPF helper calls only. However, this brings the additional risk of introducing bugs if 
arbitrary kernel functions are misused.

2.3.3 Writing BPF Programs

BPF can be programmed via one of the many front ends available. The main ones for tracing are, 
from lowest- to highest-level language:

 ■ LLVM

 ■ BCC

 ■ bpftrace

The LLVM compiler supports BPF as a compilation target. BPF programs can be written using 
a higher-level language that LLVM supports, such as C (via Clang) or LLVM Intermediate 
Representation (IR), and then compiled into BPF. LLVM includes an optimizer, which improves 
the efficiency and size of the BPF instructions it emits.

While developing BPF in LLVM IR is an improvement, switching to BCC or bpftrace is even better. 
BCC allows BPF programs to be written in C, and bpftrace provides its own higher-level language. 
Internally, they are using LLVM IR and an LLVM library to compile to BPF.

The performance tools in this book are programmed in BCC and bpftrace. Programming in BPF 
instructions directly, or LLVM IR, is the domain of developers who work on BCC and bpftrace 
internals and is beyond the scope of this book. It is unnecessary for those of us using and 
developing BPF performance tools.9 If you wish to become a BPF instruction developer or are 
curious, here are some resources for additional reading:

Appendix E provides a brief summary of BPF instructions and macros.

 ■ BPF instructions are documented in the Linux source tree, Documentation/networking/
filter.txt [17].

9 Having spent 15 years using DTrace, I cannot remember a time when anyone needed to write D Intermediate Format 

(DIF) programs directly (the DTrace equivalent of BPF instructions).
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 ■ LLVM IR is documented in the online LLVM reference; start with the llvm::IRBuilderBase 
Class Reference [18].

 ■ See the Cilium BPF and XDP Reference Guide [19].

While most of us will never program BPF instructions directly, many of us will view them 
at times, such as when tools encounter issues. The next two sections show examples, using 
bpftool(8) and then bpftrace.

2.3.4 Viewing BPF Instructions: bpftool

bpftool(8) was added in Linux 4.15 for viewing and manipulating BPF objects, including programs 
and maps. It is in the Linux source under tools/bpf/bpftool. This section summarizes how to use 
bpftool(8) to find loaded BPF programs and print their instructions.

bpftool

The default output of bpftool(8) shows the object types that it operates on. From Linux 5.2:

# bpftool

Usage: bpftool [OPTIONS] OBJECT { COMMAND | help }

       bpftool batch file FILE

       bpftool version

 

       OBJECT := { prog | map | cgroup | perf | net | feature | btf }

       OPTIONS := { {-j|--json} [{-p|--pretty}] | {-f|--bpffs} |

                    {-m|--mapcompat} | {-n|--nomount} }

There is a separate help page for each object. For example, for programs:

# bpftool prog help

Usage: bpftool prog { show | list } [PROG]

       bpftool prog dump xlated PROG [{ file FILE | opcodes | visual | linum }]

       bpftool prog dump jited  PROG [{ file FILE | opcodes | linum }]

       bpftool prog pin   PROG FILE

       bpftool prog { load | loadall } OBJ  PATH \

                         [type TYPE] [dev NAME] \

                         [map { idx IDX | name NAME } MAP]\

                         [pinmaps MAP_DIR]

       bpftool prog attach PROG ATTACH_TYPE [MAP]

       bpftool prog detach PROG ATTACH_TYPE [MAP]

       bpftool prog tracelog

       bpftool prog help
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       MAP := { id MAP_ID | pinned FILE }

       PROG := { id PROG_ID | pinned FILE | tag PROG_TAG }

       TYPE := { socket | kprobe | kretprobe | classifier | action |q

[...]

The perf and prog subcommands can be used to find and print tracing programs. bpftool(8) 
capabilities not covered here include attaching programs, reading and writing to maps, operating 
on cgroups, and listing BPF features.

bpftool perf

The perf subcommand shows BPF programs attached via perf_event_open(), which is the norm 
for BCC and bpftrace programs on Linux 4.17 and later. For example:

# bpftool perf

pid 1765  fd 6: prog_id 26  kprobe  func blk_account_io_start  offset 0

pid 1765  fd 8: prog_id 27  kprobe  func blk_account_io_done  offset 0

pid 1765  fd 11: prog_id 28  kprobe  func sched_fork  offset 0

pid 1765  fd 15: prog_id 29  kprobe  func ttwu_do_wakeup  offset 0

pid 1765  fd 17: prog_id 30  kprobe  func wake_up_new_task  offset 0

pid 1765  fd 19: prog_id 31  kprobe  func finish_task_switch  offset 0

pid 1765  fd 26: prog_id 33  tracepoint  inet_sock_set_state

pid 21993  fd 6: prog_id 232  uprobe  filename /proc/self/exe  offset 1781927

pid 21993  fd 8: prog_id 233  uprobe  filename /proc/self/exe  offset 1781920

pid 21993  fd 15: prog_id 234  kprobe  func blk_account_io_done  offset 0

pid 21993  fd 17: prog_id 235  kprobe  func blk_account_io_start  offset 0

pid 25440  fd 8: prog_id 262  kprobe  func blk_mq_start_request  offset 0

pid 25440  fd 10: prog_id 263  kprobe  func blk_account_io_done  offset 0

This output shows three different PIDs with various BPF programs:

 ■ PID 1765 is a Vector BPF PMDA agent for instance analysis. (See Chapter 17 for more 
details.)

 ■ PID 21993 is the bpftrace version of biolatency(8). It shows two uprobes, which are the 
BEGIN and END probes from the bpftrace program, and two kprobes for instrumenting the 
start and end of block I/O. (See Chapter 9 for the source to this program.)

 ■ PID 25440 is the BCC version of biolatency(8), which currently instruments a different 
start function for the block I/O.

The offset field shows the offset of the instrumentation from the instrumented object. For 
bpftrace, offset 1781920 matches the BEGIN_trigger function in the bpftrace binary, and offset 
1781927 matches the END_trigger function (as can be verified by using readelf -s bpftrace).

The prog_id is the BPF program ID, which can be printed using the following subcommands.
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bpftool prog show

The prog show subcommand lists all programs (not just those that are perf_event_open() based):

# bpftool prog show

[...]

232: kprobe  name END  tag b7cc714c79700b37  gpl

        loaded_at 2019-06-18T21:29:26+0000  uid 0

        xlated 168B  jited 138B  memlock 4096B  map_ids 130

233: kprobe  name BEGIN  tag 7de8b38ee40a4762  gpl

        loaded_at 2019-06-18T21:29:26+0000  uid 0

        xlated 120B  jited 112B  memlock 4096B  map_ids 130

234: kprobe  name blk_account_io_  tag d89dcf82fc3e48d8  gpl

        loaded_at 2019-06-18T21:29:26+0000  uid 0

        xlated 848B  jited 540B  memlock 4096B  map_ids 128,129

235: kprobe  name blk_account_io_  tag 499ff93d9cff0eb2  gpl

        loaded_at 2019-06-18T21:29:26+0000  uid 0

        xlated 176B  jited 139B  memlock 4096B  map_ids 128

[...]

258: cgroup_skb  tag 7be49e3934a125ba  gpl

        loaded_at 2019-06-18T21:31:27+0000  uid 0

        xlated 296B  jited 229B  memlock 4096B  map_ids 153,154

259: cgroup_skb  tag 2a142ef67aaad174  gpl

        loaded_at 2019-06-18T21:31:27+0000  uid 0

        xlated 296B  jited 229B  memlock 4096B  map_ids 153,154

262: kprobe  name trace_req_start  tag 1dfc28ba8b3dd597  gpl

        loaded_at 2019-06-18T21:37:51+0000  uid 0

        xlated 112B  jited 109B  memlock 4096B  map_ids 158

        btf_id 5

263: kprobe  name trace_req_done  tag d9bc05b87ea5498c  gpl

        loaded_at 2019-06-18T21:37:51+0000  uid 0

        xlated 912B  jited 567B  memlock 4096B  map_ids 158,157

        btf_id 5

This output shows the bpftrace program IDs (232 to 235) and the BCC program IDs (262 and 263), 
as well as other BPF programs that are loaded. Note that the BCC kprobe programs have BPF Type 
Format (BTF) information, shown by the presence of btf_id in this output. BTF is explained in 
more detail in Section 2.3.9. For now, it is sufficient to understand that BTF is a BPF version of 
debuginfo.
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bpftool prog dump xlated

Each BPF program can be printed (“dumped”) via its ID. The xlated mode prints the BPF 
instructions translated to assembly. Here is program 234, the bpftrace block I/O done program10: 

# bpftool prog dump xlated id 234 

   0: (bf) r6 = r1

   1: (07) r6 += 112

   2: (bf) r1 = r10

   3: (07) r1 += -8

   4: (b7) r2 = 8

   5: (bf) r3 = r6

   6: (85) call bpf_probe_read#-51584

   7: (79) r1 = *(u64 *)(r10 -8)

   8: (7b) *(u64 *)(r10 -16) = r1

   9: (18) r1 = map[id:128]

  11: (bf) r2 = r10

  12: (07) r2 += -16

  13: (85) call __htab_map_lookup_elem#93808

  14: (15) if r0 == 0x0 goto pc+1

  15: (07) r0 += 56

  16: (55) if r0 != 0x0 goto pc+2

[...]

The output shows one of the restricted kernel helper calls that BPF can use: bpf_probe_read(). 
(More helper calls are listed in Table 2-2.)

Now compare the preceding output to the output for the BCC block I/O done program, ID 263, 
which has been compiled with BTF11:

# bpftool prog dump xlated id 263

int trace_req_done(struct pt_regs * ctx):

; struct request *req = ctx->di;

   0: (79) r1 = *(u64 *)(r1 +112)

; struct request *req = ctx->di;

   1: (7b) *(u64 *)(r10 -8) = r1

; tsp = bpf_map_lookup_elem((void *)bpf_pseudo_fd(1, -1), &req);

   2: (18) r1 = map[id:158]

   4: (bf) r2 = r10

; 

10 This may not match what the user loaded into the kernel, as the BPF verifier has the freedom to rewrite some 

instructions for optimization (e.g., inlining map lookups) or for security reasons (e.g., Spectre).

11 This required LLVM 9.0, which includes BTF by default.
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   5: (07) r2 += -8

; tsp = bpf_map_lookup_elem((void *)bpf_pseudo_fd(1, -1), &req);

   6: (85) call __htab_map_lookup_elem#93808

   7: (15) if r0 == 0x0 goto pc+1

   8: (07) r0 += 56

   9: (bf) r6 = r0

; if (tsp == 0) {

  10: (15) if r6 == 0x0 goto pc+101

; delta = bpf_ktime_get_ns() - *tsp;

  11: (85) call bpf_ktime_get_ns#88176

; delta = bpf_ktime_get_ns() - *tsp;

  12: (79) r1 = *(u64 *)(r6 +0)

[...]

This output now includes source information (highlighted in bold) from BTF. Note that it is a 
different program (different instructions and calls).

A linum modifier includes source file and line number information, also from BTF, if available 
(highlighted in bold):

# bpftool prog dump xlated id 263 linum

int trace_req_done(struct pt_regs * ctx):

; struct request *req = ctx->di; [file:/virtual/main.c line_num:42 line_col:29]

   0: (79) r1 = *(u64 *)(r1 +112)

; struct request *req = ctx->di; [file:/virtual/main.c line_num:42 line_col:18]

   1: (7b) *(u64 *)(r10 -8) = r1

; tsp = bpf_map_lookup_elem((void *)bpf_pseudo_fd(1, -1), &req); 

[file:/virtual/main.c line_num:46 line_col:39]

   2: (18) r1 = map[id:158]

   4: (bf) r2 = r10

[...]

In this case, the line number information refers to the virtual files BCC creates when running 
programs.

An opcodes modifier includes the BPF instruction opcodes (highlighted in bold):

# bpftool prog dump xlated id 263 opcodes

int trace_req_done(struct pt_regs * ctx):

; struct request *req = ctx->di;

   0: (79) r1 = *(u64 *)(r1 +112)

       79 11 70 00 00 00 00 00

; struct request *req = ctx->di;

   1: (7b) *(u64 *)(r10 -8) = r1

       7b 1a f8 ff 00 00 00 00

; tsp = bpf_map_lookup_elem((void *)bpf_pseudo_fd(1, -1), &req);
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   2: (18) r1 = map[id:158]

       18 11 00 00 9e 00 00 00 00 00 00 00 00 00 00 00

   4: (bf) r2 = r10

       bf a2 00 00 00 00 00 00

[...]

The BPF instruction opcodes are explained in Appendix E.

There is also a visual modifier, which emits control flow graph information in DOT format, 
for visualization by external software. For example, using GraphViz and its dot(1) directed graph 
tool [20]:

# bpftool prog dump xlated id 263 visual > biolatency_done.dot

$ dot -Tpng -Elen=2.5 biolatency_done.dot -o biolatency_done.png

The PNG file can then be viewed to see instruction flow. GraphViz provides different layout tools: 
I typically use dot(1), neato(1), fdp(1), and sfdp(1) for graphing DOT data. These tools allow 
various customizations (such as edge length: -Elen). Figure 2-5 shows the result of using osage(1) 
from GraphViz to visualize this BPF program.

Figure 2-5 BPF instruction flow visualized using GraphViz osage(1)

It is a complex program! Other GraphViz tools spread out the code blocks to prevent the bird’s 
nest of arrows but produce much larger files. If you need to read BPF instructions like this, you 
should experiment with the different tools to find the one that works best.
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bpftool prog dump jited

The prog dump jited subcommand shows the machine code for the processor that is executed. 
This section shows x86_64; however, BPF has JITs for all major architectures supported by the 
Linux kernel. For the BCC block I/O done program:

# bpftool prog dump jited id 263 

int trace_req_done(struct pt_regs * ctx):

0xffffffffc082dc6f:

; struct request *req = ctx->di;

   0:  push   %rbp

   1:  mov    %rsp,%rbp

   4:  sub    $0x38,%rsp

   b:  sub    $0x28,%rbp

   f:  mov    %rbx,0x0(%rbp)

  13:  mov    %r13,0x8(%rbp)

  17:  mov    %r14,0x10(%rbp)

  1b:  mov    %r15,0x18(%rbp)

  1f:  xor    %eax,%eax

  21:  mov    %rax,0x20(%rbp)

  25:  mov    0x70(%rdi),%rdi

; struct request *req = ctx->di;

  29:  mov    %rdi,-0x8(%rbp)

; tsp = bpf_map_lookup_elem((void *)bpf_pseudo_fd(1, -1), &req);

  2d:  movabs $0xffff96e680ab0000,%rdi

  37:  mov    %rbp,%rsi

  3a:  add    $0xfffffffffffffff8,%rsi

; tsp = bpf_map_lookup_elem((void *)bpf_pseudo_fd(1, -1), &req);

  3e:  callq  0xffffffffc39a49c1

[...]

As shown earlier, the presence of BTF for this program allows bpftool(8) to include the source 
lines; otherwise, they would not be present.

bpftool btf

bpftool(8) can also dump BTF IDs. For example, BTF ID 5 is for the BCC block I/O done program:

# bpftool btf dump id 5

[1] PTR '(anon)' type_id=0

[2] TYPEDEF 'u64' type_id=3

[3] TYPEDEF '__u64' type_id=4

[4] INT 'long long unsigned int' size=8 bits_offset=0 nr_bits=64 encoding=(none)

[5] FUNC_PROTO '(anon)' ret_type_id=2 vlen=4

        'pkt' type_id=1

        'off' type_id=2
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        'bofs' type_id=2

        'bsz' type_id=2

[6] FUNC 'bpf_dext_pkt' type_id=5

[7] FUNC_PROTO '(anon)' ret_type_id=0 vlen=5

        'pkt' type_id=1

        'off' type_id=2

        'bofs' type_id=2

        'bsz' type_id=2

        'val' type_id=2

[8] FUNC 'bpf_dins_pkt' type_id=7

[9] TYPEDEF 'uintptr_t' type_id=10

[10] INT 'long unsigned int' size=8 bits_offset=0 nr_bits=64 encoding=(none)

[...]

[347] STRUCT 'task_struct' size=9152 vlen=204

        'thread_info' type_id=348 bits_offset=0

        'state' type_id=349 bits_offset=128

        'stack' type_id=1 bits_offset=192

        'usage' type_id=350 bits_offset=256

        'flags' type_id=28 bits_offset=288

[...]

This output shows that BTF includes type and struct information.

2.3.5 Viewing BPF Instructions: bpftrace

While tcpdump(8) can emit BPF instructions with -d, bpftrace can do so with -v12:

# bpftrace -v biolatency.bt 

Attaching 4 probes...

 

Program ID: 677

 

Bytecode: 

0: (bf) r6 = r1

1: (b7) r1 = 29810

2: (6b) *(u16 *)(r10 -4) = r1

3: (b7) r1 = 1635021632

4: (63) *(u32 *)(r10 -8) = r1

5: (b7) r1 = 20002

6: (7b) *(u64 *)(r10 -16) = r1

7: (b7) r1 = 0

8: (73) *(u8 *)(r10 -2) = r1

9: (18) r7 = 0xffff96e697298800

11: (85) call bpf_get_smp_processor_id#8

12 I just realized I should have made it -d for consistency.
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12: (bf) r4 = r10

13: (07) r4 += -16

14: (bf) r1 = r6

15: (bf) r2 = r7

16: (bf) r3 = r0

17: (b7) r5 = 15

18: (85) call bpf_perf_event_output#25

19: (b7) r0 = 0

20: (95) exit

[...]

This output will also be printed if there is a bpftrace internal error. If you develop bpftrace 
internals, you may find it easy to run afoul of the BPF verifier, and have a program rejected by the 
kernel. At that point, these instructions will be printed out, and you will need to study them to 
determine the cause and develop the fix.

Most people will never encounter a bpftrace or BCC internal error and never see BPF instructions. 
If you do encounter such an issue, please file a ticket with the bpftrace or BCC projects, or 
consider contributing a fix yourself.

2.3.6 BPF API

To provide a better understanding of BPF capabilities, the following sections summarize selected 
parts of the extended BPF API, from include/uapi/linux/bpf.h in Linux 4.20.

BPF Helper Functions

A BPF program cannot call arbitrary kernel functions. To accomplish certain tasks with this limitation, 
“helper” functions that BPF can call have been provided. Selected functions are shown in Table 2-2.

Table 2-2 Selected BPF Helper Functions

BPF Helper Function Description

bpf_map_lookup_elem(map, key) Finds a key in a map and returns its value (pointer).

bpf_map_update_elem(map, key, value, 
flags)

Updates the value of the entry selected by key.

bpf_map_delete_elem(map, key) Deletes the entry selected by key from the map.

bpf_probe_read(dst, size, src) Safely reads size bytes from address src and stores in dst.

bpf_ktime_get_ns() Returns the time since boot, in nanoseconds.

bpf_trace_printk(fmt, fmt_size, ...) A debugging helper that writes to TraceFS trace{_pipe}.

bpf_get_current_pid_tgid() Returns a u64 containing the current TGID (what user space 
calls the PID) in the upper bits and the current PID (what 
user space calls the kernel thread ID) in the lower bits. 

bpf_get_current_comm(buf, buf_size) Copies the task name to the buffer.

bpf_perf_event_output(ctx, map, 
data, size)

Writes data to the perf_event ring buffers; this is used for 
per-event output.
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BPF Helper Function Description

bpf_get_stackid(ctx, map, flags) Fetches a user or kernel stack trace and returns an 
identifier.

bpf_get_current_task() Returns the current task struct. This contains many 
details about the running process and links to other 
structs containing system state. Note that these are all 
considered an unstable API.

bpf_probe_read_str(dst, size, ptr) Copies a NULL terminated string from an unsafe pointer to 
the destination, limited by size (including the NULL byte).

bpf_perf_event_read_value(map, 
flags, buf, size)

Reads a perf_event counter and stores it in the buf. This 
is a way to read PMCs during a BPF program.

bpf_get_current_cgroup_id() Returns the current cgroup ID.

bpf_spin_lock(lock), 
bpf_spin_unlock(lock)

Concurrency control for network programs.

Some of these helper functions are shown in the earlier bpftool(8) xlated output, and bpftrace 
-v output.

The term current in these descriptions refers to the currently running thread—the thread that is 
currently on-CPU.

Note that the include/uapi/linux/bpf.h file often provides detailed documentation for these 
helpers. Here is an excerpt from bpf_get_stackid():

 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)

 *      Description

 *              Walk a user or a kernel stack and return its id. To achieve

 *              this, the helper needs *ctx*, which is a pointer to the context

 *              on which the tracing program is executed, and a pointer to a

 *              *map* of type **BPF_MAP_TYPE_STACK_TRACE**.

 *

 *              The last argument, *flags*, holds the number of stack frames to

 *              skip (from 0 to 255), masked with

 *              **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set

 *              a combination of the following flags:

 *

 *              **BPF_F_USER_STACK**

 *                      Collect a user space stack instead of a kernel stack.

 *              **BPF_F_FAST_STACK_CMP**

 *                      Compare stacks by hash only.

 *              **BPF_F_REUSE_STACKID**

 *                      If two different stacks hash into the same *stackid*,

 *                      discard the old one.

 *
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 *              The stack id retrieved is a 32 bit long integer handle which

 *              can be further combined with other data (including other stack

 *              ids) and used as a key into maps. This can be useful for

 *              generating a variety of graphs (such as flame graphs or off-cpu

 *              graphs).

[...]

These files can be browsed online from any site that hosts the Linux source, for example: 
https://github.com/torvalds/linux/blob/master/include/uapi/linux/bpf.h.

There are many more helper functions available, mostly for software-defined networking. The 
current version of Linux (5.2) has 98 helper functions.

bpf_probe_read()

bpf_probe_read() is a particularly important helper. Memory access in BPF is restricted to BPF 
registers and the stack (and BPF maps via helpers). Arbitrary memory (such as other kernel 
memory outside of BPF) must be read via bpf_probe_read(), which performs safety checks and 
disables page faults to ensure that the reads do not cause faults from probe context (which could 
cause kernel problems).

Apart from reading kernel memory, this helper is also used to read user-space memory into 
kernel space. How this works depends on the architecture: On x86_64, the user and kernel 
address ranges do not overlap, so the mode can be determined by the address. This is not the 
case for other architectures, such as SPARC [21], and for BPF to support these other architectures 
it is anticipated that additional helpers will be required, such as bpf_probe_read_kernel() and 
bpf_probe_read_user().13

BPF Syscall Commands

Table 2-3 shows selected BPF actions that user space can invoke.

Table 2-3 Selected BPF syscall Commands

bpf_cmd Description

BPF_MAP_CREATE Creates a BPF map: a flexible storage object that can be used as 
a key/value hash table (associative array).

BPF_MAP_LOOKUP_ELEM Looks up an element via a key.

BPF_MAP_UPDATE_ELEM Updates an element, given a key.

BPF_MAP_DELETE_ELEM Deletes an element, given a key.

BPF_MAP_GET_NEXT_KEY Iterates over all keys in a map.

BPF_PROG_LOAD Verifies and loads a BPF program.

BPF_PROG_ATTACH Attaches a BPF program to an event.

BPF_PROG_DETACH Detaches a BPF program from an event.

BPF_OBJ_PIN Creates a BPF object instance in /sys/fs/bpf.

13 This need was raised by David S. Miller at LSFMM 2019.

https://github.com/torvalds/linux/blob/master/include/uapi/linux/bpf.h
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These actions are passed as the first argument to the bpf(2) syscall. You can see them in action 
by using strace(1). For example, inspecting the bpf(2) syscalls made when running the BCC 
execsnoop(8) tool:

# strace -ebpf execsnoop 

bpf(BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_PERF_EVENT_ARRAY, key_size=4, 
value_size=4, max_entries=8, map_flags=0, inner_map_fd=0, ...}, 72) = 3

bpf(BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_KPROBE, insn_cnt=513, 
insns=0x7f31c0a89000, license="GPL", log_level=0, log_size=0, log_buf=0, 

kern_version=266002, prog_flags=0, ...}, 72) = 4

bpf(BPF_PROG_LOAD, {prog_type=BPF_PROG_TYPE_KPROBE, insn_cnt=60, 
insns=0x7f31c0a8b7d0, license="GPL", log_level=0, log_size=0, log_buf=0, 

kern_version=266002, prog_flags=0, ...}, 72) = 6

PCOMM            PID    PPID   RET ARGS

bpf(BPF_MAP_UPDATE_ELEM, {map_fd=3, key=0x7f31ba81e880, value=0x7f31ba81e910, 
flags=BPF_ANY}, 72) = 0

bpf(BPF_MAP_UPDATE_ELEM, {map_fd=3, key=0x7f31ba81e910, value=0x7f31ba81e880, 
flags=BPF_ANY}, 72) = 0

[...]

Actions are highlighted in bold in this output. Note that I normally avoid using strace(1) as its 
current ptrace() implementation can greatly slow the target process—by over 100-fold [22]. I used 
it here because it already has translation mappings for the bpf(2) syscall, turning numbers into 
readable strings (e.g., "BPF_PROG_LOAD").

BPF Program Types

Different BPF program types specify the type of events that the BPF program attaches to, and the 
arguments for the events. The main program types used for BPF tracing programs are shown in 
Table 2-4.

Table 2-4 BPF Tracing Program Types

bpf_prog_type Description

BPF_PROG_TYPE_KPROBE For kprobes and uprobes

BPF_PROG_TYPE_TRACEPOINT For tracepoints

BPF_PROG_TYPE_PERF_EVENT For perf_events, including PMCs

BPF_PROG_TYPE_RAW_TRACEPOINT For tracepoints, without argument processing

The earlier strace(1) output included two BPF_PROG_LOAD calls of type BPF_PROG_TYPE_
KPROBE, as that version of execsnoop(8) is using a kprobe and a kretprobe for instrumenting the 
beginning and end of execve().

There are more program types in bpf.h for networking and other purposes, including those shown 
in Table 2-5.
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Table 2-5 Selected Other BPF Program Types

bpf_prog_type Description

BPF_PROG_TYPE_SOCKET_FILTER For attaching to sockets, the original BPF use case

BPF_PROG_TYPE_SCHED_CLS For traffic control classification

BPF_PROG_TYPE_XDP For eXpress Data Path programs

BPF_PROG_TYPE_CGROUP_SKB For cgroup packet (skb) filters

BPF Map Types

BPF map types, some of which are listed in Table 2-6, define different types of maps.

Table 2-6 Selected BPF Map Types

bpf_map_type Description

BPF_MAP_TYPE_HASH A hash-table map: key/value pairs

BPF_MAP_TYPE_ARRAY An array of elements

BPF_MAP_TYPE_PERF_EVENT_ARRAY An interface to the perf_event ring buffers for emitting 
trace records to user space

BPF_MAP_TYPE_PERCPU_HASH A faster hash table maintained on a per-CPU basis

BPF_MAP_TYPE_PERCPU_ARRAY A faster array maintained on a per-CPU basis

BPF_MAP_TYPE_STACK_TRACE Storage for stack traces, indexed by stack IDs

BPF_MAP_TYPE_STACK Storage for stack traces

The earlier strace(1) output included a BPF_MAP_CREATE of type BPF_MAP_TYPE_PERF_EVENT_
ARRAY, which was used by execsnoop(8) for passing events to user space for printing.

There are many more map types in bpf.h for special purposes.

2.3.7 BPF Concurrency Controls

BPF lacked concurrency controls until Linux 5.1, when spin lock helpers were added. (However, 
they are not yet available for use in tracing programs.) With tracing, parallel threads can look up 
and update BPF map fields in parallel, causing corruption where one thread overwrites the update 
from another. This is also known as the “lost update” problem where concurrent reads and writes 
overlap, causing lost updates. The tracing front ends, BCC and bpftrace, use the per-CPU hash and 
array map types where possible to avoid this corruption. They create instances for each logical 
CPU to use, preventing parallel threads from updating a shared location. A map that counts 
events, for example, can be updated as a per-CPU map, and then the per-CPU values can be 
combined when needed for the total count.
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As a specific example, this bpftrace one-liner uses a per-CPU hash for counting:

# strace -febpf bpftrace -e 'k:vfs_read { @ = count(); }'

bpf(BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_PERCPU_HASH, key_size=8, value_size=8, 
max_entries=128, map_flags=0, inner_map_fd=0}, 72) = 3

[...]

And this bpftrace one-liner uses a normal hash for counting:

# strace -febpf bpftrace -e 'k:vfs_read { @++; }'

bpf(BPF_MAP_CREATE, {map_type=BPF_MAP_TYPE_HASH, key_size=8, value_size=8, 
max_entries=128, map_flags=0, inner_map_fd=0}, 72) = 3

[...]

Using them both at the same time on an eight-CPU system, and tracing a function that is 
frequent and may run in parallel:

# bpftrace -e 'k:vfs_read { @cpuhash = count(); @hash++; }'

Attaching 1 probe...

^C

 

@cpuhash: 1061370

@hash: 1061269

A comparison of the counts reveals that the normal hash undercounted events by 0.01%.

Apart from per-CPU maps, there are also other mechanisms for concurrency controls, including 
an exclusive add instruction (BPF_XADD), a map in map that can update entire maps atomically, 
and BPF spin locks. Regular hash and LRU map updates via bpf_map_update_elem() are atomic as 
well and free from data races due to concurrent writes. Spin locks, which were added in Linux 5.1, 
are controlled by the bpf_spin_lock() and bpf_spin_unlock() helpers [23].

2.3.8 BPF sysfs Interface

In Linux 4.4, BPF introduced commands to expose BPF programs and maps via a virtual file 
system, conventionally mounted on /sys/fs/bpf. This capability, termed “pinning,” has a number 
of uses. It allows the creation of BPF programs that are persistent (much like daemons) and 
continue running after the process that loaded them has exited. It also provides another way 
for user-level programs to interact with a running BPF program: They can read from and write to 
BPF maps.

Pinning has not been used by the BPF observability tools in this book, which are modeled after 
standard Unix utilities that start and stop. However, any of these tools could be converted to one 
that is pinned, if needed. This is more commonly used for networking programs (e.g., the Cilium 
software [24]).
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As an example of pinning, the Android operating system makes use of pinning to automatically 
load and pin BPF programs found under /system/etc/bpf [25]. Android library functions are 
provided to interact with these pinned programs.

2.3.9 BPF Type Format (BTF)

One of the recurring issues described in this book is the lack of information about the source code 
that is instrumented, making it difficult to write BPF tools. As will be mentioned many times, an 
ideal solution to these problems is BTF, introduced here.

BTF (BPF Type Format) is a metadata format that encodes debugging information for describing 
BPF programs, BPF maps, and much more. The name BTF was chosen as it initially described data 
types; however, it was later extended to include function info for defined subroutines, line info for 
source/line information, and global variable information.

BTF debug info can be embedded in the vmlinux binary or generated together with BPF programs 
with native Clang compilation or LLVM JIT, so that the BPF program can be inspected more easily 
with loaders (e.g., libbpf) and tools (e.g., bpftool(8)). Inspection and tracing tools, including 
bpftool(8) and perf(1), can retrieve such info to provide source annotated BPF programs, or 
pretty print map key/values based on their C structure instead of a raw hex dump. The previous 
examples of bpftool(8) dumping an LLVM-9 compiled BCC program demonstrate this.

Apart from describing BPF programs, BTF is becoming a general-purpose format for describing all 
kernel data structures. In some ways, it is becoming a lightweight alternative to kernel debuginfo 
for use by BPF, and a more complete and reliable alternative to kernel headers.

BPF tracing tools often require kernel headers to be installed (usually via a linux-headers package) 
so that various C structs can be navigated. These headers do not contain definitions for all the 
structs in the kernel, making it difficult to develop some BPF observability tools: missing structs 
need to be defined in the BPF tool source as a workaround. There have also been issues with 
complex headers not being processed correctly; bpftrace may switch to aborting in these cases 
rather than continuing with potentially incorrect struct offsets. BTF can solve this problem by 
providing reliable definitions for all structs. (An earlier bpftool btf output shows how 
task_struct can be included.) In the future, a shipped Linux kernel vmlinux binary that contains 
BTF will be self-describing.

BTF is still in development at the time of writing this book. In order to support a 
compile-once-run-everywhere initiative, more information is to be added to BTF. For the 
latest on BTF, see Documentation/bpf/btf.rst in the kernel source [26].

2.3.10 BPF CO-RE

The BPF Compile Once - Run Everywhere (CO-RE) project aims to allow BPF programs to be 
compiled to BPF bytecode once, saved, and then distributed and executed on other systems. This 
will avoid the need to have BPF compilers installed everywhere (LLVM and Clang), which can 
be challenging for space-constrained embedded Linux. It will also avoid the runtime CPU and 
memory costs of running a compiler whenever a BPF observability tool is executed.
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The CO-RE project, and developer Andrii Nakryiko, are working through challenges such as 
coping with different kernel struct offsets on different systems, which require field offsets in 
BPF bytecode to be rewritten as needed. Another challenge is missing struct members, which 
requires field access to be conditional based on the kernel version, kernel configuration, and/or 
user-provided runtime flags. The CO-RE project will make use of BTF information, and is still in 
development at the time of writing this book.

2.3.11 BPF Limitations

BPF programs cannot call arbitrary kernel functions; they are limited to the BPF helper functions listed 
in the API. More may be added in future kernel versions as needs arise. BPF programs also impose 
limits on loops: It would be unsafe to allow BPF programs to insert infinite loops on arbitrary kprobes, 
as those threads may be holding critical locks that block the rest of the system. Workarounds involve 
unrolling loops, and adding helper functions for common uses that need loops. Linux 5.3 included 
support for bounded loops in BPF, which have a verifiable upper runtime limit.14

The BPF stack size is limited to MAX_BPF_STACK, set to 512. This limit is sometimes encountered 
when writing BPF observability tools, especially when storing multiple string buffers on the stack: 
a single char[256] buffer consumes half this stack. There are no plans to increase this limit. The 
solution is to instead use BPF map storage, which is effectively infinite. Work has begun to switch 
bpftrace strings to use map storage instead of stack storage.

The number of instructions in a BPF program was initially limited to 4096. Long BPF programs 
sometimes encounter this limit (they would encounter it much sooner without LLVM compiler 
optimizations, which reduce the instruction count.) Linux 5.2 greatly increased the limit such 
that it should no longer be an issue.15 The aim of the BPF verifier is to accept any safe program, 
and the limits should not get in the way.

2.3.12 BPF Additional Reading

More sources for understanding extended BPF:

 ■ Documentation/networking/filter.txt in the kernel source [17]

 ■ Documentation/bpf/bpf_design_QA.txt in the kernel source [29]

 ■ The bpf(2) man page [30]

 ■ The bpf-helpers(7) man page [31]

 ■ “BPF: the universal in-kernel virtual machine” by Jonathan Corbet [32]

 ■ “BPF Internals—II” by Suchakra Sharma [33]

 ■ “BPF and XDP Reference Guide” by Cilium [19]

Additional examples of BPF programs are provided in Chapter 4 and in Appendixes C, D, and E.

14 You may begin wondering if BPF will become Turing complete. The BPF instruction set itself allows for the creation of 

a Turing complete automata, but given the safety restrictions the verifier puts in place, the BPF programs are not Turing 

complete anymore (e.g., due to the halting problem).

15 The limit was changed to one million instructions (BPF_COMPLEXITY_LIMIT_INSNS) [27]. The 4096 limit 

(BPF_MAXINSNS) still remains for unprivileged BPF programs [28].
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2.4 Stack Trace Walking

Stack traces are an invaluable tool for understanding the code path that led to an event, as well as 
profiling kernel and user code to observe where execution time is spent. BPF provides special map 
types for recording stack traces and can fetch them using frame pointer–based or ORC-based stack 
walks. BPF may support other stack walking techniques in the future.

2.4.1 Frame Pointer–Based Stacks

The frame pointer technique follows a convention where the head of a linked list of stack frames 
can always be found in a register (RBP on x86_64) and where the return address is stored at a 
known offset (+8) from the stored RBP [Hubicka 13]. This means that any debugger or tracer that 
interrupts the program can read RBP and then easily fetch the stack trace by walking the RBP 
linked list and fetching the addresses at the known offset. This is shown in Figure 2-6.

Figure 2-6 Frame pointer–based stack walking (x86_64)

The AMD64 ABI notes that the use of RBP as a frame pointer register is conventional, and can 
be avoided to save function prologue and epilogue instructions, and to make RBP available as a 
general-purpose register.

The gcc compiler currently defaults to omitting the frame pointer and using RBP as a 
general-purpose register, which breaks frame pointer-based stack walking. This default can 
be reverted using the -fno-omit-frame-pointer option. Three details from the patch that 
introduced frame pointer omission as the default explain why it was done [34]:

 ■ The patch was introduced for i386, which has four general-purpose registers. Freeing RBP 
increases the usable registers from four to five, leading to significant performance wins. 
For x86_64, however, there are already 16 usable registers, making this change much less 
worthwhile. [35].
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 ■ It was assumed that stack walking was a solved problem, thanks to gdb(1) support of other 
techniques. This does not account for tracer stack walking, which runs in limited context 
with interrupts disabled.

 ■ The need to compete on benchmarks with Intel’s icc compiler.

On x86_64 today, most software is compiled with gcc’s defaults, breaking frame pointer stack 
traces. Last time I studied the performance gain from frame pointer omission in our production 
environment, it was usually less than one percent, and it was often so close to zero that it was 
difficult to measure. Many microservices at Netflix are running with the frame pointer reenabled, 
as the performance wins found by CPU profiling outweigh the tiny loss of performance.

Using frame pointers is not the only way to walk a stack; other methods include debuginfo, LBR, 
and ORC.

2.4.2 debuginfo

Additional debugging information is often available for software as debuginfo packages, which 
contain ELF debuginfo files in the DWARF format. These include sections that debuggers such 
as gdb(1) can use to walk the stack trace, even when no frame pointer register is in use. The ELF 
sections are .eh_frame and .debug_frame.

Debuginfo files also include sections containing source and line number information, resulting 
in files that dwarf (ahem) the original binary that is debugged. An example in Chapter 12 shows 
libjvm.so at 17 Mbytes, and its debuginfo file at 222 Mbytes. In some environments, debuginfo 
files are not installed due to their large size.

BPF does not currently support this technique of stack walking: It is processor intensive and 
requires reading ELF sections that may not be faulted in. This makes it challenging to implement 
in the limited interrupt-disabled BPF context.

Note that the BPF front ends BCC and bpftrace do support debuginfo files for symbol resolution.

2.4.3 Last Branch Record (LBR)

Last branch record is an Intel processor feature to record branches in a hardware buffer, including 
function call branches. This technique has no overhead and can be used to reconstruct a stack 
trace. However, it is limited in depth depending on the processor, and may only support recording 
4 to 32 branches. Stack traces for production software, especially Java, can exceed 32 frames.

LBR is not currently supported by BPF, but it may be in the future. A limited stack trace is better 
than no stack trace!

2.4.4 ORC

A new debug information format that has been devised for stack traces, Oops Rewind Capability 
(ORC), is less processor intensive than DWARF [36]. ORC uses .orc_unwind and .orc_unwind_ip ELF 
sections, and it has so far been implemented for the Linux kernel. On register-limited architectures, it 
may be desirable to compile the kernel without the frame pointer and use ORC for stack traces instead.

ORC stack unwinding is available in the kernel via the perf_callchain_kernel() function, which 
BPF calls. This means BPF also supports ORC stack traces. ORC stacks have not yet been developed 
for user space.
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2.4.5 Symbols

Stack traces are currently recorded in the kernel as an array of addresses that are later translated to 
symbols (such as function names) by a user-level program. There can be situations where symbol 
mappings have changed between collection and translation, resulting in invalid or missing 
translations. This is discussed in Section 12.3.4 in Chapter 12. Possible future work includes 
adding support for symbol translation in the kernel, so that the kernel can collect and translate a 
stack trace immediately.

2.4.6 More Reading

Stack traces and frame pointers are discussed further in Chapter 12 for C and Java, and Chapter 18 
provides a general summary.

2.5 Flame Graphs

Flame graphs are frequently used in later chapters of this book, so this section summarizes how to 
use and read them.

Flame graphs are visualizations of stack traces that I invented when working on a MySQL perfor-
mance issue and while trying to compare two CPU profiles that were thousands of pages of text 
[Gregg 16].16 Apart from CPU profiles, they can also be used to visualize recorded stack traces from 
any profiler or tracer. Later in this book I show them applied to BPF tracing of off-CPU events, 
page faults, and more. This section explains the visualization.

2.5.1 Stack Trace

A stack trace, also called a stack back trace or a call trace, is a series of functions that show the 
flow of code. For example, if func_a() called func_b(), which called func_c(), the stack trace at that 
point may be written as:

func_c

func_b

func_a

The bottom of the stack (func_a) is the origin, and the lines above it show the code flow. Put 
differently, the top of the stack (func_c) is the current function, and moving downwards shows its 
ancestry: parent, then grandparent, and so on.

2.5.2 Profiling Stack Traces

Timed sampling of stack traces can collect thousands of stacks that can be tens or hundreds of 
lines long each. To make this volume of data easier to study, the Linux perf(1) profiler summarizes 

16 Inspiration for the general layout, SVG output, and JavaScript interactivity came from Neelakanth Nadgir’s 

function_call_graph.rb time-ordered visualization for callstacks, which itself was inspired by Roch Bourbonnais’s 

CallStackAnalyzer and Jan Boerhout’s vftrace.
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stack samples as a call tree, and shows percentages for each path. The BCC profile(8) tool 
summarizes stack traces in a different way, showing a count for each unique stack trace. 
Real-world examples of both perf(1) and profile(8) are provided in Chapter 6. With both tools, 
pathological issues can be identified quickly for situations when a lone stack is on-CPU for the 
bulk of the time. However, for many other issues, including small performance regressions, 
finding the culprit can involve studying hundreds of pages of profiler output. Flame graphs were 
created to solve this problem.

To understand flame graphs, consider this synthetic example of CPU profiler output, showing a 
frequency count of stack traces:

func_e

func_d

func_b

func_a

1

 

func_b

func_a

2

 

func_c

func_b

func_a

7

This output shows a stack trace followed by a count, for a total of 10 samples. The code path in 
func_a() -> func_b() -> func_c(), for example, was sampled seven times. That code path shows 
func_c() running on CPU. The func_a() -> func_b() code path, with func_b() running on CPU, was 
sampled twice. And a code path that ends with func_e() running on CPU was sampled once.

2.5.3 Flame Graph

Figure 2-7 shows a flame graph representation of the previous profile.

Figure 2-7 A Flame Graph
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This flame graph has the following properties:

 ■ Each box represents a function in the stack (a “stack frame”).

 ■ The y-axis shows stack depth (the number of frames on the stack), ordered from root at the 
bottom to leaf at the top. Looking from the bottom up, you can understand the code flow; 
from the top down, you can determine the function ancestry.

 ■ The x-axis spans the sample population. It’s important to note that it does not show the 
passage of time from left to right, as most graphs do. The left-to-right ordering is instead an 
alphabetical sort of frames to maximize frame merging. With the y-axis ordering of frames, 
this means that the graph origin is the bottom left (as with most graphs) and represents 0,a. 
The length across the x-axis does have meaning: The width of the box reflects its presence 
in the profile. Functions with wide boxes are more present in the profile than those with 
narrow boxes.

The flame graph is really an adjacency diagram with an inverted icicle layout [Bostock 10], applied 
to visualize the hierarchy of a collection of stack traces.

The most frequent stack in Figure 2-7 is seen in the profile as the widest “tower” in the middle, 
from func_a() to func_c(). Since this is a flame graph showing CPU samples, we can describe the 
top edge as the functions that were running on-CPU, as highlighted in Figure 2-8.

Figure 2-8 CPU Flame Graph of on-CPU Functions

Figure 2-8 shows that func_c() was directly on-CPU for 70% of the time, func_b() was on-CPU for 
20% of the time, and func_e() was on-CPU for 10% of the time. The other functions, func_a() and 
func_d(), were never sampled on-CPU directly.

To read a flame graph, look for the widest towers and understand them first.

For large profiles of thousands of samples, there may be code paths that were sampled only a few 
times, and are printed in such a narrow tower that there is no room to include the function name. 
This turns out to be a benefit: Your attention is naturally drawn to the wider towers that have 
legible function names, and looking at them helps you understand the bulk of the profile first.



ptg30854589

44 Chapter 2  Technology Background

2.5.4 Flame Graph Features

My original flame graph implementation supports the features described in the following 
sections [37].

Color Palettes

The frames can be colored based on different schemes. The default is to use random warm colors 
for each frame, which helps visually distinguish adjacent towers. Over the years I’ve added more 
color schemes. I’ve found the following to be most useful to flame graph end users: 

 ■ Hue: The hue indicates the code type.17 For example, red can indicate native user-level 
code, orange for native kernel-level code, yellow for C++, green for interpreted functions, 
aqua for inlined functions, and so on depending on the languages you use. Magenta is 
used to highlight search matches. Some developers have customized flame graphs to always 
highlight their own code in a certain hue, so that it stands out.

 ■ Saturation: Saturation is hashed from the function name. It provides some color variance 
that helps differentiate adjacent towers, while preserving the same colors for function 
names to more easily compare multiple flame graphs.

 ■ Background color: The background color provides a visual reminder of the flame graph 
type. For example, you might use yellow for CPU flame graphs, blue for off-CPU or I/O 
flame graphs, and green for memory flame graphs.

Another useful color scheme is one used for IPC (instructions per cycle) flame graphs, where an addi-
tional dimension, IPC, is visualized by coloring each frame using a gradient from blue to white to red.

Mouse-Overs

The original flame graph software creates SVG files with embedded JavaScript that can be loaded 
in a browser for interactive features. One such feature is that on mouse-over of frames, an infor-
mation line is revealed, showing the percentage occurrence of that frame in the profile.

Zoom

Frames can be clicked for a horizontal zoom.18 This allows narrow frames to be inspected, 
zooming in to show their function names.

Search

A search button, or Ctrl-F, allows a search term to be entered, and then frames matching that 
search term are highlighted in magenta. A cumulative percentage is also shown to indicate how 
often a stack trace containing that search term was present. This makes it trivial to calculate how 
much of the profile was in particular code areas. For example, you can search for "tcp_" to show 
how much was in the kernel TCP code.

2.5.5 Variations

A more interactive version of flame graphs is under development at Netflix, using d3 [38].19 It is 
open source and used in the Netflix FlameScope software [39].

17 This was suggested to me by my colleague Amer Ather. My first version was a five-minute regex hack.

18 Adrien Mahieux developed the horizontal zoom feature for flame graphs.

19 d3 flame graphs was created by my colleague Martin Spier.
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Some flame graph implementations flip the y-axis order by default, creating an “icicle graph” 
with the root at the top. This inversion ensures that the root and its immediate functions are 
still visible for flame graphs that are taller than the screen height and when displaying from the 
flame graph top to begin with. My original flame graph software supports this inversion with 
--inverted. My own preference is to reserve this icicle layout for leaf-to-root merging, another 
flame graph variant that merges from the leaves first and roots last. This is useful for merging a 
common on-CPU function first and then seeing its ancestry, for example: spin locks.

Flame charts appear similar to flame graphs and were inspired by flame graphs [ Tikhonovsky 13], 
but the x-axis is ordered based on the passage of time rather than the alphabet. Flame charts are 
popular in web browser analysis tools for the inspection of JavaScript, as they are suited for under-
standing time-based patterns in single-threaded applications. Some profiling tools support both 
flame graphs and flame charts.

Differential flame graphs show the differences between two profiles.20

2.6 Event Sources

The different event sources and examples of events that can be instrumented are illustrated in 
Figure 2-9. This figure also shows the Linux kernel versions that BPF supported attaching to these 
events.

Figure 2-9 BPF event support

These event sources are explained in the following sections.

20 Cor-Paul Bezemer researched differential flame graphs and developed the first solution [Bezemer 15].
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2.7 kprobes

kprobes provide kernel dynamic instrumentation, and were developed by a team at IBM based on 
their DProbes tracer in 2000. However, DProbes did not get merged into the Linux kernel, while 
kprobes did. kprobes arrived in Linux 2.6.9, which was released in 2004.

kprobes can create instrumentation events for any kernel function, and it can instrument 
instructions within functions. It can do this live, in production environments, without needing 
to either reboot the system or run the kernel in any special mode. This is an amazing capability: It 
means we can instrument any of the tens of thousands of kernel functions in Linux to create new 
custom metrics as needed.

The kprobes technology also has an interface called kretprobes for instrumenting when functions 
return, and their return values. When kprobes and kretprobes instrument the same function, 
timestamps can be recorded to calculate the duration of a function, which can be an important 
metric for performance analysis.

2.7.1 How kprobes Work

The sequence for instrumenting a kernel instruction with kprobes is [40]:

 A. If it is a kprobe:

 1. Bytes from the target address are copied and saved by kprobes (enough bytes to span 
their replacement with a breakpoint instruction).

 2. The target address is replaced with a breakpoint instruction: int3 on x86_64. 
(If kprobe optimization is possible, the instruction is jmp.)

 3. When instruction flow hits this breakpoint, the breakpoint handler checks whether the 
breakpoint was installed by kprobes, and, if it was, executes a kprobe handler.

 4. The original instructions are then executed, and instruction flow resumes.

 5. When the kprobe is no longer needed, the original bytes are copied back to the target 
address, and the instructions are restored to their original state.

 B.  If it is a kprobe for an address that Ftrace already instruments (usually function entries), 
an Ftrace-based kprobe optimization may be possible, where [Hiramatsu 14]:

 1. An Ftrace kprobe handler is registered as an Ftrace operation for the traced function.

 2. The function executes its built-in call in the function prologue (__fentry__ with gcc 
4.6+ and x86), which calls in to Ftrace. Ftrace calls the kprobe handler, and then returns 
to executing the function.

 3. When the kprobe is no longer needed, the Ftrace-kprobe handler is removed from 
Ftrace.

 C. If it is a kretprobe:

 1. A kprobe is created for the entry to the function.

 2. When the function entry kprobe is hit, the return address is saved and then replaced 
with a substitute (“trampoline”) function: kretprobe_trampoline().



ptg30854589

472.7 kprobes

 3. When the function finally calls return (e.g., the ret instruction), the CPU passes control 
to the trampoline function, which executes the kretprobe handler.

 4. The kretprobe handler finishes by returning to the saved return address.

 5. When the kretprobe is no longer needed, the kprobe is removed.

The kprobe handlers may run with preemption disabled or interrupts disabled, depending on the 
architecture and other factors.

Modifying kernel instruction text live may sound incredibly risky, but it has been designed to 
be safe. This design includes a blacklist of functions that kprobe will not instrument, which 
include kprobes itself, to avoid a recursive trap condition.21 kprobes also make use of safe tech-
niques for inserting breakpoints: the x86 native int3 instruction, or stop_machine() when 
the jmp instruction is used to ensure that other cores do not execute instructions as they are 
being modified. The biggest risk in practice is instrumenting a kernel function that is extremely 
frequent: if that happens, the small overhead added to each invocation can add up, slowing down 
the system while the function is instrumented.

kprobes does not work on some ARM 64-bit systems where modifications to the kernel text 
section are not allowed for security reasons.

2.7.2 kprobes Interfaces

The original kprobes technology was used by writing a kernel module that defined pre- and 
post-handlers written in C and registering them with a kprobe API call: register_kprobe(). You 
could then load your kernel module and emit custom information via system messages with calls 
to printk(). You needed to call unregister_kprobe() when you were done.

I have not seen anyone use this interface directly, other than in the 2010 article “Kernel 
instrumentation using kprobes” from Phrack, a security ezine, written by a researcher using the 
handle ElfMaster22 [41]. That may not be a failure of kprobes, since it was built to be used from 
Dprobes in the first place. Nowadays, there are three interfaces for using kprobes:

 ■ kprobe API: register_kprobe() etc.

 ■ Ftrace-based, via /sys/kernel/debug/tracing/kprobe_events: where kprobes can be enabled 
and disabled by writing configuration strings to this file

 ■ perf_event_open(): as used by the perf(1) tool, and more recently by BPF tracing, as support 
was added in the Linux 4.17 kernel (perf_kprobe pmu)

The biggest use of kprobes has been via front-end tracers, including perf(1), SystemTap, and the 
BPF tracers BCC and bpftrace. 

The original kprobes implementation also had a variant called jprobes, an interface designed for 
tracing kernel function entry. Over time, we have come to understand that kprobes can meet all 
requirements, and the jprobes interface was unnecessary. It was removed from Linux in 2018 by 
Masami Hiramatsu, a kprobe maintainer.

21 You can exclude kernel functions from tracing by listing them with the NOKPROBE_SYMBOL() macro.

22 In an unplanned coincidence, three days after writing this sentence I met ElfMaster, and he taught me many details 

about ELF analysis. These include how ELF tables are stripped, which I summarize in Chapter 4.
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2.7.3 BPF and kprobes

kprobes provides kernel dynamic instrumentation for BCC and bpftrace, and it is used by numer-
ous tools. The interfaces are:

 ■ BCC: attach_kprobe() and attach_kretprobe()

 ■ bpftrace: kprobe and kretprobe probe types

The kprobe interface in BCC supports instrumenting the beginning of a function and a function 
plus instruction offset, whereas bpftrace currently supports instrumenting the beginning of a 
function only. The kretprobe interface for both tracers instruments the return of the function.

As an example from BCC, the vfsstat(8) tool instruments key calls to the virtual file system (VFS) 
interface, and prints per-second summaries:

# vfsstat 

TIME         READ/s  WRITE/s CREATE/s   OPEN/s  FSYNC/s

07:48:16:       736     4209        0       24        0

07:48:17:       386     3141        0       14        0

07:48:18:       308     3394        0       34        0

07:48:19:       196     3293        0       13        0

07:48:20:      1030     4314        0       17        0

07:48:21:       316     3317        0       98        0

[...]

The probes traced can be seen in the source to vfsstat:

# grep attach_ vfsstat.py 

b.attach_kprobe(event="vfs_read", fn_name="do_read")

b.attach_kprobe(event="vfs_write", fn_name="do_write")

b.attach_kprobe(event="vfs_fsync", fn_name="do_fsync")

b.attach_kprobe(event="vfs_open", fn_name="do_open")

b.attach_kprobe(event="vfs_create", fn_name="do_create")

These are attach_kprobe() functions. The kernel functions can be seen after the "event=" 
assignment.

As an example from bpftrace, this one-liner counts the invocations of all the VFS functions, by 
matching "vfs_*":

# bpftrace -e 'kprobe:vfs_* { @[probe] = count() }'

Attaching 54 probes...

^C

 

@[kprobe:vfs_unlink]: 2

@[kprobe:vfs_rename]: 2

@[kprobe:vfs_readlink]: 2

@[kprobe:vfs_statx]: 88



ptg30854589

492.8 uprobes

@[kprobe:vfs_statx_fd]: 91

@[kprobe:vfs_getattr_nosec]: 247

@[kprobe:vfs_getattr]: 248

@[kprobe:vfs_open]: 320

@[kprobe:vfs_writev]: 441

@[kprobe:vfs_write]: 4977

@[kprobe:vfs_read]: 5581

This output shows that while tracing, the vfs_unlink() function was called twice, and the vfs_
read() function was called 5581 times.

The ability to pull call counts from any kernel function is a useful capability, and can be used for 
workload characterization of kernel subsystems.23

2.7.4 kprobes Additional Reading

More sources for understanding kprobes:

 ■ Documentation/kprobes.txt in the Linux kernel source [42]

 ■ “An Introduction to kprobes” by Sudhanshu Goswami [40]

 ■ “Kernel Debugging with kprobes” by Prasanna Panchamukhi [43]

2.8 uprobes

uprobes provides user-level dynamic instrumentation. Work began many years earlier, with a 
utrace interface similar to the kprobes interface. This eventually became the uprobes technology 
that was merged in the Linux 3.5 kernel, released in July 2012 [44].

uprobes are similar to kprobes, but for user-space processes. uprobes can instrument user-level 
function entries as well as instruction offsets, and uretprobes can instrument the return of 
functions.

uprobes are also file based: When a function in an executable file is traced, all processes using that 
file are instrumented, including those that start in the future. This allows library calls to be traced 
system-wide.

2.8.1 How uprobes Work

uprobes is similar to kprobes in its approach: A fast breakpoint is inserted at the target instruc-
tion, and it passes execution to a uprobe handler. When the uprobe is no longer needed, the 
target instructions are returned to their original state. With uretprobes, the function entry is 
instrumented with a uprobe, and the return address is hijacked with a trampoline function, as 
with kprobes.

23 At the time of writing, I still tend to use Ftrace for this particular task, since it is quicker to initialize and tear down 

instrumentation. See my funccount(8) tool from my Ftrace perf-tools repository. As of this writing, there is work under 

way to improve the speed of BPF kprobe initialization and teardown by batching operations. I hope it will be available by 

the time you are reading this.
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You can see this in action by using a debugger. For example, disassembling the readline() function 
from the bash(1) shell:

# gdb -p 31817

[...]

(gdb) disas readline

Dump of assembler code for function readline:

   0x000055f7fa995610 <+0>:  cmpl   $0xffffffff,0x2656f9(%rip) # 0x55f7fabfad10 

<rl_pending_input>

   0x000055f7fa995617 <+7>:  push   %rbx

   0x000055f7fa995618 <+8>:  je     0x55f7fa99568f <readline+127>

   0x000055f7fa99561a <+10>: callq  0x55f7fa994350 <rl_set_prompt>

   0x000055f7fa99561f <+15>: callq  0x55f7fa995300 <rl_initialize>

   0x000055f7fa995624 <+20>: mov    0x261c8d(%rip),%rax        # 0x55f7fabf72b8 

<rl_prep_term_function>

   0x000055f7fa99562b <+27>: test   %rax,%rax

[...]

And now while it is instrumented using uprobes (or uretprobes):

# gdb -p 31817

[...]

(gdb) disas readline

Dump of assembler code for function readline:

   0x000055f7fa995610 <+0>:  int3   

   0x000055f7fa995611 <+1>:  cmp    $0x2656f9,%eax

   0x000055f7fa995616 <+6>:  callq  *0x74(%rbx)

   0x000055f7fa995619 <+9>:  jne    0x55f7fa995603 <rl_initialize+771>

   0x000055f7fa99561b <+11>: xor    %ebp,%ebp

   0x000055f7fa99561d <+13>: (bad)  

   0x000055f7fa99561e <+14>: (bad)  

   0x000055f7fa99561f <+15>: callq  0x55f7fa995300 <rl_initialize>

   0x000055f7fa995624 <+20>: mov    0x261c8d(%rip),%rax        # 0x55f7fabf72b8 

<rl_prep_term_function>

[...]

Note that the first instruction has become the int3 breakpoint (x86_64).

To instrument the readline() function, I used a bpftrace one-liner:

# bpftrace -e 'uprobe:/bin/bash:readline { @ = count() }'

Attaching 1 probe...

 ^C

 

@: 4
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This counts the invocations of readline() in all running and future bash shells invoked while 
tracing, and prints the count and exits on Ctrl-C. When bpftrace stops running, the uprobe is 
removed, and the original instructions are restored.

2.8.2 Uprobes Interfaces

There are two interfaces for uprobes:

 ■ Ftrace-based, via /sys/kernel/debug/tracing/uprobe_events: where uprobes can be enabled 
and disabled by writing configuration strings to this file

 ■ perf_event_open(): as used by the perf(1) tool and, more recently, by BPF tracing, as support 
was added in the Linux 4.17 kernel (with the perf_uprobe pmu)

There is also a register_uprobe_event() kernel function, similar to register_kprobe(), but it is not 
exposed as an API.

2.8.3 BPF and uprobes

uprobes provides user-level dynamic instrumentation for BCC and bpftrace, and is used by 
numerous tools. The interfaces are:

 ■ BCC: attach_uprobe() and attach_uretprobe()

 ■ bpftrace: uprobe and uretprobe probe types

The uprobes interface in BCC supports instrumenting the beginning of a function or an arbitrary 
address, whereas bpftrace currently supports instrumenting the beginning of a function only. The 
uretprobes interface for both tracers instruments the return of the function.

As an example from BCC, the gethostlatency(8) tool instruments host resolution calls (DNS) via 
the resolver library calls getaddrinfo(3), gethostbyname(3), and so on:

# gethostlatency 

TIME      PID    COMM                  LATms HOST

01:42:15  19488  curl                  15.90 www.brendangregg.com

01:42:37  19476  curl                  17.40 www.netflix.com

01:42:40  19481  curl                  19.38 www.netflix.com

01:42:46  10111  DNS Res~er #659       28.70 www.google.com

The probes traced can be seen in the source to gethostlatency:

# grep attach_ gethostlatency.py 

b.attach_uprobe(name="c", sym="getaddrinfo", fn_name="do_entry", pid=args.pid)

b.attach_uprobe(name="c", sym="gethostbyname", fn_name="do_entry",

b.attach_uprobe(name="c", sym="gethostbyname2", fn_name="do_entry",

b.attach_uretprobe(name="c", sym="getaddrinfo", fn_name="do_return",

b.attach_uretprobe(name="c", sym="gethostbyname", fn_name="do_return",

b.attach_uretprobe(name="c", sym="gethostbyname2", fn_name="do_return",
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These are attach_uprobe() and attach_uretprobe() calls. The user-level functions can be seen after 
the "sym=" assignment.

As an example from bpftrace, these one-liners list and then count the invocations of all the 
gethost functions from the libc system library:

# bpftrace -l 'uprobe:/lib/x86_64-linux-gnu/libc.so.6:gethost*'

uprobe:/lib/x86_64-linux-gnu/libc.so.6:gethostbyname

uprobe:/lib/x86_64-linux-gnu/libc.so.6:gethostbyname2

uprobe:/lib/x86_64-linux-gnu/libc.so.6:gethostname

uprobe:/lib/x86_64-linux-gnu/libc.so.6:gethostid

[...]

# bpftrace -e 'uprobe:/lib/x86_64-linux-gnu/libc.so.6:gethost* { @[probe] = 
count(); }'

Attaching 10 probes...

^C

 

@[uprobe:/lib/x86_64-linux-gnu/libc.so.6:gethostname]: 2

This output shows that the gethostname() function was called twice during tracing.

2.8.4 uprobes Overhead and Future Work

uprobes can attach to events that fire millions of times per second, such as the user-level alloca-
tion routines: malloc() and free(). Even though BPF is performance optimized, multiplying a tiny 
amount of overhead by millions of times per second adds up. In some cases, malloc() and free() 
tracing, which should be go-to use cases for BPF, can slow the target application tenfold (10x) or 
more. This prohibits its use in these cases; such slowdowns are acceptable only when trouble-
shooting in a test environment, or in an already-broken production environment. Chapter 18 
includes a section on the frequency of operations to help you work around this limitation. You 
need to be aware of which events are frequent to avoid tracing them if possible, and to look for 
slower events that you can trace instead to solve the same issue.

There may be a large improvement for user-space tracing in the future—perhaps even by the time 
you read this. Instead of continuing to use the current uprobes approach, which traps into the 
kernel, a shared-library solution is being discussed, which would provide BPF tracing of user space 
without the kernel mode switch. This approach has been in use by LTTng-UST for years, with 
performance measured at 10x to 100x faster [45].

2.8.5 uprobes Additional Reading

For more information, see Documentation/trace/uprobetracer.txt in the Linux kernel source [46].
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2.9 Tracepoints

Tracepoints are used for kernel static instrumentation. They involve tracing calls that develop-
ers have inserted into the kernel code at logical places; those calls are then compiled into the 
kernel binary. Developed by Mathieu Desnoyers in 2007, tracepoints were originally called Kernel 
Markers, and they were made available in the Linux 2.6.32 release in 2009. Table 2-7 compares 
kprobes and tracepoints. 

Table 2-7 kprobes to Tracepoints Comparison

Detail kprobes Tracepoints

Type Dynamic Static

Rough number of events 50,000+ 100+

Kernel maintenance None Required

Disabled overhead None Tiny (NOPs and metadata)

Stable API No Yes

Tracepoints are a burden for kernel developers to maintain, and tracepoints are far more limited 
in scope than kprobes. The advantage is that tracepoints provide a stable API24: Tools written to 
use tracepoints should continue working across newer kernel versions, whereas those written 
using kprobes may break if the traced function is renamed or changed.

You should always try to use tracepoints first, if available and sufficient, and turn to kprobes only 
as a backup.

The format of tracepoints is subsystem:eventname (for example, kmem:kmalloc) [47]. Tracers refer 
to the first component using different terms: as a system, subsystem, class, or provider.

2.9.1 Adding Tracepoint Instrumentation

As an example of a tracepoint, this section explains how sched:sched_process_exec is added to the 
kernel.

There are header files for tracepoints in include/trace/events. This is from sched.h:

#define TRACE_SYSTEM sched 

[...]

/*

 * Tracepoint for exec:

 */

TRACE_EVENT(sched_process_exec,

 

24 I’d call it “best-effort stable.” It is rare, but I have seen tracepoints change.
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        TP_PROTO(struct task_struct *p, pid_t old_pid,

                 struct linux_binprm *bprm),

 

        TP_ARGS(p, old_pid, bprm),

 

        TP_STRUCT__entry(

                __string(   filename,     bprm->filename)

                __field(      pid_t,        pid           )

                __field(      pid_t,        old_pid       )

        ),

 

        TP_fast_assign(

                __assign_str(filename, bprm->filename);

                __entry->pid         = p->pid;

                __entry->old_pid     = old_pid;

        ),

 

        TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),

                  __entry->pid, __entry->old_pid)

);

This code defines the trace system as sched and the tracepoint name as sched_process_exec. The 
lines that follow define metadata, including a “format string” in TP_printk()—a helpful summary 
that is included when tracepoints are recorded with the perf(1) tool.

The previous information is also available at runtime via the Ftrace framework in /sys, via format 
files for each tracepoint. For example:

# cat /sys/kernel/debug/tracing/events/sched/sched_process_exec/format 

name: sched_process_exec

ID: 298

format:

        field:unsigned short common_type;   offset:0;   size:2; signed:0;

        field:unsigned char common_flags;   offset:2;   size:1; signed:0;

        field:unsigned char common_preempt_count;   offset:3; size:1; signed:0;

        field:int common_pid;  offset:4;    size:4;     signed:1;

 

        field:__data_loc char[] filename;   offset:8;   size:4; signed:1;

        field:pid_t pid;       offset:12;   size:4;     signed:1;

        field:pid_t old_pid;   offset:16;   size:4;     signed:1;

 

print fmt: "filename=%s pid=%d old_pid=%d", __get_str(filename), REC->pid, 

REC->old_pid
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This format file is processed by tracers to understand the metadata associated with a tracepoint.

The following tracepoint is called from the kernel source in fs/exec.c, via trace_sched_process_exec():

static int exec_binprm(struct linux_binprm *bprm)

{

        pid_t old_pid, old_vpid;

        int ret;

 

        /* Need to fetch pid before load_binary changes it */

        old_pid = current->pid;

        rcu_read_lock();

        old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));

        rcu_read_unlock();

 

        ret = search_binary_handler(bprm);

        if (ret >= 0) {

                audit_bprm(bprm);

                trace_sched_process_exec(current, old_pid, bprm);

                ptrace_event(PTRACE_EVENT_EXEC, old_vpid);

                proc_exec_connector(current);

        }

[...]

The trace_sched_process_exec() function marks the location of the tracepoint.

2.9.2 How Tracepoints Work

It is important that the not-enabled overhead of tracepoints be as tiny as possible, to avoid paying 
a performance tax for something that is not in use. Mathieu Desnoyers accomplished this by 
using a technique called “static jump patching.”25 It works like this, provided that a necessary 
compiler feature is available (asm goto):

 1. At kernel compile time, an instruction is added at the tracepoint location that does 
nothing. The actual instruction used depends on the architecture: For x86_64, it is a 5-byte 
no-operation (nop) instruction. This size is used so that it can be later replaced with a 
5-byte jump (jmp) instruction.

 2. A tracepoint handler (trampoline) is also added to the end of the function, which iterates 
over an array of registered tracepoint probe callbacks. This increases the instruction 
text size a little (as a trampoline, it is a small routine, so execution jumps in and then 
immediately bounces out), which may have a small impact on the instruction cache.

25 Earlier versions used load immediate instructions, where the operand could be patched between 0 and 1 to control 

flow to a tracepoint [Desnoyers 09a][Desnoyers 09b]; however, this was not upstreamed, in favor of jump patching.
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 3. At runtime, when a tracer enables the tracepoint (it may already be in use by other running 
tracers):

 a. The array of tracepoint callbacks is modified to add a new callback for the tracer, 
synchronized through RCU.

 b. If the tracepoint was previously disabled, the nop location is rewritten to a jump to the 
tracepoint trampoline.

 4. When a tracer disables the tracepoint:

 a. The array of tracepoint callbacks is modified to remove the callback, synchronized 
through RCU.

 b. If the last callback is removed, the static jump is rewritten back to a nop.

This minimizes the overhead of the not-enabled tracepoint such that it should be negligible.

If asm goto is not available, a fallback technique is used: Instead of patching a nop with a jmp, a 
conditional branch is used, based on a variable read from memory.

2.9.3 Tracepoint Interfaces

There are two interfaces for tracepoints:

 ■ Ftrace-based, via /sys/kernel/debug/tracing/events: which has subdirectories for each 
tracepoint system, and files for each tracepoint itself (tracepoints can be enabled and 
disabled by writing to these files.)

 ■ perf_event_open(): as used by the perf(1) tool and, more recently, by BPF tracing (via the 
perf_tracepoint pmu).

2.9.4 Tracepoints and BPF

Tracepoints provide kernel static instrumentation for BCC and bpftrace. The interfaces are:

 ■ BCC: TRACEPOINT_PROBE()

 ■ bpftrace: The tracepoint probe type

BPF supported tracepoints in Linux 4.7, but I developed many BCC tools prior to that support and 
had to use kprobes instead. This means that there are fewer tracepoint examples in BCC than I 
would like, due simply to the order in which support was developed.

An interesting example of BCC and tracepoints is the tcplife(8) tool. It prints one-line summaries 
of TCP sessions with various details (and is covered in more detail in Chapter 10):

# tcplife

PID   COMM       LADDR           LPORT RADDR           RPORT TX_KB RX_KB MS

22597 recordProg 127.0.0.1       46644 127.0.0.1       28527     0     0 0.23

3277  redis-serv 127.0.0.1       28527 127.0.0.1       46644     0     0 0.28

22598 curl       100.66.3.172    61620 52.205.89.26    80        0     1 91.79
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22604 curl       100.66.3.172    44400 52.204.43.121   80        0     1 121.38

22624 recordProg 127.0.0.1       46648 127.0.0.1       28527     0     0 0.22

[...]

I wrote this tool before a suitable tracepoint existed in the Linux kernel, so I used a kprobe on the 
tcp_set_state() kernel function. A suitable tracepoint was added in Linux 4.16: sock:inet_sock_set_
state. I modified the tool to support both so that it would run on both older and newer kernels. 
The tool defines two programs—one for tracepoints and one for kprobes—and then chooses 
which to run with the following test:

if (BPF.tracepoint_exists("sock", "inet_sock_set_state")):

    bpf_text += bpf_text_tracepoint

else:

    bpf_text += bpf_text_kprobe

As an example of bpftrace and tracepoints, the following one-liner instruments the  sched:sched_
process_exec tracepoint shown earlier:

# bpftrace -e 'tracepoint:sched:sched_process_exec { printf("exec by %s\n", comm); }'

Attaching 1 probe...

exec by ls

exec by date

exec by sleep

^C

This bpftrace one-liner prints out the process names that called exec().

2.9.5 BPF Raw Tracepoints

Alexei Starovoitov developed a new interface for tracepoints called BPF_RAW_TRACEPOINT, 
which was added to Linux 4.17 in 2018. It avoids the cost of creating the stable tracepoint 
arguments, which may not be needed, and exposes the raw arguments to the tracepoint. In a 
way, this is like accessing tracepoints as though they were kprobes: You end up with an unstable 
API, but you get access to more fields, and don’t pay the usual tracepoint performance taxes. It is 
also a little more stable than using kprobes, since the tracepoint probe names are stable, and only 
the arguments are not.

Alexei showed that the performance with BPF_RAW_TRACEPOINT was better than with both 
kprobes and standard tracepoints, with results from a stress test [48]:

samples/bpf/test_overhead performance on 1 cpu:

 

tracepoint    base  kprobe+bpf tracepoint+bpf raw_tracepoint+bpf

task_rename   1.1M   769K        947K            1.0M

urandom_read  789K   697K        750K            755K
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This may be especially interesting for technologies that instrument tracepoints 24x7, to minimize 
the overhead of enabled tracepoints.

2.9.6 Additional Reading

For more information, see Documentation/trace/tracepoints.rst in the kernel source, by Mathieu 
Desnoyers [47].

2.10 USDT

User-level statically defined tracing (USDT) provides a user-space version of tracepoints. USDT 
has been implemented for BCC by Sasha Goldshtein, and for bpftrace by myself and Matheus 
Marchini.

There are numerous tracing or logging technologies for user-level software, and many 
applications come with their own custom event loggers that can be enabled when needed. What 
makes USDT different is that it relies on an external system tracer to activate. The USDT points 
in an application can’t be used, and they do nothing, without an external tracer.

USDT was made popular by the DTrace utility from Sun Microsystems, and it is now available 
in many applications.26 Linux has developed a way to make use of USDT, which came from 
the SystemTap tracer. The BCC and bpftrace tracing tools make use of this work, and both can 
instrument USDT events.

One leftover from DTrace is still evident: Many applications do not compile USDT probes 
by default but require a configuration option such as --enable-dtrace-probes or 
--with-dtrace.

2.10.1 Adding USDT Instrumentation

USDT probes can be added to an application either using the headers and tools from the 
systemtap-sdt-dev package, or with custom headers. These probes define macros that can be 
placed at logical locations in your code to create USDT instrumentation points. The BCC project 
contains a USDT code example under examples/usdt_sample, which can be compiled using 
systemtap-sdt-dev headers or headers from Facebook’s Folly27 C++ library [11]. In the next section, 
I step through an example of using Folly.

Folly

The steps to add USDT instrumentation using Folly are:

 1. Add the header file to the target source code:

#include "folly/tracing/StaticTracepoint.h"

26 In some small part, this occurred through my own efforts: I promoted USDT, added USDT probes to Firefox for 

JavaScript inspection and other applications, and supported development efforts for other USDT providers.

27 Folly is a loose acronym of Facebook Open Source Library.
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 2. Add USDT probes to the target locations, of the format:

FOLLY_SDT(provider, name, arg1, arg2, ...)

The "provider" groups the probes, the "name" is the name of the probe, and then optional 
arguments are listed. The BCC USDT example contains:

FOLLY_SDT(usdt_sample_lib1, operation_start, operationId, 
request.input().c_str());

This defines the probe as usdt_sample_lib1:operation_start, with the two arguments 
provided. The USDT example also contains an operation_end probe.

 3. Build the software. You can check that the USDT probe exists by using readelf(1):

$ readelf -n usdt_sample_lib1/libusdt_sample_lib1.so

[...]

Displaying notes found in: .note.stapsdt

  Owner                 Data size  Description

  stapsdt              0x00000047  NT_STAPSDT (SystemTap probe descriptors)

    Provider: usdt_sample_lib1

    Name: operation_end

    Location: 0x000000000000fdd2, Base: 0x0000000000000000, Semaphore: 
0x0000000000000000

    Arguments: -8@%rbx -8@%rax

  stapsdt              0x0000004f  NT_STAPSDT (SystemTap probe descriptors)

    Provider: usdt_sample_lib1

    Name: operation_start

    Location: 0x000000000000febe, Base: 0x0000000000000000, Semaphore: 
0x0000000000000000

    Arguments: -8@-104(%rbp) -8@%rax

The -n option to readelf(1) prints the notes section, which should show information about 
the compiled USDT probes.

 4. Optional: Sometimes the arguments you’d like to add to a probe are not readily available 
at the probe location, and must be constructed using CPU-expensive function calls. To 
avoid making these calls all the time when the probe is not in use, you can add a probe 
semaphore to the source file outside of the function:

FOLLY_SDT_DEFINE_SEMAPHORE(provider, name)

Then the probe point can become:

if (FOLLY_SDT_IS_ENABLED(provider, name)) {

    ... expensive argument processing ...

    FOLLY_SDT_WITH_SEMAPHORE(provider, name, arg1, arg2, ...);

}

Now the expensive argument processing occurs only when the probe is in use (enabled). The 
semaphore address will be visible in readelf(1), and tracing tools can set it when the probe is used.

This does complicate tracing tools a little: When semaphore-protected probes are in use, these 
tracing tools typically need to have a PID specified so that they set the semaphore for that PID.
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2.10.2 How USDT Works

When applications are compiled, a no-operation (nop) instruction is placed at the address of 
the USDT probe. This address is then dynamically changed by the kernel to a breakpoint when 
instrumented, using uprobes.

As with uprobes, I can illustrate USDT in action, although it’s a little more work. The location 
of the probe from the previous readelf(1) output was 0x6a2. This is the offset from the binary 
segment, so you must first learn where that begins. This can vary thanks to position independent 
executables (PIE), which make more effective use of address space layout randomization (ASLR):

# gdb -p 4777

[...]

(gdb) info proc mappings

process 4777

Mapped address spaces:

 

        Start Addr         End Addr     Size   Offset objfile

    0x55a75372a000   0x55a75372b000   0x1000      0x0 /home/bgregg/Lang/c/tick

    0x55a75392a000   0x55a75392b000   0x1000      0x0 /home/bgregg/Lang/c/tick

    0x55a75392b000   0x55a75392c000   0x1000   0x1000 /home/bgregg/Lang/c/tick

[...]

The start address is 0x55a75372a000. Printing out the instruction at that address plus the offset of 
the probe, 0x6a2:

(gdb) disas 0x55a75372a000 + 0x6a2

[...]

   0x000055a75372a695 <+11>: mov    %rsi,-0x20(%rbp)

   0x000055a75372a699 <+15>: movl   $0x0,-0x4(%rbp)

   0x000055a75372a6a0 <+22>: jmp    0x55a75372a6c7 <main+61>

   0x000055a75372a6a2 <+24>: nop

   0x000055a75372a6a3 <+25>: mov    -0x4(%rbp),%eax

   0x000055a75372a6a6 <+28>: mov    %eax,%esi

   0x000055a75372a6a8 <+30>: lea    0xb5(%rip),%rdi        # 0x55a75372a764

[...]

And now with the USDT probe enabled:

(gdb) disas 0x55a75372a000 + 0x6a2

[...]

   0x000055a75372a695 <+11>: mov    %rsi,-0x20(%rbp)

   0x000055a75372a699 <+15>: movl   $0x0,-0x4(%rbp)

   0x000055a75372a6a0 <+22>: jmp    0x55a75372a6c7 <main+61>

   0x000055a75372a6a2 <+24>: int3   
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   0x000055a75372a6a3 <+25>: mov    -0x4(%rbp),%eax

   0x000055a75372a6a6 <+28>: mov    %eax,%esi

   0x000055a75372a6a8 <+30>: lea    0xb5(%rip),%rdi        # 0x55a75372a764

[...]

The nop instruction has changed to int3 (x86_64 breakpoint). When this breakpoint is hit, the 
kernel executes the attached BPF program with the arguments for the USDT probe. The nop 
instruction is restored when the USDT probe is deactivated.

2.10.3 BPF and USDT

USDT provides user-level static instrumentation for BCC and bpftrace. The interfaces are:

 ■ BCC: USDT().enable_probe()

 ■ bpftrace: The usdt probe type

For example, instrumenting the loop probe from the previous example:

# bpftrace -e 'usdt:/tmp/tick:loop { printf("got: %d\n", arg0); }'

Attaching 1 probe...

got: 0

got: 1

got: 2

got: 3

got: 4

^C

This bpftrace one-liner also printed out the integer argument passed to the probe.

2.10.4 USDT Additional Reading

More sources for understanding USDT:

 ■ “Hacking Linux USDT with Ftrace” by Brendan Gregg [49]

 ■ “USDT Probe Support in BPF/BCC” by Sasha Goldshtein [50]

 ■ “USDT Tracing Report” by Dale Hamel [51]

2.11 Dynamic USDT

The USDT probes described previously are added to source code and compiled into the resulting 
binary, leaving nops at the instrumentation points and metadata in the ELF notes section. 
However, some languages, such as Java with the JVM, are interpreted or compiled on the fly. 
Dynamic USDT can be used to add instrumentation points in the Java code.



ptg30854589

62 Chapter 2  Technology Background

Note that the JVM already contains many USDT probes in its C++ code—for GC events, class 
loading, and other high-level activities. These USDT probes are instrumenting the function of the 
JVM. But USDT probes cannot be added to Java code that is compiled on the fly. USDT expects a 
pre-compiled ELF file with a notes section containing probe descriptions, and that doesn’t exist 
for JIT-compiled Java code.

Dynamic USDT solves this by:

 ■ Pre-compiling a shared library with the desired USDT probes embedded in functions. This 
shared library can be in C or C++, and it has an ELF notes section for the USDT probes. It 
can be instrumented like any other USDT probe.

 ■ Loading the shared library when required with dlopen(3).

 ■ Adding shared library calls from the target language. These can be implemented with an 
API that suits the language, hiding the underlying shared library call.

This has been implemented for Node.js and Python by Matheus Marchini in a library called 
libstapsdt,28 which provides a way to define and call USDT probes in those languages. Support for 
other languages can usually be added by wrapping this library, as has been done by Dale Hamel 
for Ruby, using Ruby’s C-extension support [54].

For example, in Node.js JavaScript:

const USDT = require("usdt");

const provider = new USDT.USDTProvider("nodeProvider");

const probe1 = provider.addProbe("requestStart","char *");

provider.enable();

 

[...]

probe1.fire(function() { return [currentRequestString]; });

[...]

The probe1.fire() call executes its anonymous function only if the probe was instrumented 
externally. Within this function, arguments can be processed (if necessary) before being passed to 
the probe, without concern about the non-enabled CPU cost of such argument processing since it 
is skipped if the probe was not in use.

libstapsdt automatically creates a shared library containing the USDT probes and ELF notes 
section at runtime, and it maps that section into the running program’s address space.

28 For libstapsdt, see [52][53]. A new library called libusdt is being written for this purpose, and it might change the fol-

lowing code example. Check for future releases of libusdt.
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2.12 PMCs

Performance monitoring counters (PMCs) are also known by other names, such as performance 
instrumentation counters (PICs), CPU performance counters (CPCs), and performance monitor-
ing unit events (PMU events). These terms all refer to the same thing: programmable hardware 
counters on the processor.

While there are many PMCs, Intel has selected seven PMCs as an “architectural set” that provides 
a high-level overview of some core functions [Intel 16]. The presence of these architectural set 
PMCs can be checked using the CPUID instruction. Table 2-8 shows this set, which serves as an 
example of useful PMCs.

Table 2-8 Intel Architectural PMCs

Event Name UMask Event Select Example Event Mask Mnemonic

UnHalted Core Cycles 00H 3CH CPU_CLK_UNHALTED.THREAD_P

Instruction Retired 00H C0H INST_RETIRED.ANY_P

UnHalted Reference Cycles 01H 3CH CPU_CLK_THREAD_UNHALTED.REF_XCLK

LLC References 4FH 2EH LONGEST_LAT_CACHE.REFERENCE

LLC Misses 41H 2EH LONGEST_LAT_CACHE.MISS

Branch Instruction Retired 00H C4H BR_INST_RETIRED.ALL_BRANCHES

Branch Misses Retired 00H C5H BR_MISP_RETIRED.ALL_BRANCHES

PMCs are a vital resource for performance analysis. Only through PMCs can you measure the 
efficiency of CPU instructions; the hit ratios of CPU caches; memory, interconnect, and device 
bus utilization; stall cycles; and so on. Using these measurements to analyze performance can lead 
to various small performance optimizations.

PMCs are also a strange resource. While there are hundreds of PMCs available, only a fixed 
number of registers (perhaps as few as six) are available in the CPUs to measure them at the 
same time. You need to choose which PMCs you’d like to measure on those six registers, or cycle 
through different PMC sets as a way of sampling them. (Linux perf(1) supports this cycling 
automatically.) Other software counters do not suffer from these constraints.

2.12.1 PMC Modes

PMCs can be used in one of two modes:

 ■ Counting: In this mode, PMCs keep track of the rate of events. The kernel can read the 
count whenever desired, such as for fetching per-second metrics. The overhead of this 
mode is practically zero.
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 ■ Overflow Sampling: In this mode, the PMCs can send interrupts to the kernel for the 
events they are monitoring, so that the kernel can collect extra state. The events monitored 
can occur millions or billions of times per second; sending an interrupt for each one 
would grind the system to a near halt. The solution is to take a sample of events by using a 
programmable counter that signals the kernel when the counter overflows (e.g., once every 
10,000 LLC cache miss or once every 1 million stall cycles).

The sampling mode is most interesting for BPF tracing since it generates events that you can 
instrument with custom BPF programs. Both BCC and bpftrace support PMC events.

2.12.2 PEBS

Overflow sampling may not record the correct instruction pointer that triggered an event due 
to interrupt latency (often called “skid”) or out-of-order instruction execution. For CPU cycle 
profiling, such skid may not be a problem, and some profilers deliberately introduce jitter to 
avoid lockstep sampling (or use an offset sampling rate, such as 99 Hertz). But for measuring other 
events, such as LLC misses, the sampled instruction pointer needs to be accurate.

Intel has developed a solution called precise event-based sampling (PEBS). PEBS uses hardware 
buffers to record the correct instruction pointer at the time of the PMC event. The Linux 
perf_events framework supports using PEBS.

2.12.3 Cloud Computing

Many cloud computing environments have not yet provided PMC access to their guests. It is 
technically possible to enable it; for example, the Xen hypervisor has the vpmu command line 
option, which allows different sets of PMCs to be exposed to guests [55].29 Amazon has enabled 
many PMCs for its Nitro hypervisor guests.

2.13 perf_events

The perf_events facility is used by the perf(1) command for sampling and tracing, and it was 
added to Linux 2.6.21 in 2009. Importantly, perf(1) and its perf_events facility have received a 
lot of attention and development over the years, and BPF tracers can make calls to perf_events 
to use its features. BCC and bpftrace first used perf_events for its ring buffer, and then for PMC 
instrumentation, and now for all event instrumentation via perf_event_open().

While BPF tracing tools make use of perf(1)’s internals, an interface for BPF has  been developed 
and added to perf(1) as well, making perf(1) another BPF tracer. Unlike with BCC and bpftrace, 
the source code to perf(1) is in the Linux tree, so perf(1) is the only BPF front-end tracer that is 
built into Linux.

29 I wrote the Xen code that allows different PMC modes: ipc for instructions-per-cycle PMCs only, and arch for the Intel 

architectural set. My code was just a firewall on the existing vpmu support in Xen.
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652.14 Summary

perf(1) BPF is still under development and is difficult to use. Covering it is beyond the scope of 
these chapters, which focus on BCC and bpftrace tools. An example of perf BPF is included in 
Appendix D.

2.14 Summary

BPF performance tools make use of many technologies, including extended BPF, kernel and user 
dynamic instrumentation (kprobes and uprobes), kernel and user static tracing (tracepoints and 
user markers), and perf_events. BPF can also fetch stack traces by using frame pointer–based walks 
or ORC for kernel stacks, and these can be visualized as flame graphs. These technologies are 
covered in this chapter, including references for further reading.
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Chapter 3
Performance Analysis

The tools in this book can be used for performance analysis, troubleshooting, security analysis, 
and more. To help you understand how to apply them, this chapter provides a crash course in 
performance analysis.

Learning objectives:

 ■ Understand the goals and activities of performance analysis

 ■ Perform workload characterization

 ■ Perform the USE method

 ■ Perform drill-down analysis

 ■ Understand checklist methodologies

 ■ Find quick performance wins using traditional tools and the 60-second Linux checklist

 ■ Find quick performance wins using the BCC/BPF tool checklist

This chapter begins by describing the goals and activities of performance analysis, and then it 
summarizes methodologies followed by traditional (non-BPF) tools that can be tried first. These 
traditional tools will help you find quick performance wins outright or provide clues and context 
for later BPF-based analysis. A checklist of BPF tools is included at the end of the chapter, and 
many more BPF tools are included in later chapters.

3.1 Overview

Before diving in to performance analysis, it can help to think about what your goals are and the 
different activities that can help you accomplish them.
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3.1.1 Goals

In general, the goals of performance analysis are to improve end-user performance and to reduce 
operating cost. It helps to state a performance goal in terms of something measurable; such a 
measurement can show when the performance goal has been met, or to quantify the shortfall. 
Measurements include:

 ■ Latency: How long to accomplish a request or operation, typically measured in 
milliseconds

 ■ Rate: An operation or request rate per second

 ■ Throughput: Typically data movement in bits or bytes per second

 ■ Utilization: How busy a resource is over time as a percentage

 ■ Cost: The price/performance ratio

End-user performance can be quantified as the time an application takes to respond to user 
requests, and the goal is to make this time shorter. This time spent waiting is often termed latency. 
It can be improved by analyzing request time and breaking it down into components: the time 
running on CPU and what code is running; the time waiting for resources such as disks, network-
ing, and locks; the time waiting for a turn by the CPU scheduler; and so on. It is possible to write 
a BPF tool to directly trace application request time plus latency from many different components 
at once. Such a tool would be application specific and could incur significant overhead in tracing 
many different events simultaneously. In practice, smaller specific tools are often used to study 
time and latency from specific components. This book includes many such smaller and specific 
tools.

Reducing operating cost can involve observing how software and hardware resources are used and 
looking for optimizations, with the goal of reducing your company’s cloud or datacenter spend. 
This can involve a different type of analysis, such as summarizing or logging how components are 
used rather than the time or latency of their response. Many tools in this book support this goal 
as well.

Bear these goals in mind when doing performance analysis. With BPF tools, it is far too easy to 
generate lots of numbers, and then spend hours trying to understand a metric that turns out to be 
unimportant. As a performance engineer, I’ve been sent screenshots of tool output by developers 
worried about an apparently bad metric. My first question is often “Do you have a known perfor-
mance issue?” Their answer is often “No, we just thought this output looked...interesting.” It may 
well be interesting, but I first need to determine the goal: are we trying to reduce request latency, 
or operating costs? The goal sets the context for further analysis.

3.1.2 Activities

BPF performance tools can be used for more than just analyzing a given issue. Consider the 
following list of performance activities [Gregg 13b] and how BPF performance tools can be of use 
for each of them:
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Performance Activity BPF Performance Tools

1 Performance characterization of 
prototype software or hardware

To measure latency histograms under 
different workloads

2 Performance analysis of 
development code, pre-integration

To solve performance bottlenecks and find 
general performance improvements

3 Perform non-regression testing of 
software builds, pre- or post-release

To record code usage and latency from different 
sources, enabling faster resolution of regressions

4 Benchmarking/benchmarketing for 
software releases

To study performance to find opportunities to improve 
benchmark numbers

5 Proof-of-concept testing in the 
target environment

To generate latency histograms to ensure that 
performance meets request latency service level 
agreements

6 Monitoring of running production 
software 

To create tools that can run 24x7 to expose new 
metrics that would otherwise be blind spots

7 Performance analysis of issues To solve a given performance issue with tools and 
custom instrumentation, as needed

It may be obvious that many of the tools in this book are suitable for studying given performance 
issues, but also consider how they can improve monitoring, non-regression testing, and other 
activities. 

3.1.3 Mulitple Performance Issues

When using the tools described in this book, be prepared to find multiple performance issues. 
The problem becomes identifying which issue matters the most: It’s usually the one that is most 
affecting request latency or cost. If you aren’t expecting to find multiple performance issues, try 
to find the bug tracker for your application, database, file system, or software component, and 
search for the word “performance.” There are often multiple outstanding performance issues, as 
well as some not yet listed in the tracker. It’s all about finding what matters the most.

Any given issue may also have multiple causes. Many times when you fix one cause, others 
become apparent. Or, when you fix one cause, another component then becomes the bottleneck.

3.2 Performance Methodologies

With so many performance tools and capabilities available (e.g., kprobes, uprobes, tracepoints, 
USDT, PMCs; see Chapter 2) it can be difficult to know what to do with all the data they provide. 
For many years, I’ve been studying, creating, and documenting performance methodologies. 
A methodology is a process you can follow that provides a starting point, steps, and an ending 
point. My prior book, Systems Performance, documents dozens of performance methodologies 
[Gregg 13b]. I’ll summarize a few of them here that you can follow with BPF tools.
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3.2.1 Workload Characterization

The aim of workload characterization is to understand the applied workload. You do not need to 
analyze the resulting performance, such as the latency suffered. The biggest performance wins I’ve 
found have been ones of “eliminating unnecessary work.” Such wins can be found by studying 
what the workload is composed of.

Suggested steps for performing workload characterization:

 1. Who is causing the load (e.g., PID, process name, UID, IP address)?

 2. Why is the load called (code path, stack trace, flame graph)?

 3. What is the load (IOPS, throughput, type)?

 4. How is the load changing over time (per-interval summaries)?

Many of the tools in this book can help you answer these questions. For example, vfsstat(8):

# vfsstat

TIME         READ/s  WRITE/s CREATE/s   OPEN/s  FSYNC/s

18:35:32:       231       12        4       98        0

18:35:33:       274       13        4      106        0

18:35:34:       586       86        4      251        0

18:35:35:       241       15        4       99        0

18:35:36:       232       10        4       98        0

[...]

This shows details of the workload applied at the virtual file system (VFS) level and answers step 3 
by providing the types and operation rates, and step 4 by providing the per-interval summary 
over time.

As a simple example of step 1, I’ll switch to bpftrace and a one-liner (output truncated):

# bpftrace -e 'kprobe:vfs_read { @[comm] = count(); }'

Attaching 1 probe...

^C

 

@[rtkit-daemon]: 1

[...]

@[gnome-shell]: 207

@[Chrome_IOThread]: 222

@[chrome]: 225

@[InputThread]: 302

@[gdbus]: 819

@[Web Content]: 1725

This shows that processes named "Web Content" performed 1725 vfs_read()s while I was tracing.
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More examples of tools for working through these steps can be found throughout this book, 
including the flame graphs in later chapters, which can be used for step 2.

If the target of your analysis does not already have a tool available, you can  create your own 
workload characterization tools to answer these questions.

3.2.2 Drill-Down Analysis

Drill-down analysis involves examining a metric, and then finding ways to decompose it into its 
components, and then decomposing the largest component into its own components, and so on 
until a root cause or causes has been found.

An analogy may help explain this. Imagine that you discover you have an unusually large credit 
card bill. To analyze it, you log in to your bank and look at the transactions. There, you discover 
one large charge to an online bookstore. You then log in to that bookstore to see which books led 
to that amount and discover that you accidentally purchased 1000 copies of this very book (thank 
you!). This is drill-down analysis: finding a clue and then drilling deeper, led by further clues, 
until the problem is solved.

Suggested steps for drill-down analysis:

 1. Start examining the highest level.

 2. Examine next-level details.

 3. Pick the most interesting breakdown or clue.

 4. If the problem is unsolved, go back to step 2.

Drill-down analysis can involve custom tooling, which is better suited to bpftrace than to BCC.

One type of drill-down analysis involves decomposing latency into its contributing components. 
Imagine this analysis sequence:

 1. Request latency is 100 ms (milliseconds).

 2. This is 10 ms running on CPU, and 90 ms blocked off CPU.

 3. The off-CPU time is 89 ms blocked on the file system.

 4. The file system is spending 3 ms blocked on locks, and 86 ms blocked on storage devices.

Your conclusion here may be that the storage devices are the problem—and that is one answer. 
But drill-down analysis can also be used to sharpen context. Consider this alternate sequence:

 1. An application is spending 89 ms blocked on the file system.

 2. The file system is spending 78 ms blocked on file system writes, and 11 ms blocked on reads.

 3. The file system writes are spending 77 ms blocked on access timestamp updates.

Your conclusion now is that file system access timestamps are the source of the latency, and they 
could be disabled (it is a mount option). This is a better outcome than concluding that faster disks 
were necessary.
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3.2.3 USE Method

I developed the USE methodology for resource analysis [Gregg 13c].

For every resource, check:

 1. Utilization

 2. Saturation

 3. Errors

Your first task is to find or draw a diagram of the software and hardware resources. You can then 
iterate over them, seeking these three metrics. Figure 3-1 shows examples of hardware targets for a 
generic system, including the components and buses that can be examined.

Figure 3-1 Hardware targets for USE method analysis

Consider your current monitoring tools and their ability to show utilization, saturation, and 
errors for every item in Figure 3-1. How many blind spots do you currently have?

An advantage of this methodology is that it begins with the questions that matter, rather than 
beginning with answers in the form of metrics and trying to work backward to find out why they 
matter. It also reveals blind spots: It begins with the questions you want answered, whether or not 
there is a convenient tool to measure them.

3.2.4 Checklists

A performance analysis checklist can list tools and metrics to run and check. They can focus on 
the low-hanging fruit: identifying a dozen or so common issues with analysis instructions for 
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everyone to follow. These are well suited for execution by a wide variety of staff at your company, 
and can allow you to scale your skills.

The following sections introduce two checklists: one using traditional (non-BPF) tools suitable for 
a quick analysis (the first 60 seconds) and the other a list of BCC tools to try early on.

3.3 Linux 60-Second Analysis

This checklist can be used for any performance issue and reflects what I typically execute in the 
first 60 seconds after logging into a poorly performing Linux system. This was published by myself 
and the Netflix performance engineering team [56]:

The tools to run are:

 1. uptime

 2. dmesg | tail

 3. vmstat 1

 4. mpstat -P ALL 1

 5. pidstat 1

 6. iostat -xz 1

 7. free -m

 8. sar -n DEV 1

 9. sar -n TCP,ETCP 1

 10. top

The following sections explain each of these tools. It might seem out of place to discuss non-BPF 
tools in a BPF book, but not to do so would miss out on an important resource that is already 
available. These commands may enable you to solve some performance issues outright. If not, 
they may reveal clues about where the performance problems are, directing your use of follow-up 
BPF tools to find the real issue.

3.3.1 uptime

$ uptime 

 03:16:59 up 17 days,  4:18,  1 user,  load average: 2.74, 2.54, 2.58

This is a quick way to view the load averages, which indicate the number of tasks (processes) 
wanting to run. On Linux systems, these numbers include processes wanting to run on the CPUs, 
as well as processes blocked in uninterruptible I/O (usually disk I/O). This gives a high-level idea 
of resource load (or demand), which can then be further explored using other tools.

The three numbers are exponentially damped moving sum averages with a 1-minute, 5-minute, 
and 15-minute constant. The three numbers give you some idea of how load is changing over 
time. In the example above, the load averages show a small recent increase.
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Load averages can be worth checking when first responding to an issue to see if the issue is still 
present. In fault-tolerant environments, a server experiencing a performance issue may be auto-
matically removed from service by the time you can log in to take a look. A high 15-minute load 
average coupled with a low 1-minute load average can be a sign that you logged in too late to 
catch the issue.

3.3.2 dmesg | tail

$ dmesg | tail

[1880957.563150] perl invoked oom-killer: gfp_mask=0x280da, order=0, oom_score_adj=0

[...]

[1880957.563400] Out of memory: Kill process 18694 (perl) score 246 or sacrifice child

[1880957.563408] Killed process 18694 (perl) total-vm:1972392kB, anon-rss:1953348kB, 

file-rss:0kB

[2320864.954447] TCP: Possible SYN flooding on port 7001. Dropping request.  Check 

SNMP counters.

This shows the past 10 system messages, if any. Look for errors that can cause performance issues. 
The example above includes the out-of-memory killer and TCP dropping a request. The TCP 
message even points you to the next area for analysis: SNMP counters.

3.3.3 vmstat 1

$ vmstat 1

procs ---------memory---------- ---swap-- -----io---- -system-- ------cpu-----

 r  b swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st

34  0    0 200889792  73708 591828    0    0     0     5    6   10 96  1  3  0  0

32  0    0 200889920  73708 591860    0    0     0   592 13284 4282 98  1  1  0  0

32  0    0 200890112  73708 591860    0    0     0     0 9501 2154 99  1  0  0  0

[...]

This is the virtual memory statistics tool that originated in BSD, which also shows other system 
metrics. When invoked with the argument 1, it prints 1-second summaries; be aware that the first 
line of numbers is the summary since boot (with the exception of the memory counters).

Columns to check:

 ■ r: The number of processes running on CPU and waiting for a turn. This provides a better 
signal than load averages for determining CPU saturation, as it does not include I/O. To 
interpret: an "r" value greater than the CPU count indicates saturation.

 ■ free: Free memory, in Kbytes. If there are too many digits to count, you probably have 
enough free memory. The free -m command, included in Section 3.3.7 better explains the 
state of free memory.

 ■ si and so: Swap-ins and swap-outs. If these are non-zero, you’re out of memory. These are 
only in use if swap devices are configured.
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 ■ us, sy, id, wa, and st: These are breakdowns of CPU time, on average, across all CPUs. They 
are user time, system time (kernel), idle, wait I/O, and stolen time (by other guests, or, with 
Xen, the guest’s own isolated driver domain).

The example shows that CPU time is mostly in user mode. This should direct your next steps to 
analyze the running user-level code using profilers.

3.3.4 mpstat -P ALL 1

$ mpstat -P ALL 1

[...]

03:16:41 AM  CPU   %usr  %nice  %sys %iowait  %irq  %soft %steal %guest %gnice  %idle

03:16:42 AM  all  14.27   0.00  0.75    0.44  0.00   0.00   0.06   0.00   0.00  84.48

03:16:42 AM    0 100.00   0.00  0.00    0.00  0.00   0.00   0.00   0.00   0.00   0.00

03:16:42 AM    1   0.00   0.00  0.00    0.00  0.00   0.00   0.00   0.00   0.00 100.00

03:16:42 AM    2   8.08   0.00  0.00    0.00  0.00   0.00   0.00   0.00   0.00  91.92

03:16:42 AM    3  10.00   0.00  1.00    0.00  0.00   0.00   1.00   0.00   0.00  88.00

03:16:42 AM    4   1.01   0.00  0.00    0.00  0.00   0.00   0.00   0.00   0.00  98.99

03:16:42 AM    5   5.10   0.00  0.00    0.00  0.00   0.00   0.00   0.00   0.00  94.90

03:16:42 AM    6  11.00   0.00  0.00    0.00  0.00   0.00   0.00   0.00   0.00  89.00

03:16:42 AM    7  10.00   0.00  0.00    0.00  0.00   0.00   0.00   0.00   0.00  90.00

[...]

This command prints per-CPU time broken down into states. The output reveals a problem: CPU 
0 has hit 100% user time, evidence of a single-thread bottleneck.

Also look out for high %iowait time, which can be explored with disk I/O tools, and high %sys 
time, which can be explored with syscall and kernel tracing, as well as CPU profiling.

3.3.5 pidstat 1

$ pidstat 1

Linux 4.13.0-19-generic (...)       08/04/2018     _x86_64_     (16 CPU)

 

03:20:47 AM   UID       PID    %usr %system  %guest    %CPU   CPU  Command

03:20:48 AM     0      1307    0.00    0.98    0.00    0.98     8  irqbalance

03:20:48 AM    33     12178    4.90    0.00    0.00    4.90     4  java

03:20:48 AM    33     12569  476.47   24.51    0.00  500.98     0  java

03:20:48 AM     0    130249    0.98    0.98    0.00    1.96     1  pidstat

 

03:20:48 AM   UID       PID    %usr %system  %guest    %CPU   CPU  Command

03:20:49 AM    33     12178    4.00    0.00    0.00    4.00     4  java

03:20:49 AM    33     12569  331.00   21.00    0.00  352.00     0  java

03:20:49 AM     0    129906    1.00    0.00    0.00    1.00     8  sshd

03:20:49 AM     0    130249    1.00    1.00    0.00    2.00     1  pidstat
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03:20:49 AM   UID       PID    %usr %system  %guest    %CPU   CPU  Command

03:20:50 AM    33     12178    4.00    0.00    0.00    4.00     4  java

03:20:50 AM   113     12356    1.00    0.00    0.00    1.00    11  snmp-pass

03:20:50 AM    33     12569  210.00   13.00    0.00  223.00     0  java

03:20:50 AM     0    130249    1.00    0.00    0.00    1.00     1  pidstat

[...]

pidstat(1) shows CPU usage per process. top(1) is a popular tool for this purpose; however, 
pidstat(1) provides rolling output by default so that variation over time can be seen. This output 
shows that a Java process is consuming a variable amount of CPU each second; these percentages 
are summed across all CPUs,1 so 500% is equivalent to five CPUs at 100%.

3.3.6 iostat -xz 1

$ iostat -xz 1

Linux 4.13.0-19-generic (...)       08/04/2018    _x86_64_      (16 CPU)

[...]

avg-cpu:  %user   %nice %system %iowait  %steal   %idle

          22.90    0.00    0.82    0.63    0.06   75.59

 

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz   

await r_await w_await  svctm  %util

nvme0n1           0.00  1167.00    0.00 1220.00     0.00 151293.00   248.02     2.10    

1.72    0.00    1.72   0.21  26.00

nvme1n1           0.00  1164.00    0.00 1219.00     0.00 151384.00   248.37     0.90    

0.74    0.00    0.74   0.19  23.60

md0               0.00     0.00    0.00 4770.00     0.00 303113.00   127.09     0.00    

0.00    0.00    0.00   0.00   0.00

[...]

This tool shows storage device I/O metrics. The output columns for each disk device have 
line-wrapped here, making it difficult to read.

Columns to check:

 ■ r/s, w/s, rkB/s, and wkB/s: These are the delivered reads, writes, read Kbytes, and write 
Kbytes per second to the device. Use these for workload characterization. A performance 
problem may simply be due to an excessive load having been applied.

 ■ await: The average time for the I/O in milliseconds. This is the time that the application 
suffers, as it includes both time queued and time being serviced. Larger-than-expected 
average times can be an indicator of device saturation or device problems.

1 Note that a recent change to pidstat(1) capped percentages to 100% [36]. This led to output that was invalid for 

multi-threaded applications exceeding 100%. The change was eventually reverted, but be aware in case you encounter 

the changed version of pidstat(1).
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 ■ avgqu-sz: The average number of requests issued to the device. Values greater than one can 
be evidence of saturation (although devices, especially virtual devices that front multiple 
back-end disks, typically operate on requests in parallel.)

 ■ %util: Device utilization. This is really a busy percentage, showing the time each second 
that the device was doing work. It does not show utilization in a capacity planning sense, 
as devices can operate on requests in parallel.2 Values greater than 60% typically lead to 
poor performance (which should be seen in the await column), although it depends on the 
device. Values close to 100% usually indicate saturation.

The output shows a write workload of ~300 Mbytes/sec to the md0 virtual device, which looks like 
it is backed by both of the nvme0 devices.

3.3.7 free -m

$ free -m

              total        used        free      shared  buff/cache   available

Mem:         122872       39158        3107        1166       80607       81214

Swap:             0           0           0

This shows available memory in Mbytes. Check that the available value is not near zero; it shows 
how much real memory is available in the system, including in the buffer and page caches.3 
Having some memory in the cache improves file system performance.

3.3.8 sar -n DEV 1

$ sar -n DEV 1

Linux 4.13.0-19-generic (...)       08/04/2018    _x86_64_      (16 CPU)

 

03:38:28 AM     IFACE   rxpck/s   txpck/s    rxkB/s    txkB/s   rxcmp/s   txcmp/s  

rxmcst/s   %ifutil

03:38:29 AM      eth0   7770.00   4444.00  10720.12   5574.74      0.00      0.00      

0.00      0.00

03:38:29 AM        lo     24.00     24.00     19.63     19.63      0.00      0.00      

0.00      0.00

 

2 This leads to the confusing situation where a device at 100% utilization as reported by iostat(1) may be able to 

accept a higher workload. It is just reporting that something was busy 100% of the time, but it was not 100% utilized: it 

could have accepted more work. The %util reported by iostat(1) is especially misleading for volumes backed by a pool of 

multiple disks, which have an increased ability to run work in parallel.

3 The output of free(1) has changed recently. It used to show buffers and cache as separate columns, and it left the 

available column as an exercise for the end user to calculate. I like the newer version better. The separate buffers and 

cached columns can be shown by using -w for wide mode.
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03:38:29 AM     IFACE   rxpck/s   txpck/s    rxkB/s    txkB/s   rxcmp/s   txcmp/s  

rxmcst/s   %ifutil

03:38:30 AM      eth0   5579.00   2175.00   7829.20   2626.93      0.00      0.00      

0.00      0.00

03:38:30 AM        lo     33.00     33.00      1.79      1.79      0.00      0.00      

0.00      0.00

[...]

The sar(1) tool has many modes for different groups of metrics. Here I’m using it to look at 
network device metrics. Check interface throughput rxkB/s and txkB/s to see if any limit may 
have been reached.

3.3.9 sar -n TCP,ETCP 1

# sar -n TCP,ETCP 1

Linux 4.13.0-19-generic (...)      08/04/2019     _x86_64_       (16 CPU)

 

03:41:01 AM  active/s passive/s    iseg/s    oseg/s

03:41:02 AM      1.00      1.00    348.00   1626.00

 

03:41:01 AM  atmptf/s  estres/s retrans/s isegerr/s   orsts/s

03:41:02 AM      0.00      0.00      1.00      0.00      0.00

 

03:41:02 AM  active/s passive/s    iseg/s    oseg/s

03:41:03 AM      0.00      0.00    521.00   2660.00

 

03:41:02 AM  atmptf/s  estres/s retrans/s isegerr/s   orsts/s

03:41:03 AM      0.00      0.00      0.00      0.00      0.00

[...]

Now we’re using sar(1) to look at TCP metrics and TCP errors. Columns to check:

 ■ active/s: Number of locally initiated TCP connections per second (e.g., via connect())

 ■ passive/s: Number of remotely initiated TCP connections per second (e.g., via accept())

 ■ retrans/s: Number of TCP retransmits per second

Active and passive connection counts are useful for workload characterization. Retransmits are a 
sign of a network or remote host issue.

3.3.10 top

top - 03:44:14 up 17 days,  4:46,  1 user,  load average: 2.32, 2.20, 2.21

Tasks: 474 total,   1 running, 473 sleeping,   0 stopped,   0 zombie

%Cpu(s): 29.7 us,  0.4 sy,  0.0 ni, 69.7 id,  0.1 wa,  0.0 hi,  0.0 si,  0.0 st
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KiB Mem : 12582137+total,  3159704 free, 40109716 used, 82551960 buff/cache

KiB Swap:        0 total,        0 free,        0 used. 83151728 avail Mem 

 

   PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND

 12569 www       20   0  2.495t 0.051t 0.018t S 484.7 43.3  13276:02 java                                                                                     

 12178 www       20   0 12.214g 3.107g  16540 S   4.9  2.6    553:41 java                                                                                     

125312 root      20   0       0      0      0 S   1.0  0.0   0:13.20 kworker/u256:0                                                                                                                                           

                     

128697 root      20   0       0      0      0 S   0.3  0.0   0:02.10 kworker/10:2  

[...]

At this point you’ll have already seen many of these metrics with prior tools, but it can be 
useful to double-check by finishing with the top(1) utility and browsing the system and process 
summaries.

With luck, this 60-second analysis will have helped you unearth a clue or two about the perfor-
mance of your system. You can use these clues to jump to some related BPF tools for further 
analysis.

3.4 BCC Tool Checklist

This checklist is part of the BCC repository under docs/tutorial.md and was written by me [30]. It 
provides a generic checklist of BCC tools to work through:

 1. execsnoop

 2. opensnoop

 3. ext4slower (or btrfs*, xfs*, zfs*)

 4. biolatency

 5. biosnoop

 6. cachestat

 7. tcpconnect

 8. tcpaccept

 9. tcpretrans

 10. runqlat

 11. profile

These tools expose more information for new processes, opened files, file system latency, disk I/O 
latency, file system cache performance, TCP connections and retransmits, scheduler latency, and 
CPU usage. They are covered in more detail in later chapters.
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3.4.1 execsnoop

# execsnoop

PCOMM            PID    RET ARGS

supervise        9660     0 ./run

supervise        9661     0 ./run

mkdir            9662     0 /bin/mkdir -p ./main

run              9663     0 ./run

[...]

execsnoop(8) shows new process execution by printing one line of output for every execve(2) 
syscall. Check for short-lived processes, as these can consume CPU resources, but may not show 
up in most monitoring tools that periodically take snapshots of which processes are running. 
execsnoop(8) is covered in detail in Chapter 6.

3.4.2 opensnoop

# opensnoop

PID    COMM               FD ERR PATH

1565   redis-server        5   0 /proc/1565/stat

1603   snmpd               9   0 /proc/net/dev

1603   snmpd              11   0 /proc/net/if_inet6

1603   snmpd              -1   2 /sys/class/net/eth0/device/vendor

1603   snmpd              11   0 /proc/sys/net/ipv4/neigh/eth0/retrans_time_ms

1603   snmpd              11   0 /proc/sys/net/ipv6/neigh/eth0/retrans_time_ms

1603   snmpd              11   0 /proc/sys/net/ipv6/conf/eth0/forwarding

[...]

opensnoop(8) prints one line of output for each open(2) syscall (and its variants), including details 
of the path that was opened and whether it was successful (the "ERR" error column). Opened files 
can tell you a lot about how applications work: identifying their data files, config files, and log files. 
Sometimes applications can misbehave and perform poorly when they are constantly attempting to 
read files that do not exist. opensnoop(8) is covered in more detail in Chapter 8.

3.4.3 ext4slower

# ext4slower

Tracing ext4 operations slower than 10 ms

TIME     COMM           PID    T BYTES   OFF_KB   LAT(ms) FILENAME

06:35:01 cron           16464  R 1249    0          16.05 common-auth

06:35:01 cron           16463  R 1249    0          16.04 common-auth

06:35:01 cron           16465  R 1249    0          16.03 common-auth

06:35:01 cron           16465  R 4096    0          10.62 login.defs

06:35:01 cron           16464  R 4096    0          10.61 login.defs

[...]



ptg30854589

813.4 BCC Tool Checklist

ext4slower(8) traces common operations from the ext4 file system (reads, writes, opens, and 
syncs) and prints those that exceed a time threshold. This can identify or exonerate one type of 
performance issue: an application waiting on slow individual disk I/O via the file system. There 
are variants of ext4slower(8) for other file systems, including btrfsslower(8), xfsslower(8), and 
zfsslower(8). See Chapter 8 for more details.

3.4.4 biolatency

# biolatency -m

Tracing block device I/O... Hit Ctrl-C to end.

^C

     msecs               : count     distribution

         0 -> 1          : 16335    |****************************************|

         2 -> 3          : 2272     |*****                                   |

         4 -> 7          : 3603     |********                                |

         8 -> 15         : 4328     |**********                              |

        16 -> 31         : 3379     |********                                |

        32 -> 63         : 5815     |**************                          |

        64 -> 127        : 0        |                                        |

       128 -> 255        : 0        |                                        |

       256 -> 511        : 0        |                                        |

       512 -> 1023       : 1        |                                        |

biolatency(8) traces disk I/O latency (that is, the time from device issue to completion) and 
shows this as a histogram. This better explains disk I/O performance than the averages shown by 
iostat(1). Multiple modes can be examined. Modes are values that are more frequent than others 
in a distribution, and this example shows a multi-modal distribution with one mode between 
0 and 1 milliseconds, and another mode centered around the 8- to 15-millisecond range.4 Outliers 
are also visible: this screenshot shows a single outlier in the 512- to 1023-millisecond range. 
biolatency(8) is covered in more detail in Chapter 9.

3.4.5 biosnoop

# biosnoop

TIME(s)        COMM           PID    DISK    T  SECTOR    BYTES   LAT(ms)

0.000004001    supervise      1950   xvda1   W  13092560  4096       0.74

0.000178002    supervise      1950   xvda1   W  13092432  4096       0.61

0.001469001    supervise      1956   xvda1   W  13092440  4096       1.24

0.001588002    supervise      1956   xvda1   W  13115128  4096       1.09

1.022346001    supervise      1950   xvda1   W  13115272  4096       0.98

[...]

4 It looks a little skewed because of the log-2 distribution: buckets span progressively larger ranges. If I needed to 

understand this better, I would either modify biolatency(8) to use a higher-resolution linear histogram instead, or use the 

biosnoop(8) tool to log disk I/O and then import that log into spreadsheet software for custom histograms. 
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biosnoop(8) prints a line of output for each disk I/O, with details including latency. This allows 
you to examine disk I/O in more detail, and look for time-ordered patterns (e.g., reads queueing 
behind writes). biosnoop(8) is covered in more detail in Chapter 9.

3.4.6 cachestat

# cachestat

    HITS   MISSES  DIRTIES HITRATIO   BUFFERS_MB  CACHED_MB

   53401     2755    20953   95.09%           14      90223

   49599     4098    21460   92.37%           14      90230

   16601     2689    61329   86.06%           14      90381

   15197     2477    58028   85.99%           14      90522

[...]

cachestat(8) prints a one-line summary every second (or every custom interval) showing statistics 
from the file system cache. Use this to identify a low cache hit ratio and a high rate of misses. This 
may give you a lead for performance tuning. cachestat(8) is covered in more detail in Chapter 8.

3.4.7 tcpconnect

# tcpconnect

PID    COMM         IP SADDR            DADDR            DPORT

1479   telnet       4  127.0.0.1        127.0.0.1        23

1469   curl         4  10.201.219.236   54.245.105.25    80

1469   curl         4  10.201.219.236   54.67.101.145    80

1991   telnet       6  ::1              ::1              23

2015   ssh          6  fe80::2000:bff:fe82:3ac fe80::2000:bff:fe82:3ac 22

[...]

tcpconnect(8) prints one line of output for every active TCP connection (e.g., via connect()), with 
details including source and destination addresses. Look for unexpected connections that may 
point to inefficiencies in application configuration or an intruder. tcpconnect(8) is covered in 
more detail in Chapter 10.

3.4.8 tcpaccept

# tcpaccept

PID    COMM     IP RADDR            LADDR            LPORT

907    sshd     4  192.168.56.1     192.168.56.102   22

907    sshd     4  127.0.0.1        127.0.0.1        22

5389   perl     6  1234:ab12:2040:5020:2299:0:5:0 1234:ab12:2040:5020:2299:0:5:0 7001

[...]

tcpaccept(8) is a companion tool to tcpconnect(8). It prints one line of output for every passive 
TCP connection (e.g., via accept()), with details including source and destination addresses. 
tcpaccept(8) is covered in more detail in Chapter 10.



ptg30854589

833.4 BCC Tool Checklist

3.4.9 tcpretrans

# tcpretrans 

TIME     PID    IP LADDR:LPORT          T> RADDR:RPORT          STATE

01:55:05 0      4  10.153.223.157:22    R> 69.53.245.40:34619   ESTABLISHED

01:55:05 0      4  10.153.223.157:22    R> 69.53.245.40:34619   ESTABLISHED

01:55:17 0      4  10.153.223.157:22    R> 69.53.245.40:22957   ESTABLISHED

[...]

tcpretrans(8) prints one line of output for every TCP retransmit packet, with details including 
source and destination addresses, and the kernel state of the TCP connection. TCP retransmissions 
cause latency and throughput issues. For retransmissions where the TCP session state is 
ESTABLISHED, look for problems with external networks. For the SYN_SENT state, this may point 
to target kernel CPU saturation and kernel packet drops as well. tcpretrans(8) is covered in more 
detail in Chapter 10.

3.4.10 runqlat

# runqlat 

Tracing run queue latency... Hit Ctrl-C to end.

^C

     usecs               : count     distribution

         0 -> 1          : 233      |***********                             |

         2 -> 3          : 742      |************************************    |

         4 -> 7          : 203      |**********                              |

         8 -> 15         : 173      |********                                |

        16 -> 31         : 24       |*                                       |

        32 -> 63         : 0        |                                        |

        64 -> 127        : 30       |*                                       |

       128 -> 255        : 6        |                                        |

       256 -> 511        : 3        |                                        |

       512 -> 1023       : 5        |                                        |

      1024 -> 2047       : 27       |*                                       |

      2048 -> 4095       : 30       |*                                       |

      4096 -> 8191       : 20       |                                        |

      8192 -> 16383      : 29       |*                                       |

     16384 -> 32767      : 809      |****************************************|

     32768 -> 65535      : 64       |***                                     |

runqlat(8) times how long threads were waiting for their turn on CPU and prints this time as a 
histogram. Longer-than-expected waits for CPU access can be identified using this tool, which 
threads can suffer due to CPU saturation, misconfigurations, or scheduler issues. runqlat(8) is 
covered in more detail in Chapter 6.
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3.4.11 profile

# profile

Sampling at 49 Hertz of all threads by user + kernel stack... Hit Ctrl-C to end.

^C

[...]

 

    copy_user_enhanced_fast_string

    copy_user_enhanced_fast_string

    _copy_from_iter_full

    tcp_sendmsg_locked

    tcp_sendmsg

    inet_sendmsg

    sock_sendmsg

    sock_write_iter

    new_sync_write

    __vfs_write

    vfs_write

    SyS_write

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    [unknown]

    [unknown]

    -                iperf (24092)

        58

profile(8) is a CPU profiler, a tool you can use to understand which code paths are consuming 
CPU resources. It takes samples of stack traces at timed intervals and prints a summary of unique 
stack traces and a count of their occurrence. This output has been truncated and only shows 
one stack trace, with an occurrence count of 58 times. profile(8) is covered in more detail in 
Chapter 6.

3.5 Summary

Performance analysis is about improving end-user performance and reducing operating costs. 
There are many tools and metrics to help you analyze performance; in fact, there are so many that 
choosing the right ones to use in a given situation can be overwhelming. Performance method-
ologies can guide you through these choices, showing you where to start, steps for analysis, and 
where to end.

This chapter summarizes performance analysis methodologies: workload characterization, 
latency analysis, the USE method, and checklists. A Linux performance analysis in 60 seconds 
checklist was then included and explained, which can be your starting point for any performance 
issue. It may help you solve issues outright, or at least yield clues about where the performance 
issue is and direct further analysis with BPF tools. In addition, this chapter includes a BPF check-
list of BCC tools, which are explained in more detail in later chapters.
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The BPF Compiler Collection (BCC; sometimes written as lowercase bcc after the project and 
package names) is an open source project that contains a compiler framework and libraries for 
building BPF software. It is the main front-end project for BPF, supported by the BPF developers, 
and is usually where the latest kernel tracing BPF additions are first used. BCC also contains more 
than 70 ready-to-run BPF performance analysis and troubleshooting tools, many of which are 
covered in this book.

BCC was created by Brenden Blanco in April 2015. Encouraged by Alexei Starovoitov, I joined 
the project in 2015 and became a major contributor of performance tools, documentation, and 
testing. There are now numerous contributors, and BCC is a default server install at companies 
including Netflix and Facebook.

Learning objectives:

 ■ Gain knowledge of BCC features and components, including tools and documentation

 ■ Understand the benefi ts of single-purpose vs multi-purpose tools

 ■ Learn how to use the funccount(8) multi-tool for event counting

 ■ Learn how to use the stackcount(8) multi-tool for discovering code paths

 ■ Learn how to use the trace(8) multi-tool for per-event custom printing

 ■ Learn how to use the argdist(8) multi-tool for distribution summaries

 ■ (optional) Get exposure to BCC internals

 ■ Be aware of BCC debugging techniques

This chapter introduces BCC and its features; shows how to install it; provides an overview of 
its tools, tool types, and documentation; and ends with a tour of BCC internals and debugging. 
If you wish to develop your own new tools, be sure to study both this chapter and Chapter 5 
(bpftrace), and you will be able to choose the front end that best suits your needs. Appendix C 
summarizes BCC tool development using examples.
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4.1 BCC Components

The high-level directory structure of BCC is shown in Figure 4-1.

Figure 4-1 BCC structure

BCC contains documentation for the tools, man pages, and examples files, as well as a tutorial 
for using BCC tools and a tutorial and reference guide for BCC tool development. It provides 
interfaces for developing BCC tools in Python, C++, and lua (not pictured); more interfaces may 
be added in the future.

The repository is:

https://github.com/iovisor/bcc

In the BCC repository, the Python tools have a .py extension, but this extension is usually 
removed when BCC is installed via a software package. The final location of the BCC tools and 
man pages depends on the package you use, as different Linux distributions have packaged it 
differently. Tools may be installed either in /usr/share/bcc/tools, /sbin, or /snap/bin, and the 
tools themselves may have a prefix or suffix to show that they are from the BCC collection. These 
differences are described in Section 4.3.

4.2 BCC Features

BCC is an open source project created and maintained by engineers from various companies. 
It is not a commercial product. If it were, there would be a marketing department creating 
advertisements, boasting of its many features. 

Feature lists (if accurate) can help you learn the capabilities of a new technology. During BPF and 
BCC development, I created lists of desired capabilities [57]. As these features now exist, these 
have become delivered feature lists and are organized into kernel- and user-level features. They are 
described in the following sections.

https://github.com/iovisor/bcc
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4.2.1 Kernel-Level Features

BCC can use a number of kernel-level features, such as BPF, kprobes, uprobes, and so on. The 
following list includes some implementation details in parentheses:

 ■ Dynamic instrumentation, kernel-level (BPF support for kprobes)

 ■ Dynamic instrumentation, user-level (BPF support for uprobes)

 ■ Static tracing, kernel-level (BPF support for tracepoints)

 ■ Timed sampling events (BPF with perf_event_open())

 ■ PMC events (BPF with perf_event_open())

 ■ Filtering (via BPF programs)

 ■ Debug output (bpf_trace_printk())

 ■ Per-event output (bpf_perf_event_output())

 ■ Basic variables (global and per-thread variables, via BPF maps)

 ■ Associative arrays (via BPF maps)

 ■ Frequency counting (via BPF maps)

 ■ Histograms (power-of-two, linear, and custom, via BPF maps)

 ■ Timestamps and time deltas (bpf_ktime_get_ns() and BPF programs)

 ■ Stack traces, kernel (BPF stackmap)

 ■ Stack traces, user (BPF stackmap)

 ■ Overwrite ring buffers (perf_event_attr.write_backward)

 ■ Low-overhead instrumentation (BPF JIT, BPF map summaries)

 ■ Production safe (BPF verifier)

See Chapter 2 for background on these kernel-level features.

4.2.2 BCC User-Level Features

The BCC user-level front end and BCC repository provide the following user-level features:

 ■ Static tracing, user-level (SystemTap-style USDT probes via uprobes)

 ■ Debug output (Python with BPF.trace_pipe() and BPF.trace_fields())

 ■ Per-event output (BPF_PERF_OUTPUT macro and BPF.open_perf_buffer())

 ■ Interval output (BPF.get_table() and table.clear())

 ■ Histogram printing (table.print_log2_hist())

 ■ C struct navigation, kernel-level (BCC rewriter maps to bpf_probe_read())

 ■ Symbol resolution, kernel-level (ksym() and ksymaddr())
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 ■ Symbol resolution, user-level (usymaddr())

 ■ Debuginfo symbol resolution support

 ■ BPF tracepoint support (via TRACEPOINT_PROBE)

 ■ BPF stack trace support (BPF_STACK_TRACE)

 ■ Various other helper macros and functions

 ■ Examples (under /examples)

 ■ Many tools (under /tools)

 ■ Tutorials (/docs/tutorial*.md)

 ■ Reference guide (/docs/reference_guide.md)

4.3 BCC Installation

BCC packages are available for many Linux distributions, including Ubuntu, RHEL, Fedora, and 
Amazon Linux, making installation trivial. If desired, you can also build BCC from source. For 
the latest install and build instructions, check INSTALL.md in the BCC repository [58].

4.3.1 Kernel Requirements

The major kernel BPF components that BCC tools use were added between the Linux 4.1 and 4.9 
releases, but improvements have been added in later releases, so the newer your kernel, the better. 
It is therefore recommended that you use a Linux 4.9 kernel (released in December 2016) or later. 

Some kernel configuration options also need to be enabled: CONFIG_BPF=y, CONFIG_BPF_
SYSCALL=y, CONFIG_BPF_EVENTS=y, CONFIG_BPF_JIT=y, and CONFIG_HAVE_EBPF_JIT=y. 
These options are now enabled by default in many distributions, so you typically do not need to 
change them. 

4.3.2 Ubuntu

BCC has been packaged in the Ubuntu multiverse repository, with the package name bpfcc-tools. 
Install it using the following command: 

sudo apt-get install bpfcc-tools linux-headers-$(uname -r)

This will place the tools in /sbin with a “-bpfcc” suffix:

# ls /sbin/*-bpfcc

/usr/sbin/argdist-bpfcc

/usr/sbin/bashreadline-bpfcc

/usr/sbin/biolatency-bpfcc

/usr/sbin/biosnoop-bpfcc

/usr/sbin/biotop-bpfcc
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/usr/sbin/bitesize-bpfcc

[...]

# opensnoop-bpfcc

PID    COMM               FD ERR PATH

29588  device poll         4   0 /dev/bus/usb

[...]

You can also fetch the latest stable and signed packages from the iovisor repository:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 4052245BD4284CDD

echo "deb https://repo.iovisor.org/apt/$(lsb_release -cs) $(lsb_release -cs) main"|\

  sudo tee /etc/apt/sources.list.d/iovisor.list

sudo apt-get update

sudo apt-get install bcc-tools libbcc-examples linux-headers-$(uname -r)

The tools are installed in /usr/share/bcc/tools.

Finally, BCC is also available as an Ubuntu snap:

sudo snap install bcc

The tools are installed in /snap/bin (which may already be in your $PATH) and available with a 
“bcc.” prefix (e.g., bcc.opensnoop).

4.3.3 RHEL

BCC is included in the official yum repository for Red Hat Enterprise Linux 7.6 and can be 
installed using:

sudo yum install bcc-tools

The tools are installed in /usr/share/bcc/tools.

4.3.4 Other Distributions

The INSTALL.md also includes install instructions for Fedora, Arch, Gentoo, and openSUSE, as 
well as instructions for source code builds.

4.4 BCC Tools

Figure 4-2 shows major system components and many of the BCC tools available to observe 
them.1

1 I created this figure for the BCC repository, where you can find the latest version (see [60]). I expect to update it 

again after book publication, after porting some of the most important new bpftrace tools from this book to BCC.
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Figure 4-2 BCC performance tools

4.4.1 Highlighted Tools

Table 4-1 lists a selection of tools that are covered in detail in later chapters, organized by topic. 

Table 4-1 Selected BCC Tools by Topic and Chapter

Topic Highlighted Tools Chapter

Debugging / 
multi-purpose

trace, argdist, funccount, stackcount, opensnoop 4

CPUs execsnoop, runqlat, runqlen, cpudist, profile, offcputime, 
syscount, softirq, hardirq

6

Memory memleak 7

File systems opensnoop, filelife, vfsstatt, fileslower, cachestat, 
writeback, dcstat, xfsslower, xfsdist, ext4dist

8

Disk I/O biolatency, biosnoop, biotop, bitesize 9

Networking tcpconnect, tcpaccept, tcplife, tcpretrans 10

Security capable 11

Languages javastat, javacalls, javathreads, javaflow, javagc 12

Applications mysqld_qslower, signals, killsnoop 13

Kernel wakeuptime, offwaketime 14
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Note that these chapters also contain many additional bpftrace tools not listed in Table 4-1.

After this chapter and Chapter 5, you may jump to later chapters as needed, using this book as a 
reference guide.

4.4.2 Tool Characteristics

The BCC tools all share these characteristics:

 ■ They solve real observability issues, built out of necessity.

 ■ They are designed to be run in production environments, by the root user.

 ■ There is a man page for every tool (under man/man8).

 ■ There is an examples file for every tool, containing example output  and explanations of 
the output (under tools/*_example.txt).

 ■ Many tools accept options and arguments, and most will print a USAGE message if you use 
the -h option.

 ■ The tool source code begins with a block comment introduction.

 ■ The tool source code follows a consistent style (checked using the pep8 tool).

To maintain consistency, new tool additions are reviewed by the BCC maintainers, and authors 
are directed to follow the BCC CONTRIBUTING_SCRIPTS.md guide [59].

The BCC tools are also designed to look and feel like other tools on the system, including 
vmstat(1) and iostat(1). As with vmstat(1) and top(1), it is helpful to have some understanding of 
how the BCC tools work, especially for estimating tool overhead. This book explains how these 
tools work and often describes expected overhead; the internals of BCC and kernel technologies 
in use are covered in this chapter and Chapter 2.

Although BCC supports different language front ends, the primary languages used by the BCC 
tools are Python for the user-level components and C for kernel-level BPF. These Python/C tools 
get the most attention and maintenance from the BCC developers, and are therefore covered in 
this book.

One of the suggestions in the contributors’ guide is “Write the tool to solve the problem and no 
more.” This encourages the development of single-purpose tools rather than multi-purpose tools, 
where possible.

4.4.3 Single-Purpose Tools

The philosophy of Unix was to do one thing and do it well. One expression of this was the 
creation of smaller, high-quality tools that could be connected together using pipes to accomplish 
more complex tasks. This led to a multitude of small, single-purpose tools that are still in use 
today, such as grep(1), cut(1), and sed(1).
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BCC contains many similar single-purpose tools, including opensnoop(8), execsnoop(8), and 
biolatency(8). opensnoop(8) is a good example. Consider how the options and output are 
customized for the one task of tracing open(2) family syscalls:

# opensnoop -h

usage: opensnoop [-h] [-T] [-U] [-x] [-p PID] [-t TID] [-u UID]

                 [-d DURATION] [-n NAME] [-e] [-f FLAG_FILTER]

 

Trace open() syscalls

 

optional arguments:

  -h, --help            show this help message and exit

  -T, --timestamp       include timestamp on output

  -U, --print-uid       print UID column

  -x, --failed          only show failed opens

  -p PID, --pid PID     trace this PID only

  -t TID, --tid TID     trace this TID only

  -u UID, --uid UID     trace this UID only

  -d DURATION, --duration DURATION

                        total duration of trace in seconds

  -n NAME, --name NAME  only print process names containing this name

  -e, --extended_fields

                        show extended fields

  -f FLAG_FILTER, --flag_filter FLAG_FILTER

                        filter on flags argument (e.g., O_WRONLY)

 

examples:

    ./opensnoop           # trace all open() syscalls

    ./opensnoop -T        # include timestamps

    ./opensnoop -U        # include UID

    ./opensnoop -x        # only show failed opens

    ./opensnoop -p 181    # only trace PID 181

    ./opensnoop -t 123    # only trace TID 123

    ./opensnoop -u 1000   # only trace UID 1000

    ./opensnoop -d 10     # trace for 10 seconds only

    ./opensnoop -n main   # only print process names containing "main"

    ./opensnoop -e        # show extended fields

    ./opensnoop -f O_WRONLY -f O_RDWR  # only print calls for writing

 

# opensnoop 

PID    COMM               FD ERR PATH

29588  device poll         4   0 /dev/bus/usb

29588  device poll         6   0 /dev/bus/usb/004

[...]
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For BPF tools, the benefits of this style are:

 ■ Easy for beginners to learn: The default output is usually sufficient. This means that 
beginners can use these tools immediately without making any decisions about command 
line usage, or knowing what events to instrument. For example, opensnoop(8) produces 
useful and concise output just by running opensnoop. No knowledge of kprobes or 
tracepoints to instrument opens is needed.

 ■ Easy to maintain: For the tool developer, the amount of code to be maintained should be 
smaller and require less testing. Multi-purpose tools may instrument a variety of workloads 
in a variety of different ways, so a small change to the tool may require hours of testing 
with different workloads, to confirm that nothing has regressed. For the end user, this 
means that the single-purpose tools are more likely to work when you want them to.

 ■ Code examples: Each small tool provides a concise code example that is also practical. 
Many people who learn BCC tool development will begin with these single-purpose tools 
and customize and extend them as needed.

 ■ Custom arguments and output: The tool arguments, positional parameters, and output 
do not need to accommodate other tasks and can be customized for the one single purpose. 
This can improve usability and readability.

For people new to BCC, the single-purpose tools are a good place to start, before moving to more 
complex multi-purpose tools.

4.4.4 Multi-Purpose Tools

BCC contains multi-purpose tools that can be used for a variety of different tasks. They are harder 
to learn than the single-purpose tools, but they are also more powerful. If you only use the multi-
purpose tools occasionally, you might not need to learn them in depth; you can instead collect 
some one-liners to execute when needed.

The advantages of multi-purpose tools are:

 ■ Greater visibility: Instead of analyzing a single task or target, you can look at various 
components at once.

 ■ Reduces code duplication: You can avoid having multiple tools with similar code.

The most powerful multi-tools in BCC are funccount(8), stackcount(8), trace(8), and argdist(8), 
which are covered in the following sections. These multi-tools often let you decide which events 
to trace. However, to take advantage of this flexibility, you need to know which kprobes, uprobes, 
and other events to use—and how to use them. Later chapters on specific topics return to the 
single-purpose tools.

Table 4-2 lists the multi-purpose tools that are summarized in this chapter.
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Table 4-2 Multi-purpose Tools Covered in This Chapter

Tool Source Target Description

funccount BCC Software Counts events including function calls

stackcount BCC Software Counts stack traces that led to events

trace BCC Software Prints custom per-event details

argdist BCC Software Summarizes event argument distributions

See the BCC repository for full and updated lists of tool options and capabilities. A selection of 
the most important capabilities are summarized here.

4.5 funccount

funccount(8)2 counts events, especially function calls, and can answer questions such as:

 ■ Is this kernel- or user-level function being called?

 ■ What is the rate of this function call, per second?

For efficiency, funccount(8) maintains the event count in kernel context by using a BPF map, and 
it only reports the total to user space. While this greatly reduces the overhead of funccount(8) 
compared to dump and post-process tools, high-frequency events can still cause significant 
overhead because of their frequency. For example, memory allocations (malloc(), free()) can 
occur millions of times per second, and using funccount(8) to trace them can cost CPU overhead 
exceeding 30%. See Chapter 18 for more on typical frequencies and overhead.

The following sections demonstrate funccount(8) and explain its the syntax and capabilities.

4.5.1 funccount Examples

 1. Is the tcp_drop() kernel function ever called?

# funccount tcp_drop

Tracing 1 functions for "tcp_drop"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

tcp_drop                                    3

Detaching...

2 Origin: I developed the first version on 12-Jul-2014 using Ftrace to count kernel function calls and a BCC version of 

this on 9-Sep-2015. Sasha Goldshtein added other event types to the BCC version on 18-Oct-2016: user function calls 

(uprobes), tracepoints, and USDT.



ptg30854589

954.5 funccount

Answer: yes. This invocation simply traces the tcp_drop() kernel function until Ctrl-C is typed. 
While tracing, it was called three times.

 2. What is the most frequent kernel VFS function?

# funccount 'vfs_*'

Tracing 55 functions for "vfs_*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

vfs_rename                                  1

vfs_readlink                                2

vfs_lock_file                               2

vfs_statfs                                  3

vfs_fsync_range                             3

vfs_unlink                                  5

vfs_statx                                 189

vfs_statx_fd                              229

vfs_open                                  345

vfs_getattr_nosec                         353

vfs_getattr                               353

vfs_writev                               1776

vfs_read                                 5533

vfs_write                                6938

Detaching...

This command uses a shell-like wildcard to match all kernel functions beginning with "vfs_". The 
most frequent kernel function while tracing was vfs_write(), with 6938 calls.

 3. What is the rate of the user-level pthread_mutex_lock() function per second?

# funccount -i 1 c:pthread_mutex_lock

Tracing 1 functions for "c:pthread_mutex_lock"... Hit Ctrl-C to end.

 

FUNC                                    COUNT

pthread_mutex_lock                       1849

 

FUNC                                    COUNT

pthread_mutex_lock                       1761

 

FUNC                                    COUNT

pthread_mutex_lock                       2057

 

FUNC                                    COUNT

pthread_mutex_lock                       2261

[...]
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The rate is variable, but it appears to be around 2000 calls per second. This is instrumenting a 
function from the libc library, and it is doing so system-wide: the output shows the rate across all 
processes.

 4. What is the most frequent string function call from libc, system-wide?

# funccount 'c:str*'

Tracing 59 functions for "c:str*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

strndup                                     3

strerror_r                                  5

strerror                                    5

strtof32x_l                               350

strtoul                                   587

strtoll                                   724

strtok_r                                 2839

strdup                                   5788

Detaching...

While tracing, it was strdup() with 5788 calls.

 5. What is the most frequent syscall?

# funccount 't:syscalls:sys_enter_*'

Tracing 316 functions for "t:syscalls:sys_enter_*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

syscalls:sys_enter_creat                    1

[...]

syscalls:sys_enter_read                  6582

syscalls:sys_enter_write                 7442

syscalls:sys_enter_mprotect              7460

syscalls:sys_enter_gettid                7589

syscalls:sys_enter_ioctl                10984

syscalls:sys_enter_poll                 14980

syscalls:sys_enter_recvmsg              27113

syscalls:sys_enter_futex                42929

Detaching...

This could be answered using different event sources. In this case, I used tracepoints from the 
syscalls system and simply matched all the syscall entry tracepoints ("sys_enter_*"). The most 
frequent syscall while tracing was futex(), with a count of 42,929 calls.
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4.5.2 funccount Syntax

The arguments to funccount(8) are options to change behavior and a string to describe the events 
to instrument:

funccount [options] eventname

The syntax for eventname is:

 ■ name or p:name: Instrument the kernel function called name()

 ■ lib:name or p:lib:name: Instrument the user-level function called name() in the 
library lib

 ■ path:name: Instrument the user-level function called name() in the file at path

 ■ t:system:name: Instrument the tracepoint called system:name

 ■ u:lib:name: Instrument the USDT probe in library lib called name

 ■ *: A wildcard to match any string (globbing). The -r option allows regular expressions to be 
used instead.

This syntax is somewhat inspired by Ftrace. funccount(8) uses kprobes and uprobes when 
instrumenting kernel- and user-level functions.

4.5.3 funccount One-Liners

Count VFS kernel calls:

funccount 'vfs_*'

Count TCP kernel calls:

funccount 'tcp_*'

Count TCP send calls per second:

funccount -i 1 'tcp_send*'

Show the rate of block I/O events per second:

funccount -i 1 't:block:*'

Show the rate of new processes per second:

funccount -i 1 t:sched:sched_process_fork

Show the rate of libc getaddrinfo() (name resolution) per second:

funccount -i 1 c:getaddrinfo

Count all "os.*" calls in libgo:

funccount 'go:os.*'
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4.5.4 funccount Usage

There is more to funccount(8) than shown so far, as summarized by the usage message:

# funccount -h

usage: funccount [-h] [-p PID] [-i INTERVAL] [-d DURATION] [-T] [-r] [-D]

                    pattern

 

Count functions, tracepoints, and USDT probes

 

positional arguments:

  pattern               search expression for events

 

optional arguments:

  -h, --help            show this help message and exit

  -p PID, --pid PID     trace this PID only

  -i INTERVAL, --interval INTERVAL

                        summary interval, seconds

  -d DURATION, --duration DURATION

                        total duration of trace, seconds

  -T, --timestamp       include timestamp on output

  -r, --regexp          use regular expressions. Default is "*" wildcards

                        only.

  -D, --debug           print BPF program before starting (for debugging

                        purposes)

 

examples:

    ./funccount 'vfs_*'             # count kernel fns starting with "vfs"

    ./funccount -r '^vfs.*'         # same as above, using regular expressions

    ./funccount -Ti 5 'vfs_*'       # output every 5 seconds, with timestamps

    ./funccount -d 10 'vfs_*'       # trace for 10 seconds only

    ./funccount -p 185 'vfs_*'      # count vfs calls for PID 181 only

[...]

The interval option (-i) allows funccount one-liners to become, in a way, mini performance 
tools, showing the rate of custom events per second. Custom metrics can then be created from the 
thousands of events available and filtered, if desired, to a target process ID using -p.
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4.6 stackcount

stackcount(8)3 counts the stack traces that led to an event. As with funccount(8), an event may 
be a kernel- or user-level function, tracepoint, or USDT probe. stackcount(8) can answer these 
questions:

 ■ Why is this event called? What is the code path?

 ■ What are all the different code paths that call this event, and what are their frequencies?

For efficiency, stackcount(8) performs this summary entirely in kernel context, using a special 
BPF map for stack traces. User space reads stack IDs and counts and then fetches the stack 
traces from the BPF map for symbol translation and printing out. As with funccount(8), the 
overhead depends on the rate of the event that is instrumented, and it should be sightly higher as 
stackcount(8) does more work for each event: walking and recording the stack trace.

4.6.1 stackcount Example

I noticed using funccount(8) that on an idle system, I seemed to have a high rate of ktime_get() 
kernel function calls—more than 8000 per second. These calls fetch the time, but why does my 
idle system need to fetch the time so frequently?

This example uses stackcount(8) to identify the code paths that led to ktime_get():

# stackcount ktime_get

Tracing 1 functions for "ktime_get"... Hit Ctrl-C to end.

^C

[...]

 

  ktime_get

  nvme_queue_rq

  __blk_mq_try_issue_directly

  blk_mq_try_issue_directly

  blk_mq_make_request

  generic_make_request

  dmcrypt_write

  kthread

  ret_from_fork

    52

 

[...]

 

3 Origin: I developed it on 12-Jan-2016 for kprobes only, and Sasha Goldshtein added other event types on 09-Jul-2016: 

uprobes and tracepoints. Previously, I frequently used kprobe -s from my Ftrace perf-tools to print per-event stacks, but 

the output was often too verbose and I wanted in-kernel frequency counts instead, which led to stackcount(8). I also 

asked Tom Zanussi for stack counts using Ftrace hist triggers, and he did add it.
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  ktime_get

  tick_nohz_idle_enter

  do_idle

  cpu_startup_entry

  start_secondary

  secondary_startup_64

    1077

 

Detaching...

The output was hundreds of pages long and contained more than 1000 stack traces. Only 
two have been included here. Each stack trace is printed with one line per function and 
then the occurrence count. For example, the first stack trace shows the code path through 
dmcrypt_write(), blk_mq_make_request(), and nvme_queue_rq(). I would guess (without 
having read the code) that it is storing an I/O start time for later use with prioritization. 
That path from ktime_get() occurred 52 times while tracing. The most frequent stack that 
called ktime_get() was from the CPU idle path.

The -P option includes the process name and PID with the stack trace:

# stackcount -P ktime_get

[...]

 

 ktime_get

  tick_nohz_idle_enter

  do_idle

  cpu_startup_entry

  start_secondary

  secondary_startup_64

    swapper/2 [0]

    207

This shows that PID 0 with process name "swapper/2" was calling ktime_get() via do_idle(), 
further confirming that this is the idle thread. This -P option produces more output, as stack 
traces that were previously grouped are now split between each separate PID.

4.6.2 stackcount Flame Graphs

Sometimes you will find only one or a few stack traces printed for an event, which can easily 
be browsed in the stackcount(8) output. For cases like the example with ktime_get(), where the 
output is hundreds of pages long, flame graphs can be used to visualize the output. (Flame graphs 
are introduced in Chapter 2.) The original flame graph software [37] inputs stacks in folded 
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format, with one line per stack trace, frames (function names) delimited by semicolons, and a 
space and a count at the end. stackcount(8) can generate this format with -f.

The following example traces ktime_get() for 10 seconds (-D 10), with per-process stacks (-P), and 
generates a flame graph:

# stackcount -f -P -D 10 ktime_get > out.stackcount01.txt

$ wc out.stackcount01.txt

  1586   3425 387661 out.stackcount01.txt

$ git clone http://github.com/brendangregg/FlameGraph

$ cd FlameGraph

$ ./flamegraph.pl --hash --bgcolors=grey < ../out.stackcount01.txt \

    > out.stackcount01.svg

The wc(1) tool was used here to show that there were 1586 lines of output—representing this 
many unique stack and process name combinations. Figure 4-3 shows a screenshot of the 
resulting SVG file.

Figure 4-3 stackcount(8) ktime_get() flame graph

The flame graph shows that most of the ktime_get() calls were from the eight idle threads—one 
for each CPU on this system, as shown by the similar towers. Other sources are visible as the 
narrow towers on the far left.

4.6.3 stackcount Broken Stack Traces

Stack traces, and the many problems with getting them to work in practice, are discussed in 
Chapters 2, 12, and 18. Broken stack walking and missing symbols are commonplace.
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As an example, the earlier stack trace shows tick_nohz_idle_enter() calling ktime_get(). However, 
this doesn’t appear in the source code. What does appear is a call to tick_nohz_start_idle(), which 
has the source (kernel/time/tick-sched.c):

static void tick_nohz_start_idle(struct tick_sched *ts)

{

        ts->idle_entrytime = ktime_get();

        ts->idle_active = 1;

        sched_clock_idle_sleep_event();

}

This is the kind of small function that compilers like to inline, which in this case results in a stack 
where the parent function calls ktime_get() directly. The tick_nohz_start_idle symbol is not in 
/proc/kallsyms (for this system), further suggesting that it has been inlined.

4.6.4 stackcount Syntax

The arguments to stackcount(8) define the event to instrument:

stackcount [options] eventname

The syntax for eventname is the same as for funccount(8):

 ■ name or p:name: Instrument the kernel function called name()

 ■ lib:name or p:lib:name: Instrument the user-level function called name() in the 
library lib

 ■ path:name: Instrument the user-level function called name() in the file at path

 ■ t:system:name: Instrument the tracepoint called system:name

 ■ u:lib:name: Instrument the USDT probe in library lib called name

 ■ *: A wildcard to match any string (globbing). The -r option allows regexps.

4.6.5 stackcount One-Liners

Count stack traces that created block I/O:

stackcount t:block:block_rq_insert

Count stack traces that led to sending IP packets:

stackcount ip_output

Count stack traces that led to sending IP packets, with the responsible PID:

stackcount -P ip_output
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Count stack traces that led to the thread blocking and moving off-CPU:

stackcount t:sched:sched_switch

Count stack traces that led to the read() syscall:

stackcount t:syscalls:sys_enter_read

4.6.6 stackcount Usage

There is more to stackcount(8) than shown so far, as summarized by the usage message:

# stackcount -h

usage: stackcount [-h] [-p PID] [-i INTERVAL] [-D DURATION] [-T] [-r] [-s]

                  [-P] [-K] [-U] [-v] [-d] [-f] [--debug]

                  pattern

 

Count events and their stack traces

 

positional arguments:

  pattern               search expression for events

 

optional arguments:

  -h, --help            show this help message and exit

  -p PID, --pid PID     trace this PID only

  -i INTERVAL, --interval INTERVAL

                        summary interval, seconds

  -D DURATION, --duration DURATION

                        total duration of trace, seconds

  -T, --timestamp       include timestamp on output

  -r, --regexp          use regular expressions. Default is "*" wildcards

                        only.

  -s, --offset          show address offsets

  -P, --perpid          display stacks separately for each process

  -K, --kernel-stacks-only

                        kernel stack only

  -U, --user-stacks-only

                        user stack only

  -v, --verbose         show raw addresses

  -d, --delimited       insert delimiter between kernel/user stacks

  -f, --folded          output folded format

  --debug               print BPF program before starting (for debugging

                        purposes)
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examples:

    ./stackcount submit_bio         # count kernel stack traces for submit_bio

    ./stackcount -d ip_output       # include a user/kernel stack delimiter

    ./stackcount -s ip_output       # show symbol offsets

    ./stackcount -sv ip_output      # show offsets and raw addresses (verbose)

    ./stackcount 'tcp_send*'        # count stacks for funcs matching tcp_send*

    ./stackcount -r '^tcp_send.*'   # same as above, using regular expressions

    ./stackcount -Ti 5 ip_output    # output every 5 seconds, with timestamps

    ./stackcount -p 185 ip_output   # count ip_output stacks for PID 185 only

[...]

A planned addition is an option to limit the stack depth recorded.

4.7 trace

trace(8)4 is a BCC multi-tool for per-event tracing from many different sources: kprobes, uprobes, 
tracepoints, and USDT probes.

It can answer questions such as:

 ■ What are the arguments when a kernel- or user-level function is called?

 ■ What is the return value of this function? Is it failing?

 ■ How is this function called? What is the user- or kernel-level stack trace?

As it prints a line of output per event, trace(8) is suited for events that are called infrequently. 
Very frequent events, such as network packets, context switches, and memory allocations, can 
occur millions of times per second, and trace(8) would produce so much output that it would cost 
significant overhead to instrument. One way to reduce the overhead is to use a filter expression 
to print only events of interest. Frequently occurring events are usually better suited for analysis 
with other tools that do in-kernel summaries, such as funccount(8), stackcount(8), and argdist(8). 
argdist(8) is covered in the next section. 

4.7.1 trace Example

The following example shows file opens by tracing the do_sys_open() kernel function and is a 
trace(8) version of opensnoop(8):

# trace 'do_sys_open "%s", arg2'

PID     TID     COMM            FUNC             -

29588   29591   device poll     do_sys_open      /dev/bus/usb

29588   29591   device poll     do_sys_open      /dev/bus/usb/004

[...]

4 Origin: This tool was developed by Sasha Goldshtein and included in BCC on 22-Feb-2016.
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arg2 is the second argument to do_sys_open(), and is the filename opened and has the type 
char *. The final column, labeled "-", is the custom format string provided to trace(8).

4.7.2 trace Syntax

The arguments to trace(8) are options to change behavior and one or more probes:

trace [options] probe [probe ...]

The syntax for probe is:

eventname(signature) (boolean filter) "format string", arguments

The eventname signature is optional, and it is needed only in some cases (see Section 4.7.4). 
The filter is also optional, and allows Boolean operators: ==, <, >, and !=. The format string with 
arguments is also optional. Without it, trace(8) still prints a line of metadata per event; however, 
there is no custom field.

The syntax for eventname is similar to the eventname syntax for funccount(8), with the addition 
of return probes:

 ■ name or p:name: Instrument the kernel function called name()

 ■ r::name: Instrument the return of the kernel function called name()

 ■ lib:name or p:lib:name: Instrument the user-level function called name() in the 
library lib

 ■ r:lib:name: Instrument the return of the user-level function name() in the library lib

 ■ path:name: Instrument the user-level function called name() found in the file at path

 ■ r:path:name: Instrument the return of the user-level function name() found in the file 
at path

 ■ t:system:name: Instrument the tracepoint called system:name

 ■ u:lib:name: Instrument the USDT probe in library lib called name

 ■ *: A wildcard to match any string (globbing). The -r option allows regular expressions to be 
used instead.

The format string is based on printf(), and supports:

 ■ %u: unsigned int

 ■ %d: int

 ■ %lu: unsigned long

 ■ %ld: long

 ■ %llu: unsigned long long

 ■ %lld: long long
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 ■ %hu: unsigned short

 ■ %hd: short

 ■ %x: unsigned int, hexadecimal

 ■ %lx: unsigned long, hexadecimal

 ■ %llx: unsigned long long, hexadecimal

 ■ %c: character

 ■ %K: kernel symbol string

 ■ %U: user-level symbol string

 ■ %s: string

The overall syntax resembles programming in other languages. Consider this trace(8) one-liner:

trace 'c:open (arg2 == 42) "%s %d", arg1, arg2'

Here is the equivalent program in a more C-like language (for illustration only; trace(8) will not 
execute this):

trace 'c:open { if (arg2 == 42) { printf("%s %d\n", arg1, arg2); } }'

The ability to custom print arguments for an event is used frequently in ad hoc tracing analysis, so 
trace(8) is a go-to tool.

4.7.3 trace One-Liners

Many one-liners are listed in the usage message. Here is a selection with additional one-liners.

Trace the kernel do_sys_open() function with the filename:

trace 'do_sys_open "%s", arg2'

Trace the return of the kernel do_sys_open() function and print the return value:

trace 'r::do_sys_open "ret: %d", retval'

Trace do_nanosleep() with mode and user-level stacks:

trace -U 'do_nanosleep "mode: %d", arg2'

Trace authentication requests via the pam library:

trace 'pam:pam_start "%s: %s", arg1, arg2'
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4.7.4 trace Structs

BCC uses the system headers as well as the kernel headers package to understand some structs. 
For example, consider this one-liner, which traces do_nanosleep() with the task address:

trace 'do_nanosleep(struct hrtimer_sleeper *t) "task: %x", t->task'

Fortunately, the hrtimer_sleeper struct is in the kernel headers package (include/linux/hrtimer.h), 
and therefore it is automatically read by BCC.

For structs not in the kernel headers package, their header files can be included manually. For 
example, this one-liner traces udpv6_sendmsg() only when the destination port is 53 (DNS; 
written as 13568 in big endian order):

trace -I 'net/sock.h' 'udpv6_sendmsg(struct sock *sk) (sk->sk_dport == 13568)'

The net/sock.h file is needed to understand struct sock, so it is included with -I. This only works 
when the full kernel source is available on the system.

A new technology that is in development should obviate the need for installing the kernel 
source—BPF Type Format (BTF), which will embed struct information in compiled binaries 
(see Chapter 2).

4.7.5 trace Debugging File Descriptor Leaks

Here is a much more complex example. I developed this while debugging a real-world issue of 
a file leak on a Netflix production instance. The goal was to get more information on socket 
file descriptors that were not being freed. The stack trace on allocation (via sock_alloc()) would 
provide such information; however, I needed a way to differentiate between allocations that were 
freed (via sock_release()) and those that were not. The problem is illustrated in Figure 4-4.

Figure 4-4 Socket file descriptor leaks
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It is straightforward to trace sock_alloc() and print the stack trace, but this would produce 
stack traces for buffers A, B, and C. In this case, only buffer B—the one that wasn’t freed (while 
tracing)—is of interest.

I was able to use a one-liner to solve this problem, although it required post-processing. Here is 
the one-liner and some output:

# trace -tKU 'r::sock_alloc "open %llx", retval' '__sock_release "close %llx", arg1'

TIME     PID     TID     COMM            FUNC             -

1.093199 4182    7101    nf.dependency.M sock_alloc       open ffff9c76526dac00

        kretprobe_trampoline+0x0 [kernel]

        sys_socket+0x55 [kernel]

        do_syscall_64+0x73 [kernel]

        entry_SYSCALL_64_after_hwframe+0x3d [kernel]

        __socket+0x7 [libc-2.27.so]

        Ljava/net/PlainSocketImpl;::socketCreate+0xc7 [perf-4182.map]

        Ljava/net/Socket;::setSoTimeout+0x2dc [perf-4182.map]

        Lorg/apache/http/impl/conn/DefaultClientConnectionOperator;::openConnectio...

        Lorg/apache/http/impl/client/DefaultRequestDirector;::tryConnect+0x60c [pe...

        Lorg/apache/http/impl/client/DefaultRequestDirector;::execute+0x1674 [perf...

[...]

 

[...]

 

6.010530 4182    6797    nf.dependency.M __sock_release   close ffff9c76526dac00

        __sock_release+0x1 [kernel]

        __fput+0xea [kernel]

        ____fput+0xe [kernel]

        task_work_run+0x9d [kernel]

        exit_to_usermode_loop+0xc0 [kernel]

        do_syscall_64+0x121 [kernel]

        entry_SYSCALL_64_after_hwframe+0x3d [kernel]

        dup2+0x7 [libc-2.27.so]

        Ljava/net/PlainSocketImpl;::socketClose0+0xc7 [perf-4182.map]

        Ljava/net/Socket;::close+0x308 [perf-4182.map]

        Lorg/apache/http/impl/conn/DefaultClientConnection;::close+0x2d4 [perf-418...

[...]

This instruments the return of the sock_alloc() kernel function and prints the return value, the 
address of the socket, and the stack trace (using the -K and -U options). It also traces the entry to 
the __sock_release() kernel function with its second argument: this shows the addresses of sockets 
that were closed. The -t option prints timestamps for these events.
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I’ve truncated this output (the output and Java stacks were very long) to show just one alloc and 
release pair for socket address 0xffff9c76526dac00 (highlighted in bold). I was able to post-process 
this output to find file descriptors that were opened but not closed (i.e., no matching close event 
for the address) and then used the allocation stack trace to identify the code paths responsible for 
the file descriptor leak (not shown here).

This issue could also be solved with a dedicated BCC tool similar to memleak(8), covered in 
Chapter 7, which saves stack traces in a BPF map and then deletes them during free events so that 
the map can later be printed to show long-term survivors.

4.7.6 trace Usage

There’s much more to trace(8) than shown so far, as summarized by the usage message:

# trace -h

usage: trace.py [-h] [-b BUFFER_PAGES] [-p PID] [-L TID] [-v] [-Z STRING_SIZE]

                [-S] [-M MAX_EVENTS] [-t] [-T] [-C] [-B] [-K] [-U] [-a]

                [-I header]

                probe [probe ...]

 

Attach to functions and print trace messages.

 

positional arguments:

  probe                 probe specifier (see examples)

 

optional arguments:

  -h, --help            show this help message and exit

  -b BUFFER_PAGES, --buffer-pages BUFFER_PAGES

                        number of pages to use for perf_events ring buffer

                        (default: 64)

  -p PID, --pid PID     id of the process to trace (optional)

  -L TID, --tid TID     id of the thread to trace (optional)

  -v, --verbose         print resulting BPF program code before executing

  -Z STRING_SIZE, --string-size STRING_SIZE

                        maximum size to read from strings

  -S, --include-self    do not filter trace's own pid from the trace

  -M MAX_EVENTS, --max-events MAX_EVENTS

                        number of events to print before quitting

  -t, --timestamp       print timestamp column (offset from trace start)

  -T, --time            print time column

  -C, --print_cpu       print CPU id

  -B, --bin_cmp         allow to use STRCMP with binary values

  -K, --kernel-stack    output kernel stack trace



ptg30854589

110 Chapter 4  BCC

  -U, --user-stack      output user stack trace

  -a, --address         print virtual address in stacks

  -I header, --include header

                        additional header files to include in the BPF program

 

EXAMPLES:

 

trace do_sys_open

        Trace the open syscall and print a default trace message when entered

trace 'do_sys_open "%s", arg2'

        Trace the open syscall and print the filename being opened

trace 'sys_read (arg3 > 20000) "read %d bytes", arg3'

        Trace the read syscall and print a message for reads >20000 bytes

trace 'r::do_sys_open "%llx", retval'

        Trace the return from the open syscall and print the return value

trace 'c:open (arg2 == 42) "%s %d", arg1, arg2'

        Trace the open() call from libc only if the flags (arg2) argument is 42

[...]

As this is a mini programming language that you may use only occasionally, the examples at the 
end of the usage message are invaluable reminders.

While trace(8) is extremely useful, it is not a fully-fledged language. For a complete language, see 
Chapter 5 on bpftrace.

4.8 argdist

argdist(8)5 is a multi-tool that summarizes arguments. Here is another real-world example from 
Netflix: A Hadoop server was suffering a TCP performance issue, and we had tracked it down to 
zero-sized window advertisements. I used an argdist(8) one-liner to summarize the window size in 
production. Here is some output from the issue:

# argdist -H 'r::__tcp_select_window():int:$retval'

[21:50:03]

     $retval             : count     distribution

         0 -> 1          : 6100     |****************************************|

         2 -> 3          : 0        |                                        |

         4 -> 7          : 0        |                                        |

         8 -> 15         : 0        |                                        |

        16 -> 31         : 0        |                                        |

5 Origin: This tool was developed by Sasha Goldshtein and included in BCC on 12-Feb-2016.
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        32 -> 63         : 0        |                                        |

        64 -> 127        : 0        |                                        |

       128 -> 255        : 0        |                                        |

       256 -> 511        : 0        |                                        |

       512 -> 1023       : 0        |                                        |

      1024 -> 2047       : 0        |                                        |

      2048 -> 4095       : 0        |                                        |

      4096 -> 8191       : 0        |                                        |

      8192 -> 16383      : 24       |                                        |

     16384 -> 32767      : 3535     |***********************                 |

     32768 -> 65535      : 1752     |***********                             |

     65536 -> 131071     : 2774     |******************                      |

    131072 -> 262143     : 1001     |******                                  |

    262144 -> 524287     : 464      |***                                     |

    524288 -> 1048575    : 3        |                                        |

   1048576 -> 2097151    : 9        |                                        |

   2097152 -> 4194303    : 10       |                                        |

   4194304 -> 8388607    : 2        |                                        |

[21:50:04]

[...]

This instruments the return of the __tcp_select_window() kernel function and summarizes the 
return value as a power-of-2 histogram (-H). By default, argdist(8) prints this summary once 
per second. The histogram shows the zero-sized window issue in the "0 -> 1" line: for the above 
interval, a count of 6100. We were able to use this tool to confirm whether the issue was still 
present while we made changes to the system to rectify it.

4.8.1 argdist Syntax

The arguments to argdist(8) set the type of summary, the events to instrument, and the data to 
summarize:

argdist {-C|-H} [options] probe

argdist(8) requires either -C or -H:

 ■ -C: Frequency count

 ■ -H: Power-of-two histogram

The syntax for probe is:

eventname(signature)[:type[,type...]:expr[,expr...][:filter]][#label]
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eventname and signature have almost the same syntax as the trace(8) command, with the 
exception that the kernel function name shortcut is not available. Instead, the kernel vfs_read() 
function is traced via "p::vfs_read", and is no longer "vfs_read". The signature is usually required. 
If it is left blank, empty parentheses ("()") are required.

type shows the value type that will be summarized: u32 for unsigned 32-bit integers, u64 for 
unsigned 64-bit integers, and so on. Many types are supported, including "char *" for strings.

expr is an expression to summarize. It may be an argument from the function or a tracepoint 
argument. There are also special variables that can only be used in return probes:

 ■ $retval: The return value of the function

 ■ $latency: The time from the entry to the return, in nanoseconds

 ■ $entry(param): The value of param during the entry probe

filter is an optional Boolean expression to filter events added to the summary. Boolean operators 
supported include ==, !=, <, and >.

label is an optional setting to add label text to the output so that it can be self-documenting.

4.8.2 argdist One-Liners

Many one-liners are listed in the usage message. Here is a selection with additional one-liners.

Print a histogram of results (sizes) returned by the kernel function vfs_read():

argdist.py -H 'r::vfs_read()'

Print a histogram of results (sizes) returned by the user-level libc read() for PID 1005:

argdist -p 1005 -H 'r:c:read()'

Count syscalls by syscall ID, using the raw_syscalls:sys_enter tracepoint:

argdist.py -C 't:raw_syscalls:sys_enter():int:args->id'

Count tcp_sendmsg() size:

argdist -C 'p::tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size):u32:size'

Summarize tcp_sendmsg() size as a power-of-two histogram:

argdist -H 'p::tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size):u32:size'

Count the libc write() call for PID 181 by file descriptor:

argdist -p 181 -C 'p:c:write(int fd):int:fd' 

Print frequency of reads by process where the latency was >0.1ms:

argdist -C 'r::__vfs_read():u32:$PID:$latency > 100000
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4.8.3 argdist Usage

There is more to argdist(8) than shown so far, as summarized by the usage message:

# argdist.py -h

usage: argdist.py [-h] [-p PID] [-z STRING_SIZE] [-i INTERVAL] [-d DURATION]

                  [-n COUNT] [-v] [-c] [-T TOP] [-H specifier] [-C specifier]

                  [-I header]

 

Trace a function and display a summary of its parameter values.

 

optional arguments:

  -h, --help            show this help message and exit

  -p PID, --pid PID     id of the process to trace (optional)

  -z STRING_SIZE, --string-size STRING_SIZE

                        maximum string size to read from char* arguments

  -i INTERVAL, --interval INTERVAL

                        output interval, in seconds (default 1 second)

  -d DURATION, --duration DURATION

                        total duration of trace, in seconds

  -n COUNT, --number COUNT

                        number of outputs

  -v, --verbose         print resulting BPF program code before executing

  -c, --cumulative      do not clear histograms and freq counts at each

                        interval

  -T TOP, --top TOP     number of top results to show (not applicable to

                        histograms)

  -H specifier, --histogram specifier

                        probe specifier to capture histogram of (see examples

                        below)

  -C specifier, --count specifier

                        probe specifier to capture count of (see examples

                        below)

  -I header, --include header

                        additional header files to include in the BPF program

                        as either full path, or relative to relative to

                        current working directory, or relative to default

                        kernel header search path

 

Probe specifier syntax:

        {p,r,t,u}:{[library],category}:function(signature)

[:type[,type...]:expr[,expr...][:filter]][#label]
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Where:

        p,r,t,u    -- probe at function entry, function exit, kernel

                      tracepoint, or USDT probe

                      in exit probes: can use $retval, $entry(param), $latency

        library    -- the library that contains the function

                      (leave empty for kernel functions)

        category   -- the category of the kernel tracepoint (e.g. net, sched)

        function   -- the function name to trace (or tracepoint name)

        signature  -- the function's parameters, as in the C header

        type       -- the type of the expression to collect (supports multiple)

        expr       -- the expression to collect (supports multiple)

        filter     -- the filter that is applied to collected values

        label      -- the label for this probe in the resulting output

 

EXAMPLES:

 

argdist -H 'p::__kmalloc(u64 size):u64:size'

        Print a histogram of allocation sizes passed to kmalloc

 

argdist -p 1005 -C 'p:c:malloc(size_t size):size_t:size:size==16'

        Print a frequency count of how many times process 1005 called malloc

        with an allocation size of 16 bytes

 

argdist -C 'r:c:gets():char*:(char*)$retval#snooped strings'

        Snoop on all strings returned by gets()

 

argdist -H 'r::__kmalloc(size_t size):u64:$latency/$entry(size)#ns per byte'

        Print a histogram of nanoseconds per byte from kmalloc allocations

 

argdist -C 'p::__kmalloc(size_t sz, gfp_t flags):size_t:sz:flags&GFP_ATOMIC'

        Print frequency count of kmalloc allocation sizes that have GFP_ATOMIC

[...]

argdist(8) allows you to create many powerful one-liners. For distribution summaries that are 
beyond its capabilities, see Chapter 5.

4.9 Tool Documentation

Every BCC tool has a man page and an examples file. The BCC /examples directory has some code 
samples that behave like tools, but these are not documented outside of their own code. Tools 
that you find in the /tools directory or that are installed elsewhere on your system when using a 
distribution package should be documented.

The following section discusses tool documentation with opensnoop(8) as an example.
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4.9.1 Man Page: opensnoop

If your tools are installed via a package, you may find that the man opensnoop command works. 
If you are looking at the repository, the nroff(1) command can be used to format the man pages 
(which are in ROFF format).

The structure of the man pages is based on those of other Linux utilities. Over the years I have 
refined my approach to man page content, with attention to certain details.6 The following man 
page includes my explanations and advice:

bcc$ nroff -man man/man8/opensnoop.8 

 

opensnoop(8)                System Manager's Manual               opensnoop(8)

 

 

 

NAME

       opensnoop - Trace open() syscalls. Uses Linux eBPF/bcc.

 

SYNOPSIS

       opensnoop.py [-h] [-T] [-U] [-x] [-p PID] [-t TID] [-u UID]

                    [-d DURATION] [-n NAME] [-e] [-f FLAG_FILTER]

 

DESCRIPTION

       opensnoop  traces  the  open()  syscall,  showing  which  processes are

       attempting to open which files. This can be useful for determining  the

       location  of  config and log files, or for troubleshooting applications

       that are failing, especially on startup.

 

       This works by tracing the  kernel  sys_open()  function  using  dynamic

       tracing, and will need updating to match any changes to this function.

 

       This  makes  use  of a Linux 4.5 feature (bpf_perf_event_output()); for

       kernels older than 4.5, see the version under tools/old, which uses  an

       older mechanism.

 

       Since this uses BPF, only the root user can use this tool.

[...]

This man page is in Section 8 because it is a system administration command that requires root 
privileges, as I state at the end of the DESCRIPTION section. In the future, extended BPF may 
become available to non-root users, just as the perf(1) command is. If that happens, these man 
pages will be moved to Section 1.

6 I’ve written and published more than 200 man pages for the performance tools I’ve developed.
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The NAME includes a one-sentence description of the tool. It states that it is for Linux and uses 
eBPF/BCC (because I’ve developed multiple versions of these tools for different operating systems 
and tracers).

The SYNOPSIS summarizes the command line usage.

The DESCRIPTION summarizes what the tool does and why it is useful. It is essential to describe 
why the tool is useful, in simple terms—in other words, to tell what real-world problems it solves 
(which may not be obvious to everyone). Providing this information helps ensure that the tool is 
useful enough to publish. Sometimes I’ve struggled to write this section, making me realize that 
the particular tool has a use case too narrow for the tool to be worth publishing.

The DESCRIPTION section should also point out major caveats. It is better to warn users of an 
issue than to let them discover it the hard way. This example includes a standard warning about 
dynamic tracing stability and required kernel versions.

Continuing:

REQUIREMENTS

       CONFIG_BPF and bcc.

 

OPTIONS

       -h     Print usage message.

 

       -T     Include a timestamp column.

[...]

The REQUIREMENTS section lists anything special, and an OPTIONS section lists every command 
line option:

EXAMPLES

       Trace all open() syscalls:

              # opensnoop

 

       Trace all open() syscalls, for 10 seconds only:

              # opensnoop -d 10

 

[...]

EXAMPLES explain the tool and its various capabilities by showing how it can be executed in 
different ways. This may be the most useful section of the man page.

FIELDS

       TIME(s)

              Time of the call, in seconds.

 

       UID    User ID
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       PID    Process ID

 

       TID    Thread ID

 

       COMM   Process name

 

       FD     File descriptor (if success), or -1 (if failed)

 

       ERR    Error number (see the system's errno.h)

[...]

FIELDS explains every field that the tool can output. If a field has units, it should be included in 
the man page. This example spells out that "TIME(s)" is in seconds.

OVERHEAD

       This traces the kernel open function and prints output for each  event.

       As  the  rate  of  this is generally expected to be low (< 1000/s), the

       overhead is also expected to be negligible. If you have an  application

       that  is calling a high rate of open()s, then test and understand over-

       head before use.

The OVERHEAD section is the place to set expectations. If a user is aware of high overhead, they 
can plan for it and still use the tool successfully. In this example, the overhead is expected to 
be low.

SOURCE

       This is from bcc.

 

              https://github.com/iovisor/bcc

 

       Also look in the bcc distribution for a  companion  _examples.txt  file

       containing example usage, output, and commentary for this tool.

 

OS

       Linux

 

STABILITY

       Unstable - in development.

 

AUTHOR

       Brendan Gregg

 

SEE ALSO

       funccount(1)
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The final sections show that this tool is from BCC, and other metadata, and they also include 
pointers to other reading: the examples file, and related tools in SEE ALSO.

If a tool has been ported from another tracer or is based on other work, it is desirable to document 
that in the man page. There are many ports of BCC tools to the bpftrace repository, and the man 
pages in bpftrace state this in their SOURCE sections.

4.9.2 Examples File: opensnoop

Looking at output examples can be the best way to explain tools as their output may be intuitive: 
a sign of good tool design. Every tool in BCC has a dedicated text file of examples.

The first sentence of an examples file gives the tool name and version. Output examples are 
included, from basic to more advanced:

bcc$ more tools/opensnoop_example.txt 

Demonstrations of opensnoop, the Linux eBPF/bcc version.

 

 

opensnoop traces the open() syscall system-wide, and prints various details.

Example output:

 

# ./opensnoop

PID    COMM      FD ERR PATH

17326  <...>      7   0 /sys/kernel/debug/tracing/trace_pipe

1576   snmpd      9   0 /proc/net/dev

1576   snmpd     11   0 /proc/net/if_inet6

1576   snmpd     11   0 /proc/sys/net/ipv4/neigh/eth0/retrans_time_ms

[...]

 

While tracing, the snmpd process opened various /proc files (reading metrics),

and a "run" process read various libraries and config files (looks like it

was starting up: a new process).

 

opensnoop can be useful for discovering configuration and log files, if used

during application startup.

 

 

The -p option can be used to filter on a PID, which is filtered in-kernel. Here

I've used it with -T to print timestamps:
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 ./opensnoop -Tp 1956

TIME(s)       PID    COMM               FD ERR PATH

0.000000000   1956   supervise           9   0 supervise/status.new

0.000289999   1956   supervise           9   0 supervise/status.new

1.023068000   1956   supervise           9   0 supervise/status.new

1.023381997   1956   supervise           9   0 supervise/status.new

2.046030000   1956   supervise           9   0 supervise/status.new

2.046363000   1956   supervise           9   0 supervise/status.new

3.068203997   1956   supervise           9   0 supervise/status.new

3.068544999   1956   supervise           9   0 supervise/status.new

 

This shows the supervise process is opening the status.new file twice every

second.

[...]

The tool output is explained in the examples file, especially in the first example.

At the end of an examples file is a copy of the usage message. It might seem redundant, but it can 
be useful for browsing online. Examples files do not typically show every option in use, so ending 
with the usage message shows what else the tool can do.

4.10 Developing BCC Tools

Since most readers may prefer to program in the higher-level bpftrace language, this book 
focuses on bpftrace for tool development and uses BCC as a source of prewritten tools. BCC tool 
development is covered in Appendix C, as optional material.

Why develop tools in BCC, given the availability of bpftrace? BCC is suited for building complex 
tools with various command line arguments and options, and with fully customized output and 
actions. For example, a BCC tool can use networking libraries to send event data to a message 
server or database. In comparison, bpftrace is well suited for one-liners or short tools that accept 
no arguments or a single argument, and print text output only.

BCC also allows a lower level of control for BPF programs written in C, and for user-level 
components written in Python or one of the other supported languages. This comes at the cost of 
some complexity: BCC tools can take 10 times as long to develop as bpftrace tools, and they can 
include 10 times as many lines of code.

Whether you code in BCC or bpftrace, it’s usually possible to port the core functionality from one 
to the other—once you’ve decided what that functionality should be. You might also use bpftrace 
as a prototyping and proof-of-concept language before developing tools fully in BCC.

For BCC tool development resources, tips, and examples with source code explained, see 
Appendix C.

The following sections cover BCC internals and debugging. If you are running but not developing 
BCC tools, there may nevertheless be times when you need to debug a broken tool and need to 
understand some BCC internals to help you do that.
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4.11 BCC Internals

BCC consists of:

 ■ C++ front-end API for composing kernel-level BPF programs, including:

 ■ A preprocessor for converting memory dereferences to bpf_probe_read() calls (and, in 
future kernels, variants of bpf_probe_read())

 ■ C++ back-end drivers for:

 ■ Compiling the BPF program via Clang/LLVM

 ■ Loading the BPF program in the kernel

 ■ Attaching BPF programs to events

 ■ Reads/writes with BPF maps

 ■ Language front-end APIs for composing BPF tools: Python, C++, and lua

This is pictured in Figure 4-5.

Figure 4-5 BCC internals

The BPF, Table, and USDT Python objects pictured in Figure 4-5 are wrappers to their 
implementation in libbcc and libbcc_bpf.
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The Table object interacts with BPF maps. These tables have become BPF items of the BPF object 
(using Python “magic methods,” like __getitem__), such that the following lines are equivalent:

counts = b.get_table("counts")

counts = b["counts"]

USDT is a separate object in Python, as its behavior is different from kprobes, uprobes, and 
tracepoints. It must be attached to a process ID or path during initialization because, unlike other 
event types, some USDT probes require semaphores to be set in the process image to activate 
them. These semaphores can be used by the application to determine whether the USDT probe is 
currently in use and whether to prepare its arguments, or if that can be skipped as a performance 
optimization.

The C++ components are compiled as libbcc_bpf and libbcc, which are used by other software 
(e.g., bpftrace). libbcc_bpf is from the Linux kernel source under tools/lib/bpf (and it originated 
from BCC).

The steps that BCC takes to load a BPF program and instrument events are:

 1. The Python BPF object is created, and a BPF C program is passed to it.

 2. The BCC rewriter pre-processes the BPF C program, replacing dereferences with bpf_probe_
read() calls.

 3. Clang compiles the BPF C program into LLVM IR.

 4. BCC codegen adds additional LLVM IR, as needed.

 5. LLVM compiles the IR into BPF bytecode.

 6. Maps, if used, are created.

 7. The bytecode is sent to the kernel and checked by the BPF verifier.

 8. Events are enabled, and BPF programs are attached to the events.

 9. The BCC program reads instrumented data either via maps or the perf_event buffer.

The next section sheds more light on these internals.

4.12 BCC Debugging

There are various ways to debug and troubleshoot BCC tools other than inserting printf() 
statements. This section summarizes print statements, BCC debug modes, bpflist, and resetting 
events. If you are reading this section because you are troubleshooting an issue, also check 
Chapter 18, which covers common issues such as missing events, missing stacks, and missing 
symbols.

Figure 4-6 shows the flow of program compilation and the various debugging tools that can be 
used for inspection along the way.
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Figure 4-6 BCC debugging

These tools are explained in the following sections.

4.12.1 printf() Debugging

Debugging with printf() can feel like a hack compared to using more sophisticated debugging 
tools, but it can be effective and fast. printf() statements can be added not only to the Python 
code for debugging but also to the BPF code. There is a special helper function for this: bpf_trace_
printk(). It emits output to a special Ftrace buffer, which can be read via cat(1) of the /sys/kernel/
debug/tracing/trace_pipe files.

As an example, imagine that you have an issue with the biolatency(8) tool where it’s compiling 
and running, but the output seems amiss. You could insert a printf() statement to confirm that 
probes are firing and that the variables used have the values they should have. Here is an example 
of an addition to biolatency.py, highlighted in bold:

[...]

// time block I/O

int trace_req_start(struct pt_regs *ctx, struct request *req)

{

    u64 ts = bpf_ktime_get_ns();

    start.update(&req, &ts);

    bpf_trace_printk("BDG req=%llx ts=%lld\\n", req, ts);

    return 0;

}

[...]

The "BDG" here is just my initials, added to clearly identify the output as being from my own 
debug session.
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The tool can now be run:

# ./biolatency.py 

Tracing block device I/O... Hit Ctrl-C to end.

and in another terminal session, the Ftrace trace_pipe file can be read with cat(1):

# cat /sys/kernel/debug/tracing/trace_pipe

[...]

    kworker/4:1H-409   [004] .... 2542952.834645: 0x00000001: BDG 

req=ffff8934c90a1a00 ts=2543018287130107

   dmcrypt_write-354   [004] .... 2542952.836083: 0x00000001: BDG 

req=ffff8934c7df3600 ts=2543018288564980

   dmcrypt_write-354   [004] .... 2542952.836093: 0x00000001: BDG 

req=ffff8934c7df3800 ts=2543018288578569

    kworker/4:1H-409   [004] .... 2542952.836260: 0x00000001: BDG 

req=ffff8934c90a1a00 ts=2543018288744416

    kworker/4:1H-409   [004] .... 2542952.837447: 0x00000001: BDG 

req=ffff8934c7df3800 ts=2543018289932052

   dmcrypt_write-354   [004] .... 2542953.611762: 0x00000001: BDG 

req=ffff8934c7df3800 ts=2543019064251153

   kworker/u16:4-5415  [005] d... 2542954.163671: 0x00000001: BDG 

req=ffff8931622fa000 ts=2543019616168785

The output has various default fields that Ftrace adds, followed by our custom bpf_trace_printk() 
message at the end (which has line-wrapped).

If you cat(1) the trace file instead of trace_pipe, headers will be printed:

# cat /sys/kernel/debug/tracing/trace

# tracer: nop

#

#                              _-----=> irqs-off

#                             / _----=> need-resched

#                            | / _---=> hardirq/softirq

#                            || / _--=> preempt-depth

#                            ||| /     delay

#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION

#              | |       |   ||||       |         |

   kworker/u16:1-31496 [000] d... 2543476.300415: 0x00000001: BDG 

req=ffff89345af53c00 ts=2543541760130509

   kworker/u16:4-5415  [000] d... 2543478.316378: 0x00000001: BDG 

req=ffff89345af54c00 ts=2543543776117611

[...]
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The differences between these files are:

 ■ trace: Prints header; doesn’t block.

 ■ trace_pipe: Blocks for more messages and clears messages as it reads them.

This Ftrace buffer (viewed via trace and trace_pipe) is used by other Ftrace tools, so your debug 
messages may get mixed up with other messages. It works well enough for debugging and, if 
needed, you can filter the messages to see only those of interest (e.g., for this example, you could 
use: grep BDG /sys/.../trace).

With bpftool(8), covered in Chapter 2, you can print the Ftrace buffer by using: bpftool prog 
tracelog.

4.12.2 BCC Debug Output

Some tools, such as funccount(8) -D, already provide options for printing debug output. Check 
the tool USAGE message (with -h or --help) to see if a tool has this option. Many tools have an 
undocumented --ebpf option, which prints the final BPF program that the tool has generated.7 
For example:

# opensnoop --ebpf

 

#include <uapi/linux/ptrace.h>

#include <uapi/linux/limits.h>

#include <linux/sched.h>

 

struct val_t {

    u64 id;

    char comm[TASK_COMM_LEN];

    const char *fname;

};

 

struct data_t {

    u64 id;

    u64 ts;

    u32 uid;

    int ret;

    char comm[TASK_COMM_LEN];

    char fname[NAME_MAX];

};

 

BPF_HASH(infotmp, u64, struct val_t);

7 The --ebpf option was added to support a BCC PCP PMDA (see Chapter 17), and since it was not really intended for 

end-user use, it is not documented in the usage message to avoid clutter.
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BPF_PERF_OUTPUT(events);

 

int trace_entry(struct pt_regs *ctx, int dfd, const char __user *filename, int flags)

{

    struct val_t val = {};

    u64 id = bpf_get_current_pid_tgid();

    u32 pid = id >> 32; // PID is higher part

    u32 tid = id;       // Cast and get the lower part

    u32 uid = bpf_get_current_uid_gid();

[...]

This may be useful in cases where the BPF program is rejected by the kernel: You can print it out 
and check for issues.

4.12.3 BCC Debug Flag

BCC provides a debugging capability that is available for all tools: adding the debug flag to the 
BPF object initializer in the program. For example, in opensnoop.py, there is the line:

b = BPF(text=bpf_text)

This can be changed to include a debug setting:

b = BPF(text=bpf_text, debug=0x2)

This prints BPF instructions when the program is run:

# opensnoop

0: (79) r7 = *(u64 *)(r1 +104)

1: (b7) r1 = 0

2: (7b) *(u64 *)(r10 -8) = r1

3: (7b) *(u64 *)(r10 -16) = r1

4: (7b) *(u64 *)(r10 -24) = r1

5: (7b) *(u64 *)(r10 -32) = r1

6: (85) call bpf_get_current_pid_tgid#14

7: (bf) r6 = r0

8: (7b) *(u64 *)(r10 -40) = r6

9: (85) call bpf_get_current_uid_gid#15

10: (bf) r1 = r10

11: (07) r1 += -24

12: (b7) r2 = 16

13: (85) call bpf_get_current_comm#16

14: (67) r0 <<= 32

[...]
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The BPF debugging options are single-bit flags that can be combined. They are listed in src/cc/
bpf_module.h and shown here:

Bit Name Debug

0x1 DEBUG_LLVM_IR Prints a compiled LLVM intermediate representation

0x2 DEBUG_BPF Prints BPF bytecode and registers state on branches

0x4 DEBUG_PREPROCESSOR Prints a pre-processor result (similar to --ebpf)

0x8 DEBUG_SOURCE Prints ASM instructions embedded with source

0x10 DEBUG_BPF_REGISTER_STATE Prints the register state on all instructions

0x20 DEBUG_BTF Prints BTF debugging (BTF errors are otherwise ignored)

debug=0x1f prints everything, which can be dozens of pages of output.

4.12.4 bpflist

The bpflist(8) tool in BCC lists tools that have running BPF programs along with some details. For 
example:

# bpflist

PID    COMM             TYPE     COUNT

30231  opensnoop        prog     2   

30231  opensnoop        map      2   

This shows that the opensnoop(8) tool is running with PID 30231 and is using two BPF programs 
and two maps. This makes sense: opensnoop(8) instruments two events with a BPF program for 
each, and has a map for information between probes and a map for emitting data to user space.

A -v (verbose) mode counts kprobes and uprobes, and -vv (very verbose) counts and lists kprobes 
and uprobes. For example:

# bpflist -vv

open kprobes:

p:kprobes/p_do_sys_open_bcc_31364 do_sys_open

r:kprobes/r_do_sys_open_bcc_31364 do_sys_open

 

open uprobes:

 

PID    COMM             TYPE     COUNT

1      systemd          prog     6   

1      systemd          map      6   

31364  opensnoop        map      2   

31364  opensnoop        kprobe   2   

31364  opensnoop        prog     2   
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This shows two BPF programs running: systemd (PID 1) and opensnoop (PID 31364). The -vv 
mode also lists open kprobes and uprobes. Note that the PID consumer, 31364, is encoded in the 
kprobe names.

4.12.5 bpftool

bpftool is from the Linux source tree, and can show running programs, list BPF instructions, 
interact with maps, and more. It is covered in Chapter 2.

4.12.6 dmesg

Sometimes a kernel error from BPF or its event sources appears in the system log and can be 
viewed using dmesg(1). For example:

# dmesg

[...]

[8470906.869945] trace_kprobe: Could not insert probe at vfs_rread+0: -2

This is an error about attempting to create a kprobe for the vfs_rread() kernel function; it is a typo 
as vfs_rread() does not exist.

4.12.7 Resetting Events

Developing software typically involves a cycle of writing new code and then fixing bugs. When 
introducing bugs in BCC tools or libraries, you may cause BCC to crash after tracing has been 
enabled. This can leave kernel event sources in an enabled state with no process to consume their 
events, costing some needless overhead.

This was an issue with the older Ftrace-based interfaces in /sys, which BCC originally used for 
instrumenting all event sources with the exception of perf_events (PMCs). perf_events used perf_
event_open(), which is file-descriptor based. A benefit with perf_event_open() is that a crashing 
process triggers kernel cleanup of its file descriptors, which then triggers cleanup of its enabled 
event sources. In Linux 4.17 and later, BCC has switched to the perf_event_open() interface for all 
event sources, so leftover kernel enablings should become a thing of the past.

If you are on an older kernel, you can use a tool in BCC called reset-trace.sh, which cleans up 
the Ftrace kernel state, removing all enabled tracing events. Only use this tool if you know there 
are no tracing consumers still running on the system (not just BCC, but any tracer), as it will 
prematurely terminate their event sources.

Here is some output from my BCC development server:

# reset-trace.sh -v

Reseting tracing state...

 

Checking /sys/kernel/debug/tracing/kprobe_events

Needed to reset /sys/kernel/debug/tracing/kprobe_events
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kprobe_events, before (line enumerated):

   1 r:kprobes/r_d_lookup_1_bcc_22344 d_lookup

   2 p:kprobes/p_d_lookup_1_bcc_22344 d_lookup

   3 p:kprobes/p_lookup_fast_1_bcc_22344 lookup_fast

   4 p:kprobes/p_sys_execve_1_bcc_12659 sys_execve

[...]

kprobe_events, after (line enumerated):

 

Checking /sys/kernel/debug/tracing/uprobe_events

Needed to reset /sys/kernel/debug/tracing/uprobe_events

uprobe_events, before (line enumerated):

   1 p:uprobes/p__proc_self_exe_174476_1_bcc_22344 /proc/self/exe:0x0000000000174476

   2 p:uprobes/p__bin_bash_ad610_1_bcc_12827 /bin/bash:0x00000000000ad610

   3 r:uprobes/r__bin_bash_ad610_1_bcc_12833 /bin/bash:0x00000000000ad610

   4 p:uprobes/p__bin_bash_8b860_1_bcc_23181 /bin/bash:0x000000000008b860

[...]

uprobe_events, after (line enumerated):

 

Checking /sys/kernel/debug/tracing/trace

Checking /sys/kernel/debug/tracing/current_tracer

Checking /sys/kernel/debug/tracing/set_ftrace_filter

Checking /sys/kernel/debug/tracing/set_graph_function

Checking /sys/kernel/debug/tracing/set_ftrace_pid

Checking /sys/kernel/debug/tracing/events/enable

Checking /sys/kernel/debug/tracing/tracing_thresh

Checking /sys/kernel/debug/tracing/tracing_on

 

Done.

In this verbose mode of operation (-v), all the steps reset-trace.sh is performing are printed. The 
blank lines in the output, after resetting kprobe_events and uprobe_events, show that the reset 
was successful.

4.13 Summary

The BCC project provides more than 70 BPF performance tools, many of which support 
customizations via command line options and all are provided with documentation: man pages 
and examples files. Most are single-purpose tools, each focusing on observing one activity well. 
Some are multi-purpose tools; I covered four of them in this chapter: funccount(8) for counting 
events, stackcount(8) for counting the stack traces that led to events, trace(8) for printing custom 
per-event output, and argdist(8) for summarizing event arguments as counts or histograms. This 
chapter also covers BCC debugging tools. Appendix C provides examples of how to develop new 
BCC tools.
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bpftrace is an open source tracer built on BPF and BCC. Like BCC, bpftrace ships with many 
performance tools and supporting documentation. However, it also provides a high-level 
programming language that allows you to create powerful one-liners and short tools. For example, 
summarizing the vfs_read() return value (bytes or error value) as a histogram using bpftrace 
one-liner:

# bpftrace -e 'kretprobe:vfs_read { @bytes = hist(retval); }'

Attaching 1 probe...

^C

 

@bytes:

(..., 0)             223 |@@@@@@@@@@@@@                                       |

[0]                  110 |@@@@@@                                              |

[1]                  581 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                 |

[2, 4)                23 |@                                                   |

[4, 8)                 9 |                                                    |

[8, 16)              844 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16, 32)              44 |@@                                                  |

[32, 64)              67 |@@@@                                                |

[64, 128)             50 |@@@                                                 |

[128, 256)            24 |@                                                   |

[256, 512)             1 |                                                    |

bpftrace was created by Alastair Robertson in December 2016 as a spare-time project. Because it 
looked well designed and was a good fit with the existing BCC/LLVM/BPF toolchain, I joined the 
project and became a major contributor of code, performance tools, and documentation. We’ve 
now been joined by many others, and we finished adding the first set of major features during 
2018.

This chapter introduces bpftrace and its features, provides an overview of its tools and 
documentation, explains the bpftrace programming language, and ends with a tour of bpftrace 
debugging and internals.
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Learning objectives:

 ■ Gain knowledge of bpftrace features and how they compare to other tools

 ■ Learn where to fi nd tools and documentation, and how to execute tools

 ■ Learn how to read the bpftrace source code included in later chapters

 ■ Develop new one-liners and tools in the bpftrace programming language

 ■ (optional) Get exposure to bpftrace internals

If you want to immediately start learning bpftrace programming, you can jump to Section 5.7 
and then later return here to finish learning about bpftrace.

bpftrace is ideal for ad hoc instrumentation with custom one-liners and short scripts, whereas 
BCC is ideal for complex tools and daemons.

5.1 bpftrace Components

The high-level directory structure of bpftrace is shown in Figure 5-1.

Figure 5-1 bpftrace structure

bpftrace contains documentation for the tools, man pages, and examples files, as well as 
a bpftrace programming tutorial (the one-liners tutorial) and a reference guide for the 
programming language. The included bpftrace tools have the extension .bt.

The front end uses lex and yacc to parse the bpftrace programming language, and Clang 
for parsing structures. The back end compiles bpftrace programs into LLVM intermediate 
representation, which is then compiled to BPF by LLVM libraries. See Section 5.16 for details.
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5.2 bpftrace Features

Feature lists can help you learn the capabilities of a new technology. I created desired feature 
lists for bpftrace to guide development, and these are now delivered features and are listed in 
this section. In Chapter 4, I grouped the BCC feature lists by kernel- and user-level features, 
since those are different APIs. With bpftrace, there is only one API: bpftrace programming. These 
bpftrace features have instead been grouped by event sources, actions, and general features.

5.2.1 bpftrace Event Sources

These event sources use kernel-level technologies that were introduced in Chapter 2. The bpftrace 
interface (the probe type) is shown in parentheses:

 ■ Dynamic instrumentation, kernel-level (kprobe)

 ■ Dynamic instrumentation, user-level (uprobe)

 ■ Static tracing, kernel-level (tracepoint, software)

 ■ Static tracing, user-level (usdt, via libbcc)

 ■ Timed sampling events (profile)

 ■ Interval events (interval)

 ■ PMC events (hardware)

 ■ Synthetic events (BEGIN, END)

These probe types are explained in more detail in Section 5.9. More event sources are planned 
in the future and may exist by the time you read this; they include sockets and skb events, raw 
tracepoints, memory breakpoints, and custom PMCs.

5.2.2 bpftrace Actions

These are actions that can be performed when an event fires. The following is a selection of key 
actions; the full list is in the bpftrace Reference Guide:

 ■ Filtering (predicates)

 ■ Per-event output (printf())

 ■ Basic variables (global, $local, and per[tid])

 ■ Built-in variables (pid, tid, comm, nsecs, …)

 ■ Associative arrays (key[value])

 ■ Frequency counting (count() or ++)

 ■ Statistics (min(), max(), sum(), avg(), stats())
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 ■ Histograms (hist(), lhist())

 ■ Timestamps and time deltas (nsecs, and hash storage)

 ■ Stack traces, kernel (kstack)

 ■ Stack traces, user (ustack)

 ■ Symbol resolution, kernel-level (ksym(), kaddr())

 ■ Symbol resolution, user-level (usym(), uaddr())

 ■ C struct navigation (->)

 ■ Array access ([])

 ■ Shell commands (system())

 ■ Printing files (cat())

 ■ Positional parameters ($1, $2, …)

Actions are explained in more detail in Section 5.7. More actions may be added where there are 
strong use cases, but it is desirable to keep the language as small as possible to make it easier to 
learn.

5.2.3 bpftrace General Features

The following are general bpftrace features and components of the repository:

 ■ Low-overhead instrumentation (BPF JIT, and maps)

 ■ Production safe (BPF verifier)

 ■ Many tools (under /tools)

 ■ Tutorial (/docs/tutorial_one_liners.md)

 ■ Reference guide (/docs/reference_guide.md)

5.2.4 bpftrace Compared to Other Observability Tools

Comparing bpftrace to other tracers that can also instrument all event types:

 ■ perf(1): bpftrace provides a higher-level language that is concise, whereas the perf(1) 
scripting language is verbose. perf(1) supports efficient event dumping in a binary format 
via perf record and in-memory summary modes such as perf top. bpftrace supports efficient 
in-kernel summaries, such as custom histograms, whereas perf(1)’s built-in in-kernel 
summaries are limited to counts (perf stat). perf(1)’s capabilities can be extended by 
running BPF programs, although not in a high-level language like bpftrace; see Appendix D 
for a perf(1) BPF example.

 ■ Ftrace: bpftrace provides a higher-level language that resembles C and awk, whereas the 
Ftrace custom instrumentation, including hist-triggers, has a special syntax of its own. 
Ftrace has fewer dependencies, making it suited for tiny Linux environments. Ftrace also 
has instrumentation modes such as function counts that have so far been performance 
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optimized more than the event sources used by bpftrace. (My Ftrace funccount(8) currently 
has faster start and stop times and lower runtime overhead than a bpftrace equivalent.)

 ■ SystemTap: Both bpftrace and SystemTap provide higher-level languages. bpftrace is based 
on built-in Linux technologies, whereas SystemTap adds its own kernel modules, which 
have proven unreliable on systems other than RHEL. Work has begun for SystemTap to 
support a BPF back end, as bpftrace does, which should make it reliable on these other 
systems. SystemTap currently has more helper functionality in its libraries (tapsets) for 
instrumenting different targets.

 ■ LTTng: LTTng has optimized event dumping and provides tools for analyzing event dumps. 
This takes a different approach to performance analysis than bpftrace, which is designed for 
ad hoc real-time analysis.

 ■ Application tools: Application- and runtime-specific tools are limited to user-level 
visibility. bpftrace can also instrument kernel and hardware events, allowing it to identify 
the source of issues beyond the reach of those tools. An advantage of those tools is that 
they are usually tailored for the target application or runtime. A MySQL database profiler 
already understands how to instrument queries, and a JVM profiler already can instrument 
garbage collection. In bpftrace, you need to code such functionality yourself.

It is not necessary to use bpftrace in isolation. The goal is to solve problems, not to use bpftrace 
exclusively, and sometimes it is fastest to use a combination of these tools.

5.3 bpftrace Installation

bpftrace should be installable via a package for your Linux distribution, but at the time of writing, 
these packages have only begun to appear; the first bpftrace packages are a snap from Canonical1 
and a Debian package2 that will also be available for Ubuntu 19.04. You can also build bpftrace 
from source. Check INSTALL.md in the bpftrace repository for the latest package and build 
instructions [63].

5.3.1 Kernel Requirements

It is recommended that you use a Linux 4.9 kernel (released in December 2016) or newer. 
The major BPF components that bpftrace uses were added between the 4.1 and 4.9 releases. 
Improvements have been added in later releases, so the newer your kernel, the better. The BCC 
documentation includes a list of BPF features by Linux kernel version, which helps explain why 
later kernels are better (see [64]).

Some kernel configuration options also need to be enabled. These options are now enabled 
by default in many distributions, so you typically do not need to change them. They are: 
CONFIG_BPF=y, CONFIG_BPF_SYSCALL=y, CONFIG_BPF_JIT=y, CONFIG_HAVE_EBPF_JIT=y, 
CONFIG_BPF_EVENTS=y.

1 Thanks to Colin Ian King [61].

2 Thanks to Vincent Bernat [62].
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5.3.2 Ubuntu

Once the bpftrace package is available for your Ubuntu distribution, installation should be:

sudo apt-get update

sudo apt-get install bpftrace

bpftrace can also be built and installed from source:

sudo apt-get update

sudo apt-get install bison cmake flex g++ git libelf-dev zlib1g-dev libfl-dev \

  systemtap-sdt-dev llvm-7-dev llvm-7-runtime libclang-7-dev clang-7

git clone https://github.com/iovisor/bpftrace

mkdir bpftrace/build; cd bpftrace/build

cmake -DCMAKE_BUILD_TYPE=Release ..

make

make install

5.3.3 Fedora

Once bpftrace has been packaged, installation should be:

sudo dnf install -y bpftrace

bpftrace can also be built from source:

sudo dnf install -y bison flex cmake make git gcc-c++ elfutils-libelf-devel \

  zlib-devel llvm-devel clang-devel bcc-devel

git clone https://github.com/iovisor/bpftrace

cd bpftrace

mkdir build; cd build; cmake -DCMAKE_BUILD_TYPE=DEBUG ..

make

5.3.4 Post-Build Steps

To confirm that the build was successful, you can run the test suite and a one-liner as an 
experiment:

sudo ./tests/bpftrace_test

sudo ./src/bpftrace -e 'kprobe:do_nanosleep { printf("sleep by %s\n", comm); }'
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Run sudo make install to install the bpftrace binary as /usr/local/bin/bpftrace and the tools in 
/usr/local/share/bpftrace/tools. You can change the install location by using a cmake(1) option, 
where -DCMAKE_INSTALL_PREFIX=/usr/local is the default.

5.3.5 Other Distributions

Check for an available bpftrace package, as well as the bpftrace INSTALL.md instructions.

5.4 bpftrace Tools

Figure 5-2 shows major system components, as well as tools from the bpftrace repository and this 
book that can observe them.

Figure 5-2 bpftrace performance tools

The current tools in the bpftrace repository are colored black, and the new bpftrace tools from 
this book are colored differently (red or gray, depending on your version of this book). Some 
variations are not included here (e.g., the qdisc variants from Chapter 10).
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5.4.1 Highlighted Tools

Table 5-1 lists a selection of tools organized by topic. These tools are covered in detail in later 
chapters. 

Table 5-1 Selected bpftrace Tools, by Topic and Chapter

Topic Highlighted Tools Chapter(s)

CPU execsnoop.bt, runqlat.bt, runqlen.bt, cpuwalk.bt, offcputime.bt 6

Memory oomkill.bt, failts.bt, vmscan.bt, swapin.bt 7

File systems vfsstat.bt, filelife.bt, xfsdist.bt 8

Storage I/O biosnoop.bt, biolatency.bt, bitesize.bt, biostacks.bt, 
scsilatency.bt, nvmelatency.bt

9

Networking tcpaccept.bt, tcpconnect.bt, tcpdrop.bt, tcpretrans.bt, 
gethostlatency.bt

10

Security ttysnoop.bt, elfsnoop.bt, setuids.bt 11

Languages jnistacks.bt, javacalls.bt 12

Applications threadsnoop.bt, pmheld.bt, naptime.bt, mysqld_qslower.bt 13

Kernel mlock.bt, mheld.bt, kmem,bt, kpages.bt, workq.bt 14

Containers pidnss.bt, blkthrot.bt 15

Hypervisors xenhyper.bt, cpustolen.bt, kvmexits.bt 16

Debugging / 
multi-purpose

execsnoop.bt, threadsnoop.bt, opensnoop.bt, killsnoop.bt, 
signals.bt

6, 8, 13

Note that this book also describes BCC tools that are not listed in Table 5-1.

After reading this chapter, you can jump to later chapters and use this book as a reference guide.

5.4.2 Tool Characteristics

The bpftrace tools have a number of characteristics in common:

 ■ They solve real-world observability issues.

 ■ They are designed to be run in production environments, as the root user.

 ■ There is a man page for every tool (under man/man8).

 ■ There is an examples file for every tool, containing output and discussion (under 
tools/*_examples.txt).

 ■ The tool source code begins with a block comment introduction.

 ■ The tools are as simple as possible, and short. (More complex tools are deferred to BCC.)
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5.4.3 Tool Execution

Bundled tools are executable and can be run immediately as the root user:

bpftrace/tools$ ls -lh opensnoop.bt

-rwxr-xr-x 1 bgregg bgregg 1.1K Nov 13 10:56 opensnoop.bt*

 

bpftrace/tools$ ./opensnoop.bt

ERROR: bpftrace currently only supports running as the root user.

 

bpftrace/tools$ sudo ./opensnoop.bt  

Attaching 5 probes...

Tracing open syscalls... Hit Ctrl-C to end.

PID    COMM               FD ERR PATH

25612  bpftrace           23   0 /dev/null

1458   Xorg              118   0 /proc/18416/cmdline

[...]

These tools can be placed with other system administration tools in an sbin diectory, such as 
/usr/local/sbin.

5.5 bpftrace One-Liners

This section provides a selection of one-liners that are useful both in themselves and to 
demonstrate the various bpftrace capabilities. The next section explains the programming 
language, and later chapters introduce more one-liners for specific targets. Note that many 
of these one-liners summarize data in (kernel) memory and do not print a summary until 
terminated with Ctrl-C.

Show who is executing what:

bpftrace -e 'tracepoint:syscalls:sys_enter_execve { printf("%s -> %s\n", comm,

    str(args->filename)); }'

Show new processes with arguments:

bpftrace -e 'tracepoint:syscalls:sys_enter_execve { join(args->argv); }'

Show files opened using openat() by process:

bpftrace -e 'tracepoint:syscalls:sys_enter_openat { printf("%s %s\n", comm,

    str(args->filename)); }'

Count syscalls by program:

bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'
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Count syscallst by syscall probe name:

bpftrace -e 'tracepoint:syscalls:sys_enter_* { @[probe] = count(); }'

Count syscalls by process:

bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[pid, comm] = count(); }'

Show the total read bytes by process:

bpftrace -e 'tracepoint:syscalls:sys_exit_read /args->ret/ { @[comm] =

    sum(args->ret); }'

Show the read size distribution by process:

bpftrace -e 'tracepoint:syscalls:sys_exit_read { @[comm] = hist(args->ret); }'

Show the trace disk I/O size by process:

bpftrace -e 'tracepoint:block:block_rq_issue { printf("%d %s %d\n", pid, comm,

    args->bytes); }'

Count pages paged in by process:

bpftrace -e 'software:major-faults:1 { @[comm] = count(); }'

Count page faults by process:

bpftrace -e 'software:faults:1 { @[comm] = count(); }'

Profile user-level stacks at 49 Hertz for PID 189:

bpftrace -e 'profile:hz:49 /pid == 189/ { @[ustack] = count(); }'

5.6 bpftrace Documentation

Each bpftrace tool has an accompanying man page and examples file, just as the tools also do in 
the BCC project. Chapter 4 discusses the format and intent of these files.

To help people learn to develop new one-liners and tools, I created the “bpftrace One-Liner 
Tutorial” [65], and the “bpftrace Reference Guide” [66]. These can be found in the /docs directory 
in the repository.

5.7 bpftrace Programming

This section provides a short guide to using bpftrace and programming in the bpftrace language. 
The format of this section was inspired by the original paper for awk [Aho 78], which covered that 
language in six pages. The bpftrace language itself is inspired by both awk and C, and by tracers 
including DTrace and SystemTap.
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The following is an example of bpftrace programming: It measures the time in the vfs_read() 
kernel function and prints the time, in microseconds, as a histogram. This summary section 
explains the components of this tool.

#!/usr/local/bin/bpftrace

 

// this program times vfs_read()

 

kprobe:vfs_read

{

        @start[tid] = nsecs;

}

 

kretprobe:vfs_read

/@start[tid]/

{

        $duration_us = (nsecs - @start[tid]) / 1000;

        @us = hist($duration_us);

        delete(@start[tid]);

}

The five sections after this summary cover bpftrace programming in more detail. Those sections 
are: probes, tests, operators, variables, functions, and map types.

5.7.1 Usage

The command:

bpftrace -e program

will execute the program, instrumenting any events it defines. The program will run until Ctrl-C, 
or until it explicitly calls exit(). A bpftrace program run as a -e argument is termed a one-liner. 
Alternatively, the program can be saved to a file and executed using:

bpftrace file.bt

The .bt extension is not necessary, but helps for later identification. By placing an interpreter line 
at the top of the file3:

#!/usr/local/bin/bpftrace

3 Some people prefer using #!/usr/bin/env bpftrace so that bpftrace can be found from the $PATH. However, env(1) 

comes with various problems, so its usage for the BCC repository was reverted. The bpftrace repository currently uses 

env(1), but that may be reverted for similar reasons.
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The file can be made executable (chmod a+x file.bt) and run like any other program:

./file.bt

bpftrace must be executed by the root user (superuser).4 For some environments, the root shell 
may be used to execute the program directly, whereas other  environments may have a preference 
for running privileged commands via sudo(1):

sudo ./file.bt

5.7.2 Program Structure

A bpftrace program is a series of probes with associated actions:

probes { actions }

probes { actions }

...

When the probes fire, the associated action is executed. An optional filter expression can be 
included before the action:

probes /filter/ { actions }

The action only fires if the filter expression is true. This resembles the awk(1) program structure:

/pattern/ { actions }

awk(1) programming is also similar to bpftrace programming: Multiple action blocks can be defined, 
and they may execute in any order: triggered when their pattern, or probe + filter expression, is true.

5.7.3 Comments

For bpftrace program files, single-line comments can be added with a "//" prefix:

// this is a comment

These comments will not be executed. Multi-line comments use the same format as those in C:

/*

 * This is a

 * multi-line comment.

 */

This syntax can also be used for partial-line comments (e.g., /* comment */).

4 bpftrace checks for UID 0; a future update may check for specific privileges.
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5.7.4 Probe Format

A probe begins with a probe type name and then a hierarchy of colon-delimited identifiers:

type:identifier1[:identifier2[...]]

The hierarchy is defined by the probe type. Consider these two examples:

kprobe:vfs_read

uprobe:/bin/bash:readline

The kprobe probe type instruments kernel function calls, and only needs one identifier: the 
kernel function name. The uprobe probe type instruments user-level function calls, and needs 
both the path to the binary and the function name.

Multiple probes can be specified with comma separators to execute the same actions. For example:

probe1,probe2,... { actions }

There are two special probe types that require no additional identifiers: BEGIN and END fire for 
the beginning and the end of the bpftrace program (just like awk(1)).

To learn more about the probe types and their usage, see Section 5.9.

5.7.5 Probe Wildcards

Some probe types accept wildcards. The probe:

kprobe:vfs_*

will instrument all kprobes (kernel functions) that begin with "vfs_".

Instrumenting too many probes may cost unnecessary performance overhead. To avoid hitting 
this by accident, bpftrace has a tunable maximum number of probes it will enable, set via the 
BPFTRACE_MAX_PROBES environment variable (it currently defaults to 5125).

You can test your wildcards before using them by running bpftrace -l:

# bpftrace -l 'kprobe:vfs_*'

kprobe:vfs_fallocate

kprobe:vfs_truncate

kprobe:vfs_open

kprobe:vfs_setpos

kprobe:vfs_llseek

5 Currently, having more than 512 probes makes bpftrace slow to start up and shut down, as it instruments them 

one by one. There is future kernel work planned to batch probe instrumentation. At that point, this limit may be greatly 

increased or even removed.
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[...]

bpftrace -l 'kprobe:vfs_*' | wc -l

56

This matched 56 probes. The probe name is in quotes to prevent unintended shell expansion.

5.7.6 Filters

Filters are Boolean expressions that gate whether an action is executed. The filter

/pid == 123/

will execute the action only if the pid built-in (process ID) is equal to 123.

If a test is not specified:

/pid/

the filter will check that the contents are non-zero (/pid/ is the same as /pid != 0/). Filters can 
be combined with Boolean operators, such as logical AND (&&). For example:

/pid > 100 && pid < 1000/

This requires that both expressions evaluate to “true.”

5.7.7 Actions

An action can be a single statement or multiple statements separated by semicolons:

{ action one; action two; action three }

The final statement may also have a semicolon appended. The statements are written in the 
bpftrace language, which is similar to the C language, and can manipulate variables and execute 
bpftrace function calls. For example, the action

{ $x = 42; printf("$x is %d", $x); }

sets a variable, $x, to 42, and then prints it using printf(). Sections 5.7.9 and 5.7.11 summarize 
other available function calls.

5.7.8 Hello, World!

You should now understand the following basic program, which prints "Hello, World!" when 
bpftrace begins running:

# bpftrace -e 'BEGIN { printf("Hello, World!\n"); }'

Attaching 1 probe...

Hello, World!

^C
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As a file, it could be formatted as:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Hello, World!\n");

}

Spanning multiple lines with an indented action block is not necessary, but it improves 
readability.

5.7.9 Functions

In addition to printf() for printing formatted output, other built-in functions include:

 ■ exit(): Exits bpftrace

 ■ str(char *): Returns a string from a pointer

 ■ system(format[, arguments ...]): Runs a command at the shell

The following action:

printf("got: %llx %s\n", $x, str($x)); exit();

will print the $x variable as a hex integer, and then treat it as a NULL-terminated character array 
pointer (char *) and print it as a string, and then exit.

5.7.10 Variables

There are three variable types: built-ins, scratch, and maps.

Built-in variables are pre-defined and provided by bpftrace, and are usually read-only sources 
of information. They include pid for the process id, comm for the process name, nsecs for a 
timestamp in nanoseconds, and curtask for the address of the current thread’s task_struct.

Scratch variables can be used for temporary calculations and have the prefix "$". Their name and 
type is set on their first assignment. The statements:

$x = 1;

$y = "hello";

$z = (struct task_struct *)curtask;

declare $x as an integer, $y as a string, and $z as a pointer to a struct task_struct. These variables 
can only be used in the action block in which they were assigned. If variables are referenced 
without an assignment, bpftrace errors (which can help you catch typos).
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Map variables use the BPF map storage object and have the prefix "@". They can be used for 
global storage, passing data between actions. The program

probe1 { @a = 1; }

probe2 { $x = @a; }

Assigns 1 to @a when probe1 fires, then assigns @a to $x when probe2 fires. If probe1 fired first 
and then probe2, $x would be set to 1; otherwise 0 (uninitialized).

A key can be provided with one or more elements, using maps as a hash table (an associative 
array). The statement:

@start[tid] = nsecs;

is frequently used: the nsecs built-in is assigned to a map named @start and keyed on tid, the 
current thread ID. This allows threads to store custom timestamps that won’t be overwritten by 
other threads.

@path[pid, $fd] = str(arg0);

is an example of a multi-key map, one using both the pid builtin and the $fd variable as keys.

5.7.11 Map Functions

Maps can be assigned to special functions. These functions store and print data in custom ways. 
The assignment

@x = count();

counts events, and when printed will print the count. This uses a per-CPU map, and @x becomes 
a special object of type count. The following statement also counts events:

@x++;

However, this uses a global CPU map, instead of a per-CPU map, to provide @x as an integer. This 
global integer type is sometimes necessary for some programs that require an integer and not a 
count, but bear in mind that there may be a small error margin due to concurrent updates (see 
Section 2.3.7 in Chapter 2).

The assignment

@y = sum($x);

sums the $x variable, and when printed will print the total. The assignment

@z = hist($x);

stores $x in a power-of-two histogram, and when printed will print bucket counts and an ASCII 
histogram.
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Some map functions operate directly on a map. For example:

print(@x);

will print the @x map. This is not used often because, for convenience, all maps are automatically 
printed when bpftrace terminates.

Some map functions operate on a map key. For example:

delete(@start[tid]);

deletes the key-value pair from the @start map where the key is tid.

5.7.12 Timing vfs_read()

You have now learned the syntax needed to understand a more involved and practical example. 
This program, vfsread.bt, times the vfs_read kernel function and prints out a histogram of its 
duration in microseconds (us):

#!/usr/local/bin/bpftrace

 

// this program times vfs_read()

 

kprobe:vfs_read

{

        @start[tid] = nsecs;

}

 

kretprobe:vfs_read

/@start[tid]/

{

        $duration_us = (nsecs - @start[tid]) / 1000;

        @us = hist($duration_us);

        delete(@start[tid]);

}

This times the duration of the vfs_read() kernel function by instrumenting its start using a kprobe 
and storing a timestamp in a @start hash keyed on thread ID, and then instrumenting its end by 
using a kretprobe and calculating the delta as: now - start. A filter is used to ensure that the start 
time was recorded; otherwise, the delta calculation becomes bogus: now - 0.

Sample output:

# bpftrace vfsread.bt

Attaching 2 probes...

^C
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@us:

[0]                   23 |@                                                   |

[1]                  138 |@@@@@@@@@                                           |

[2, 4)               538 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@               |

[4, 8)               744 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[8, 16)              641 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@        |

[16, 32)             122 |@@@@@@@@                                            |

[32, 64)              13 |                                                    |

[64, 128)             17 |@                                                   |

[128, 256)             2 |                                                    |

[256, 512)             0 |                                                    |

[512, 1K)              1 |                                                    |

The program ran until Ctrl-C was entered, then it printed this output and terminated. This 
histogram map was named “us” as a way to include units with the output, since the map name is 
printed out. By giving maps meaningful names like “bytes” and “latency_ns” you can annotate 
the output and make it self-explanatory.

This script can be customized as needed. Consider changing the hist() assignment line to:

@us[pid, comm] = hist($duration_us);

That stores one histogram per process ID and process name pair. The output becomes:

# bpftrace vfsread.bt

Attaching 2 probes...

^C

 

@us[1847, gdbus]:

[1]                    2 |@@@@@@@@@@                                          |

[2, 4)                10 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[4, 8)                10 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@us[1630, ibus-daemon]:

[2, 4)                 9 |@@@@@@@@@@@@@@@@@@@@@@@@@@@                         |

[4, 8)                17 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@us[29588, device poll]:

[1]                   13 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       |

[2, 4)                15 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[4, 8)                 4 |@@@@@@@@@@@@@                                       |

[8, 16)                4 |@@@@@@@@@@@@@                                       |

[...]

This illustrates one of the most useful capabilities of bpftrace. With traditional system tools, like 
iostat(1) and vmstat(1), the output is fixed and cannot be easily customized. But with bpftrace, 
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the metrics you see can be further broken down into parts and enhanced with metrics from other 
probes until you have the answers you need.

5.8 bpftrace Usage

With no arguments (or -h), the bpftrace USAGE message is printed, which summarizes important 
options and environment variables and lists some example one-liners:

# bpftrace

USAGE:

    bpftrace [options] filename

    bpftrace [options] -e 'program'

 

OPTIONS:

    -B MODE        output buffering mode ('line', 'full', or 'none')

    -d             debug info dry run

    -o file        redirect program output to file

    -dd            verbose debug info dry run

    -e 'program'   execute this program

    -h, --help     show this help message

    -I DIR         add the directory to the include search path

    --include FILE add an #include file before preprocessing

    -l [search]    list probes

    -p PID         enable USDT probes on PID

    -c 'CMD'       run CMD and enable USDT probes on resulting process

    --unsafe       allow unsafe builtin functions

    -v             verbose messages

    -V, --version  bpftrace version

 

ENVIRONMENT:

    BPFTRACE_STRLEN           [default: 64] bytes on BPF stack per str()

    BPFTRACE_NO_CPP_DEMANGLE  [default: 0] disable C++ symbol demangling

    BPFTRACE_MAP_KEYS_MAX     [default: 4096] max keys in a map

    BPFTRACE_CAT_BYTES_MAX    [default: 10k] maximum bytes read by cat builtin

    BPFTRACE_MAX_PROBES       [default: 512] max number of probes

 

EXAMPLES:

bpftrace -l '*sleep*'

    list probes containing "sleep"

bpftrace -e 'kprobe:do_nanosleep { printf("PID %d sleeping...\n", pid); }'

    trace processes calling sleep

bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'

    count syscalls by process name
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This output is from bpftrace version v0.9-232-g60e6, 15-Jun-2019. As more features are added this 
USAGE message may become unwieldy, and a short and a long version may be added. Check the 
output for your current version to see if this is the case.

5.9 bpftrace Probe Types

Table 5-2 lists available probe types. Many of these also have a shortcut alias, which help create 
shorter one-liners.

Table 5-2 bpftrace Probe Types

Type Shortcut Description

tracepoint t Kernel static instrumentation points

usdt U User-level statically defined tracing

kprobe k Kernel dynamic function instrumentation

kretprobe kr Kernel dynamic function return instrumentation

uprobe u User-level dynamic function instrumentation

uretprobe ur User-level dynamic function return instrumentation

software s Kernel software-based events

hardware h Hardware counter-based instrumentation

profile p Timed sampling across all CPUs

interval i Timed reporting (from one CPU)

BEGIN Start of bpftrace

END End of bpftrace

These probe types are interfaces to existing kernel technologies. Chapter 2 explains how these 
technologies work: kprobes, uprobes, tracepoints, USDT, and PMCs (used by the hardware 
probe type).

Some probes may fire frequently, such as for scheduler events, memory allocations, and network 
packets. To reduce overhead, try to solve your problems by using less-frequent events wherever 
possible. See Chapter 18 for a discussion on minimizing overhead that applies to both BCC and 
bpftrace development.

The following sections summarize bpftrace probe usage.

5.9.1 tracepoint

The tracepoint probe type instruments tracepoints: kernel static instrumentation points. Format:

tracepoint:tracepoint_name
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The tracepoint_name is the full name of the tracepoint, including the colon, which separates 
the tracepoint into its own hierarchy of class and event name. For example, the tracepoint 
net:netif_rx can be instrumented in bpftrace with the probe tracepoint:net:netif_rx.

Tracepoints usually provide arguments: these are fields of information that can be accessed in 
bpftrace via the args built-in. For example, net:netif_rx has a field called len for the packet length 
that can accessed using args->len.

If you’re new to bpftrace and tracing, system call tracepoints are good targets to instrument. They 
provide broad coverage of kernel resource usage and have a well-documented API: the syscall man 
pages. For example, the tracepoints:

syscalls:sys_enter_read

syscalls:sys_exit_read

instrument the start and end of the read(2) system call. The man page has its signature:

ssize_t read(int fd, void *buf, size_t count);

For the sys_enter_read tracepoint, its arguments should be available as args->fd, args->buf, and 
args->count. This can be checked using the -l (list) and -v (verbose) modes of bpftrace:

# bpftrace -lv tracepoint:syscalls:sys_enter_read

tracepoint:syscalls:sys_enter_read

    int __syscall_nr;

    unsigned int fd;

    char * buf;

    size_t count;

The man page also describes what these arguments are and the return value of the read(2) syscall, 
which can be instrumented using the sys_exit_read tracepoint. This tracepoint has an additional 
argument not found in the man page, __syscall_nr, for the syscall number.

As an interesting tracepoint example, I will trace the enter and exit of the clone(2) syscall, which 
creates new processes (similar to fork(2)). For these events, I will print the current process name 
and PID using bpftrace built-in variables. For the exit, I will also print the return value using a 
tracepoint argument:

# bpftrace -e 'tracepoint:syscalls:sys_enter_clone {

    printf("-> clone() by %s PID %d\n", comm, pid); }

  tracepoint:syscalls:sys_exit_clone {

    printf("<- clone() return %d, %s PID %d\n", args->ret, comm, pid); }'

Attaching 2 probes...

-> clone() by bash PID 2582

<- clone() return 27804, bash PID 2582

<- clone() return 0, bash PID 27804
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This syscall is unusual in that it has one entry and two exits! While tracing, I ran ls(1) in a bash(1) 
terminal. The parent process (PID 2582) can be seen to enter clone(2), and then there are two 
returns: one for the parent that returns the child PID (27804), and one for the child that returns 
zero (success). When the child begins, it is still "bash" as it has not yet executed an exec(2) family 
syscall to become "ls". That can be traced as well:

# bpftrace -e 't:syscalls:sys_*_execve { printf("%s %s PID %d\n", probe, comm,

    pid); }'

Attaching 2 probes...

tracepoint:syscalls:sys_enter_execve bash PID 28181

tracepoint:syscalls:sys_exit_execve ls PID 28181

This output shows PID 28181 enter the execve(2) syscall as "bash", and then exiting as "ls".

5.9.2 usdt

This probe type instruments user-level static instrumentation points. Format:

usdt:binary_path:probe_name

usdt:library_path:probe_name

usdt:binary_path:probe_namespace:probe_name

usdt:library_path:probe_namespace:probe_name

usdt can instrument executable binaries or shared libraries by providing the full path. 
The probe_name is the USDT probe name from the binary. For example, a probe named 
query__start in MySQL server may be accessible (depending on the installed path) as 
usdt:/usr/local/sbin/mysqld:query__start.

When a probe namespace is not specified, it defaults to the same name as the binary or library. 
There are many probes for which it differs, and the namespace must be included. One example 
is the "hotspot" namespace probes from libjvm (the JVM library). For example (full library path 
truncated):

usdt:/.../libjvm.so:hotspot:method__entry

Any arguments to the USDT probe are available as members of the args built-in.

The available probes in a binary can be listed using -l, for example:

# bpftrace -l 'usdt:/usr/local/cpython/python'

usdt:/usr/local/cpython/python:line

usdt:/usr/local/cpython/python:function__entry

usdt:/usr/local/cpython/python:function__return

usdt:/usr/local/cpython/python:import__find__load__start

usdt:/usr/local/cpython/python:import__find__load__done

usdt:/usr/local/cpython/python:gc__start

usdt:/sur/local/cpython/python:gc__done
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Instead of providing a probe description, you can use -p PID instead to list the USDT probes in a 
running process.

5.9.3 kprobe and kretprobe

These probe types are for kernel dynamic instrumentation. Format:

kprobe:function_name

kretprobe:function_name

kprobe instruments the start of the function (its entry), and kretprobe instruments the end (its 
return). The function_name is the kernel function name. For example, the vfs_read() kernel 
function can be instrumented using kprobe:vfs_read and kretprobe:vfs_read.

Arguments for kprobe: arg0, arg1, …, argN are the entry arguments to the function, as unsigned 
64-bit integers. If they are a pointer to a C struct, they can be cast to that struct.6 The future BPF 
type format (BTF) technology may make this automatic (see Chapter 2).

Arguments for kretprobe: the retval built-in has the return value of the function. retval is always 
uint64; if this does not match the return type for the function, it needs to be cast to that type.

5.9.4 uprobe and uretprobe

These probe types are for user-level dynamic instrumentation. Format:

uprobe:binary_path:function_name

uprobe:library_path:function_name

uretprobe:binary_path:function_name

uretprobe:library_path:function_name

uprobe instruments the start of the function (its entry), and uretprobe instruments the end (its 
return). The function_name is the function name. For example, the readline() function in /bin/
bash can be instrumented using uprobe:/bin/bash:readline and uretprobe:/bin/bash:readline.

Arguments for uprobe: arg0, arg1, …, argN are the entry arguments to the function, as unsigned 
64-bit integers. They can be cast to their struct types.7

Arguments for uretprobe: the retval built-in has the return value of the function. retval is always 
uint64, and it needs to be cast to match the real return type.

6 This is C terminology that refers to changing the type of an object in a program. For an example, see the bpftrace 

source to runqlen(8) in Chapter 6.

7 It’s possible that BTF may be provided as user-level software in the future, so that binaries can self-describe their 

struct types similarly to kernel BTF.
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5.9.5 software and hardware

These probe types are for predefined software and hardware events. Format:

software:event_name:count

software:event_name:

hardware:event_name:count

hardware:event_name:

Software events are similar to tracepoints but are suited for count-based metrics and sample-based 
instrumentation. Hardware events are a selection of PMCs for processor-level analysis.

Both event types may occur so frequently that instrumenting every event can incur significant 
overhead, degrading system performance. This is avoided by using sampling and the count field, 
which triggers the probe to fire once every [count] events. If a count is not provided, a default 
is used. For example, the probe software:page-faults:100 will only fire for one in every 100 page 
faults.

The available software events, which depend on the kernel version, are shown in Table 5-3.

Table 5-3 Software Events

Software Event Name Alias Default Sample 

Count

Description

cpu-clock cpu 1000000 CPU wall-time clock

task-clock 1000000 CPU task clock (increments only when 
task is on-CPU)

page-faults faults 100 Page faults

context-switches cs 1000 Context switches

cpu-migrations 1 CPU thread migrations

minor-faults 100 Minor page faults: satisfied by memory

major-faults 1 Major page faults: satisfied by storage I/O

alignment-faults 1 Alignment faults

emulation-faults 1 Emulation faults

dummy 1 Dummy event for testing

bpf-output 1 BPF output channel
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The available hardware events, which depend on the kernel version and processor type, are listed 
in Table 5-4.

Table 5-4 Hardware Events

Hardware Event Name Alias Default 

Sample Count

Description

cpu-cycles cycles 1000000 CPU clock cycles

instructions 1000000 CPU instructions

cache-references 1000000 CPU last level cache references

cache-misses 1000000 CPU last level cache misses

branch-instructions branches 100000 Branch instructions

bus-cycles 100000 Bus cycles

frontend-stalls 1000000 Processor frontend stalls (e.g., instruction 
fetches)

backend-stalls 1000000 Processor backend stalls (e.g., data loads/
stores)

ref-cycles 1000000 CPU reference cycles (unscaled by turbo)

The hardware events occur more frequently, so higher default sample counts are used.

5.9.6 profile and interval

These probe types are timer-based events. Format:

profile:hz:rate

profile:s:rate

profile:ms:rate

profile:us:rate

interval:s:rate

interval:ms:rate

The profile type fires on all CPUs and can be used for sampling CPU usage. The interval type only 
fires on one CPU and can be used to print interval-based output.

The second field is the units for the last field, rate. This field may be:

 ■ hz: Hertz (events per second)

 ■ s: Seconds

 ■ ms: Milliseconds

 ■ us: Microseconds
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For example, the probe profile:hz:99 fires 99 times per second, across all CPUs. A a rate of 99 is 
often used instead of 100 to avoid issues of lockstep sampling. The probe interval:s:1 fires once per 
second and can be used to print per-second output.

5.10 bpftrace Flow Control

There are three types of tests in bpftrace: filters, ternary operators, and if statements. These tests 
conditionally change the flow of the program based on Boolean expressions, which support:

 ■ ==: Equal to

 ■ !=: Not equal to

 ■ >: Greater than

 ■ <: Less than

 ■ >=: Greater than or equal to

 ■ <=: Less than or equal to

 ■ &&: And

 ■ ||: Or

Expressions may be grouped using parentheses.

There is limited support for loops because, for safety, the BPF verifier rejects any code that might 
trigger an infinite loop. bpftrace supports unrolled loops, and a future version should support 
bounded loops.

5.10.1 Filter

Introduced earlier, these gate whether an action is executed. Format:

probe /filter/ { action }

Boolean operators may be used. The filter /pid == 123/ only executes the action if the pid built-in 
equals 123.

5.10.2 Ternary Operators

A ternary operator is a three-element operator composed of a test and two outcomes. Format:

test ? true_statement : false_statement

As an example, you can use a ternary operator to find the absolute value of $x:

$abs = $x >= 0 ? $x : - $x;
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5.10.3 If Statements

If statements have the following syntax:

if (test) { true_statements }

if (test) { true_statements } else { false_statements }

One use case is with programs that perform different actions on IPv4 than on IPv6. For example:

if ($inet_family == $AF_INET) {

    // IPv4

    ...

} else {

    // IPv6

    ...

}

“else if” statements are not currently supported.

5.10.4 Unrolled Loops

BPF runs in a restricted environment where it must be possible to verify that a program ends and 
does not get stuck in an infinite loop. For programs that need some loop functionality, bpftrace 
supports unrolled loops with unroll().

Syntax:

unroll (count) { statements }

The count is an integer literal (constant) with a maximum of 20. Providing the count as a variable 
is not supported, as the number of loop iterations must be known in the BPF compile stage.

The Linux 5.3 kernel included support for BPF bounded loops. Future versions of bpftrace should 
support this capability, such as by providing for and while loops, in addition to unroll.

5.11 bpftrace Operators

The previous section listed Boolean operators for use in tests. bpftrace also supports the following 
operators:

 ■ =: Assignment

 ■ +, -, *, /: Addition, subtraction, multiplication, division

 ■ ++, --: Auto-increment, auto-decrement

 ■ &, |, ^: Binary and, binary or, binary exclusive or
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 ■ !: Logical not

 ■ <<, >>: Shift left, shift right

 ■ +=, -=, *=, /=, %=, &=, ^=, <<=, >>=: Compound operators

These operators were modeled after similar operators in the C programming language.

5.12 bpftrace Variables

As introduced in Section 5.7.10, there are three variable types: built-in, scratch, and map variables.

5.12.1 Built-in Variables

The built-in variables provided by bpftrace are usually for read-only access of information. The 
most important built-in variables are listed in Table 5-5.

Table 5-5 bpftrace Selected Built-in Variables

Built-in Variable Type Description

pid integer Process ID (kernel tgid)

tid integer Thread ID (kernel pid)

uid integer User ID

username string Username

nsecs integer Timestamp, in nanoseconds

elapsed integer Timestamp, in nanoseconds, since bpftrace initialization

cpu integer Processor ID

comm string Process name

kstack string Kernel stack trace

ustack string User-level stack trace

arg0, ..., argN integer Arguments to some probe types (see Section 5.9)

args struct Arguments to some probe types (see Section 5.9)

retval integer Return value for some probe types (see Section 5.9)

func string Name of the traced function

probe string Full name of the current probe

curtask integer Kernel task_struct as a unsigned 64-bit integer (can be 
cast)

cgroup integer Cgroup ID

$1, ..., $N int, char * Positional parameters for the bpftrace program
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All integers are currently uint64. These variables all refer to the currently running thread, probe, 
function, and CPU when the probe fires. See the online “bpftrace Reference Guide” for the full 
and updated list of built-in variables [66].

5.12.2 Built-ins: pid, comm, and uid

Many built-ins are straightforward to use. This example uses pid, comm, and uid to print who is 
calling the setuid() syscall:

# bpftrace -e 't:syscalls:sys_enter_setuid {

    printf("setuid by PID %d (%s), UID %d\n", pid, comm, uid); }'

Attaching 1 probe...

setuid by PID 3907 (sudo), UID 1000

setuid by PID 14593 (evil), UID 33

^C

Just because a syscall was called doesn’t mean it was successful. You can trace the return value by 
using a different tracepoint:

# bpftrace -e 'tracepoint:syscalls:sys_exit_setuid {

    printf("setuid by %s returned %d\n", comm, args->ret); }'

Attaching 1 probe...

setuid by sudo returned 0

setuid by evil returned -1

^C

This uses another built-in, args. For tracepoints, args is a struct type that provides custom fields.

5.12.3 Built-ins: kstack and ustack

kstack and ustack return kernel- and user-level stack traces as a multi-line string. They return up 
to 127 frames of stack trace. The kstack() and ustack() functions, covered later, allow you to select 
the number of frames.

For example, printing kernel stack traces on block I/O insert using kstack:

# bpftrace -e 't:block:block_rq_insert { printf("Block I/O by %s\n", kstack); }'

Attaching 1 probe...

 

Block I/O by

        blk_mq_insert_requests+203

        blk_mq_sched_insert_requests+111

        blk_mq_flush_plug_list+446

        blk_flush_plug_list+234

        blk_finish_plug+44

        dmcrypt_write+593
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        kthread+289

        ret_from_fork+53

 

Block I/O by

        blk_mq_insert_requests+203

        blk_mq_sched_insert_requests+111

        blk_mq_flush_plug_list+446

        blk_flush_plug_list+234

        blk_finish_plug+44

        __do_page_cache_readahead+474

        ondemand_readahead+282

        page_cache_sync_readahead+46

        generic_file_read_iter+2043

        ext4_file_read_iter+86

        new_sync_read+228

        __vfs_read+41

        vfs_read+142

        kernel_read+49

        prepare_binprm+239

        do_execveat_common.isra.34+1428

        sys_execve+49

        do_syscall_64+115

        entry_SYSCALL_64_after_hwframe+61

[...]

Each stack trace is printed with frames in child-to-parent order and with each frame as the 
function name + function offset.

The stack built-ins can also be used as keys in maps, allowing them to be frequency counted. 
For example, counting kernel stacks that led to block I/O:

# bpftrace -e 't:block:block_rq_insert { @[kstack] = count(); }'

Attaching 1 probe...

^C

[...]

@[

    blk_mq_insert_requests+203

    blk_mq_sched_insert_requests+111

    blk_mq_flush_plug_list+446

    blk_flush_plug_list+234

    blk_finish_plug+44

    dmcrypt_write+593

    kthread+289

    ret_from_fork+53

]: 39
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@[

    blk_mq_insert_requests+203

    blk_mq_sched_insert_requests+111

    blk_mq_flush_plug_list+446

    blk_flush_plug_list+234

    blk_finish_plug+44

    __do_page_cache_readahead+474

    ondemand_readahead+282

    page_cache_sync_readahead+46

    generic_file_read_iter+2043

    ext4_file_read_iter+86

    new_sync_read+228

    __vfs_read+41

    vfs_read+142

    sys_read+85

    do_syscall_64+115

    entry_SYSCALL_64_after_hwframe+61

]: 52

Only the last two stacks are shown here, with counts of 39 and 52. Counting is more efficient 
than printing out each stack, as the stack traces are counted in kernel context for efficiency.8

5.12.4 Built-ins: Positional Parameters

Positional parameters are passed to the program on the command line, and are based on 
positional parameters used in shell scripting. $1 refers to the first argument, $2 the second, and 
so on.

For example, the simple program watchconn.bt:

BEGIN

{

        printf("Watching connect() calls by PID %d\n", $1);

}

 

tracepoint:syscalls:sys_enter_connect

/pid == $1/

{

        printf("PID %d called connect()\n", $1);

}

8 BPF turns each stack into a unique stack ID and then frequency counts the IDs. bpftrace reads these frequency 

counts and then fetches the stacks for each ID.
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watches the PID passed in on the command line:

# ./watchconn.bt 181

Attaching 2 probes...

Watching connect() calls by PID 181

PID 181 called connect()

[...]

These positional parameters also work with these invocation types:

bpftrace ./watchconn.bt 181

bpftrace -e 'program' 181

They are integers by default. If a string is used as an argument, it must be accessed via a str() call. 
For example:

# bpftrace -e 'BEGIN { printf("Hello, %s!\n", str($1)); }' Reader

Attaching 1 probe...

Hello, Reader!

^C

If a parameter that is accessed is not provided at the command line, it is zero in integer context, or 
"" if accessed via str().

5.12.5 Scratch

Format:

$name

These variables can be used for temporary calculations within an action clause. Their type is 
determined on first assignment, and they can be integers, strings, struct pointers, or structs.

5.12.6 Maps

Format:

@name

@name[key]

@name[key1, key2[, ...]]

For storage, these variables use the BPF map object, which is a hash table (associative array) that 
can be used for different storage types. Values can be stored using one or more keys. Maps must 
have consistent key and value types.
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As with scratch variables, the type is determined upon first assignment, which includes 
assignment to special functions. With maps, the type includes the keys, if present, as well as the 
value. For example, consider these first assignments:

@start = nsecs;

@last[tid] = nsecs;

@bytes = hist(retval);

@who[pid, comm] = count();

Both the @start and @last maps become integer types because an integer is assigned to them: the 
nanosecond timestamp built-in (nsecs). The @last map also requires a key of type integer because 
it uses an integer key: the thread ID (tid). The @bytes map becomes a special type, a power-of-two 
histogram, which handles storage and the printing of the histogram. Finally, the @who map has 
two keys, integer (pid) and string (comm), and the value is the count() map function.

These functions are covered in Section 5.14.

5.13 bpftrace Functions

bpftrace provides built-in functions for various tasks. The most important of them are listed in 
Table 5-6.

Table 5-6 bpftrace Selected Built-in Functions

Function Description

printf(char *fmt [, ...]) Prints formatted

time(char *fmt) Prints formatted time

join(char *arr[]) Prints the array of strings, joined by a space character

str(char *s [, int len]) Returns the string from the pointer s, with an optional 
length limit

kstack(int limit) Returns a kernel stack up to limit frames deep

ustack(int limit) Returns a user stack up to limit frames deep

ksym(void *p) Resolves the kernel address and returns the string symbol

usym(void *p) Resolves the user-space address and returns the string 
symbol

kaddr(char *name) Resolves the kernel symbol name to an address

uaddr(char *name) Resolves the user-space symbol name to an address

reg(char *name) Returns the value stored in the named register

ntop([int af,] int addr) Returns a string representation of an IP address

system(char *fmt [, ...]) Executes a shell command

cat(char *filename) Prints the contents of a file

exit() Exits bpftrace
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Some of these functions are asynchronous: The kernel queues the event, and a short time later 
it is processed in user space. The asynchronous functions are printf(), time(), cat(), join(), and 
system(). kstack(), ustack(), ksym(), and usym() record addresses synchronously, but they do 
symbol translation asynchronously.

See the online “bpftrace Reference Guide” for the full and updated list of functions [66]. 
A selection of these functions are discussed in the following sections.

5.13.1 printf()

The printf() call, short for print formatted, behaves as it does in C and other languages. Syntax:

printf(format [, arguments ...])

The format string can contain any text message, as well as escape sequences beginning with ‘\’, 
and field descriptions beginning with ‘%’. If no arguments are given, no field descriptions are 
required.

Commonly used escape sequences are:

 ■ \n: New line

 ■ \": Double quote

 ■ \\: Backslash

See the printf(1) man page for other escape sequences.

Field descriptions begin with ‘%’, and have the format:

% [-] width type

The ‘-’ sets the output to be left-justified. The default is right-justified.

The width is the number of characters that the field is wide.

The type is either:

 ■ %u, %d: Unsigned int, int

 ■ %lu, %ld: Unsigned long, long

 ■ %llu, %lld: Unsigned long long, long long

 ■ %hu, %hd: Unsigned short, short

 ■ %x, %lx, %llx: Hexadecimal: unsigned int, unsigned long, unsigned long long

 ■ %c: Character

 ■ %s: String

This printf() call:

printf("%16s %-6d\n", comm, pid)
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prints the comm built-in as a 16-character-wide string field, right-justified, and the pid built-in as 
a six-character-wide integer field, left-justified, followed by a new line.

5.13.2 join()

join() is a special function for joining an array of strings with a space character and printing them 
out. Syntax:

join(char *arr[])

For example, this one-liner shows attempted execution of commands with their arguments:

# bpftrace -e 'tracepoint:syscalls:sys_enter_execve { join(args->argv); }'

Attaching 1 probe...

ls -l

df -h

date

ls -l bashreadline.bt biolatency.bt biosnoop.bt bitesize.bt

It prints the argv array argument to the execve() syscall. Note that this is showing attempted 
execution: The syscalls:sys_exit_execve tracepoint and its args->ret value show whether the syscall 
succeeded.

join() may be a handy function in some circumstances, but it has limitations on the number of 
arguments it can join, and their size.9 If the output appears truncated, it is likely that you have hit 
these limits and need to use a different approach.

There has been work to change the behavior of join() to make it return a string rather than print 
one out. This would change the previous bpftrace one-liner to be:

# bpftrace -e 'tracepoint:syscalls:sys_enter_execve {

    printf("%s\n", join(args->argv); }'

This change would also make join() no longer be an asynchronous function.10

5.13.3 str()

str() returns the string from a pointer (char *). Syntax:

str(char *s [, int length])

9 The current limits are 16 arguments and a size of 1 Kbyte each. It prints out all arguments until it reaches one that is 

NULL or hits the 16-argument limit.

10 See bpftrace issue 26 for the status of this change [67]. It has not been a priority to do, since so far join() has only 

had one use case: joining args->argv for the execve syscall tracepoint.
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For example, the return value from the bash(1) shell readline() function is a string and can be 
printed using11:

# bpftrace -e 'ur:/bin/bash:readline { printf("%s\n", str(retval)); }'

Attaching 1 probe...

ls -lh

date

echo hello BPF

^C

This one-liner can show all bash interactive commands system-wide.

By default, the string has a size limit of 64 bytes, which can be tuned using the bpftrace 
environment variable BPFTRACE_STRLEN. Sizes over 200 bytes are not currently allowed; this is a 
known limitation, and one day the limit may be greatly increased.12

5.13.4 kstack() and ustack()

kstack() and ustack() are similar to the kstack and ustack built-ins, but they accept a limit 
argument and an optional mode argument. Syntax:

kstack(limit)

kstack(mode[, limit])

ustack(limit)

ustack(mode[, limit])

For example, showing the top three kernel frames that led to creating block I/O, by tracing the 
block:block_rq_insert tracepoint:

# bpftrace -e 't:block:block_rq_insert { @[kstack(3), comm] = count(); }'

Attaching 1 probe...

^C

 

@[

    __elv_add_request+231

    blk_execute_rq_nowait+160

    blk_execute_rq+80

, kworker/u16:3]: 2

@[

    blk_mq_insert_requests+203

    blk_mq_sched_insert_requests+111

    blk_mq_flush_plug_list+446

11 This assumes that readline() is in the bash(1) binary; some builds of bash(1) may call it from libreadline instead, 

and this one-liner will need to be modified to match. See Section 12.2.3 in Chapter 12.

12 This is tracked by bpftrace issue 305 [68]. The problem is that string storage currently uses the BPF stack, which is 

limited to 512 bytes and hence has a low string limit (200 bytes). String storage should be changed to use a BPF map, 

at which point very large strings (Mbytes) should be possible.
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, mysqld]: 2

@[

    blk_mq_insert_requests+203

    blk_mq_sched_insert_requests+111

    blk_mq_flush_plug_list+446

, dmcrypt_write]: 961

The current maximum stack size allowed is 1024 frames.

The mode argument allows the stack output to be formatted differently. Only two modes are 
currently supported: "bpftrace", the default; and "perf", which produces a stack format similar to 
that of the Linux perf(1) utility. For example:

# bpftrace -e 'k:do_nanosleep { printf("%s", ustack(perf)); }'

Attaching 1 probe...

[...]

        7f220f1f2c60 nanosleep+64 (/lib/x86_64-linux-gnu/libpthread-2.27.so)

        7f220f653fdd g_timeout_add_full+77 (/usr/lib/x86_64-linux-gnu/libglib-

2.0.so.0.5600.3)

        7f220f64fbc0 0x7f220f64fbc0 ([unknown])

        841f0f 0x841f0f ([unknown])

Other modes may be supported in the future.

5.13.5 ksym() and usym()

The ksym() and usym() functions resolve addresses into their symbol names (strings). ksym() is for 
kernel addresses, and usym() is for user-space addresses. Syntax:

ksym(addr)

usym(addr)

For example, the timer:hrtimer_start tracepoint has a function pointer argument. Frequency 
counts:

# bpftrace -e 'tracepoint:timer:hrtimer_start { @[args->function] = count(); }'

Attaching 1 probe...

^C

 

@[-1169374160]: 3

@[-1168782560]: 8

@[-1167295376]: 9

@[-1067171840]: 145

@[-1169062880]: 200

@[-1169114960]: 2517

@[-1169048384]: 8237
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These are raw addresses. Using ksym() to convert these to kernel function names:

# bpftrace -e 'tracepoint:timer:hrtimer_start { @[ksym(args->function)] = count(); }'

Attaching 1 probe...

^C

 

@[sched_rt_period_timer]: 4

@[watchdog_timer_fn]: 8

@[timerfd_tmrproc]: 15

@[intel_uncore_fw_release_timer]: 1111

@[it_real_fn]: 2269

@[hrtimer_wakeup]: 7714

@[tick_sched_timer]: 27092

usym() relies on symbol tables in the binary for symbol lookup.

5.13.6 kaddr() and uaddr()

kaddr() and uaddr() take a symbol name and return the address. kaddr() is for kernel symbols, and 
uaddr() is for user-space symbols. Syntax:

kaddr(char *name)

uaddr(char *name)

For example, looking up the user-space symbol "ps1_prompt" when a bash(1) shell function is 
called, and then dereferencing it and printing it as a string:

# bpftrace -e 'uprobe:/bin/bash:readline {

    printf("PS1: %s\n", str(*uaddr("ps1_prompt"))); }'

Attaching 1 probe...

PS1: \[\e[34;1m\]\u@\h:\w>\[\e[0m\]

PS1: \[\e[34;1m\]\u@\h:\w>\[\e[0m\]

^C

This is printing the contents of the symbol—in this case the bash(1) PS1 prompt.

5.13.7 system()

system() executes a command at the shell. Syntax:

system(char *fmt [, arguments ...])
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Since anything can be run at the shell, system() is deemed an unsafe function and requires the 
--unsafe bpftrace option to be used.

For example, calling ps(1) to print details on the PID calling nanosleep():

# bpftrace --unsafe -e 't:syscalls:sys_enter_nanosleep { system("ps -p %d\n",

    pid); }'

Attaching 1 probe...

  PID TTY          TIME CMD

29893 tty2     05:34:22 mysqld

  PID TTY          TIME CMD

29893 tty2     05:34:22 mysqld

  PID TTY          TIME CMD

29893 tty2     05:34:22 mysqld

[...]

If the traced event was frequent, using system() could create a storm of new process events that 
consume CPU resources. Only use system() when necessary.

5.13.8 exit()

This terminates the bpftrace program. Syntax:

exit()

This function can be used in an interval probe to instrument for a fixed duration. For example:

# bpftrace -e 't:syscalls:sys_enter_read { @reads = count(); }

    interval:s:5 { exit(); }'

Attaching 2 probes...

@reads: 735

This shows that in five seconds, there were 735 read() syscalls. All maps are printed out upon 
bpftrace termination, as seen in this example.

5.14 bpftrace Map Functions

Maps are special hash table storage objects from BPF that can be used for different purposes—for 
example, as hash tables to store key/value pairs or for statistical summaries. bpftrace provides 
built-in functions for map assignment and manipulation, mostly for supporting statistical 
summary maps. The most important map functions are listed in Table 5-7.
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Table 5-7 bpftrace Selected Map Functions

Function Description

count() Counts occurrences

sum(int n) Sums the value

avg(int n) Averages the value

min(int n) Records the minimum value

max(int n) Records the maximum value

stats(int n) Returns the count, average, and total

hist(int n) Prints a power-of-two histogram of values

lhist(int n, int min, int 

max, int step)
Prints a linear histogram of values

delete(@m[key]) Deletes the map key/value pair

print(@m [, top [, div]]) Prints the map, with optional limits and a divisor

clear(@m) Deletes all keys from the map

zero(@m) Sets all map values to zero

Some of these functions are asynchronous: The kernel queues the event, and a short time later, it 
is processed in user space. The asynchronous actions are print(), clear(), and zero(). Bear in mind 
this delay when you are writing programs.

See the online “bpftrace Reference Guide” for the full and updated list of functions [66]. 
A selection of these functions are discussed in the following sections.

5.14.1 count()

count() counts occurrences. Syntax:

@m = count();

This function can be used with probe wildcards and the probe built-in to count events:

# bpftrace -e 'tracepoint:block:* { @[probe] = count(); }'

Attaching 18 probes...

^C

 

@[tracepoint:block:block_rq_issue]: 1

@[tracepoint:block:block_rq_insert]: 1

@[tracepoint:block:block_dirty_buffer]: 24

@[tracepoint:block:block_touch_buffer]: 29

@[tracepoint:block:block_rq_complete]: 52
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@[tracepoint:block:block_getrq]: 91

@[tracepoint:block:block_bio_complete]: 102

@[tracepoint:block:block_bio_remap]: 180

@[tracepoint:block:block_bio_queue]: 270

With the interval probe, a per-interval rate can be printed, for example:

# bpftrace -e 'tracepoint:block:block_rq_i* { @[probe] = count(); }

    interval:s:1 { print(@); clear(@); }'

Attaching 3 probes...

@[tracepoint:block:block_rq_issue]: 1

@[tracepoint:block:block_rq_insert]: 1

 

@[tracepoint:block:block_rq_insert]: 6

@[tracepoint:block:block_rq_issue]: 8

 

@[tracepoint:block:block_rq_issue]: 1

@[tracepoint:block:block_rq_insert]: 1

[...]

This basic functionality can also be accomplished by using perf(1) and perf stat, as well as 
Ftrace. bpftrace enables more customizations: A BEGIN probe could contain a printf() call to 
explain the output, and the interval probe could include a time() call to annotate each interval 
with timestamps.

5.14.2 sum(), avg(), min(), and max()

These functions store basic statistics—the sum, average, minimum, and maximum—as a map. 
Syntax:

sum(int n)

avg(int n)

min(int n)

max(int n)

For example, using sum() to find the total bytes read via the read(2) syscall:

# bpftrace -e 'tracepoint:syscalls:sys_exit_read /args->ret > 0/ {

   @bytes = sum(args->ret); }'

Attaching 1 probe...

^C

 

@bytes: 461603
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The map was named “bytes” to annotate the output. Note that this example uses a filter to ensure 
that args->ret is positive: A positive return value from read(2) indicates the number of bytes read, 
whereas a negative return value is an error code. This is documented in the man page for read(2).

5.14.3 hist()

hist() stores a value in a power-of-two histogram. Syntax:

hist(int n)

For example, a histogram of successful read(2) sizes:

# bpftrace -e 'tracepoint:syscalls:sys_exit_read { @ret = hist(args->ret); }'

Attaching 1 probe...

^C

 

@ret:

(..., 0)             237 |@@@@@@@@@@@@@@                                      |

[0]                   13 |                                                    |

[1]                  859 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[2, 4)                57 |@@@                                                 |

[4, 8)                 5 |                                                    |

[8, 16)              749 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       |

[16, 32)              69 |@@@@                                                |

[32, 64)              64 |@@@                                                 |

[64, 128)             25 |@                                                   |

[128, 256)             7 |                                                    |

[256, 512)             5 |                                                    |

[512, 1K)              7 |                                                    |

[1K, 2K)              32 |@                                                   |

Histograms are useful for identifying distribution characteristics such as multi-modal distributions 
and outliers. This example histogram has multiple modes, one for reads that were 0 or less in 
size (less than zero will be error codes), another mode for one byte in size, and another for sizes 
between eight to 16 bytes.

The characters in the ranges are from interval notation:

 ■ "[": Equal to or greater than

 ■ "]": Equal to or less than

 ■ "(": Greater than

 ■ ")": Less than

 ■ "…": Infinite

The range "[4, 8)" means between four and less-than-eight (that is, between four and 7.9999, etc.).
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5.14.4 lhist()

lhist() stores a value as a linear histogram. Syntax:

lhist(int n, int min, int max, int step)

For example, a linear histogram of read(2) returns:

# bpftrace -e 'tracepoint:syscalls:sys_exit_read {

    @ret = lhist(args->ret, 0, 1000, 100); }'

Attaching 1 probe...

^C

 

@ret:

(..., 0)             101 |@@@                                                 |

[0, 100)            1569 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[100, 200)             5 |                                                    |

[200, 300)             0 |                                                    |

[300, 400)             3 |                                                    |

[400, 500)             0 |                                                    |

[500, 600)             0 |                                                    |

[600, 700)             3 |                                                    |

[700, 800)             0 |                                                    |

[800, 900)             0 |                                                    |

[900, 1000)            0 |                                                    |

[1000, ...)            5 |                                                    |

The output shows that most reads were between zero and (less than) 100 bytes. The ranges are 
printed using the same interval notation as with hist(). The "(..., 0)" line shows the error count: 
101 read(2) errors while tracing. Note that error counts are better viewed differently, such as by 
using a frequency count of the error codes:

# bpftrace -e 'tracepoint:syscalls:sys_exit_read /args->ret < 0/ {

    @[- args->ret] = count(); }'

Attaching 1 probe...

^C

 

@[11]: 57

Error code 11 is EAGAIN (try again). read(2) returns it as -11.

5.14.5 delete()

delete() deletes a key/value pair from a map. Syntax:

delete(@map[key])
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There may be more than one key, as needed, to match the map type.

5.14.6 clear() and zero()

clear() deletes all key/value pairs from a map, and zero() sets all values to zero. Syntax:

clear(@map)

zero(@map)

When bpftrace terminates, all maps are printed out by default. Some maps, such as those used for 
timestamp delta calculations, aren’t intended to be part of the tool output. They can be cleaned 
up in an END probe to prevent their automatic printing:

[...]

END

{

    clear(@start);

}

5.14.7 print()

print() prints maps. Syntax:

print(@m [, top [, div]])

Two optional arguments can be provided: a top integer, so that only the top number of entries is 
printed, and a divisor integer, which divides the value.

To demonstrate the top argument, the following prints the top five kernel function calls that 
begin with "vfs_":

# bpftrace -e 'kprobe:vfs_* { @[probe] = count(); } END { print(@, 5); clear(@); }'

Attaching 55 probes...

^C

@[kprobe:vfs_getattr_nosec]: 510

@[kprobe:vfs_getattr]: 511

@[kprobe:vfs_writev]: 1595

@[kprobe:vfs_write]: 2086

@[kprobe:vfs_read]: 2921

While tracing, vfs_read() was called the most (2921 times).
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To demonstrate the div argument, the following records time spent in vfs_read() by process name 
and prints it out in milliseconds:

# bpftrace -e 'kprobe:vfs_read { @start[tid] = nsecs; }

    kretprobe:vfs_read /@start[tid]/ {

      @ms[comm] = sum(nsecs - @start[tid]); delete(@start[tid]); }

    END { print(@ms, 0, 1000000); clear(@ms); clear(@start); }'

Attaching 3 probes...

[...]

@ms[Xorg]: 3

@ms[InputThread]: 3

@ms[chrome]: 4

@ms[Web Content]: 5

Why was it necessary to have the divisor? You could try writing this program like this instead:

@ms[comm] = sum((nsecs - @start[tid]) / 1000000);

However, sum() operates on integers, and decimal places are rounded down (floored). So any 
duration less than one millisecond is summed as zero. This results in an output ruined by 
rounding errors. The solution is to sum() nanoseconds, which preserves the sub-millisecond 
durations, and then do the divisor on the totals as the argument to print().

A future bpftrace change may allow print() to print any type, not just maps, without formatting.

5.15 bpftrace Future Work

There are a number of planned additions to bpftrace that may be available by the time you read 
this book. See the bpftrace release notes and documentation in the repository for these additions: 
https://github.com/iovisor/bpftrace.

There are no planned changes to the bpftrace source code included in this book. In case changes 
do become necessary, check for updates on this book’s website: http://www.brendangregg.com/
bpf-performance-tools-book.html.

5.15.1 Explicit Address Modes

The largest addition to bpftrace will be explicit address space access to support a future split of 
bpf_probe_read() into bpf_probe_read_kernel() and bpf_probe_read_user() [69]. This split is 
necessary to support some processor architectures.13 It should not affect any of the tools in this 
book. It should result in the addition of kptr() and uptr() bpftrace functions to specify the address 
mode. Needing to use these should be rare: bpftrace will figure out the address space context 

13 “They are rare, but they exist. At least sparc32 and the old 4G:4G split x86.”—Linus Torvalds [70]

https://github.com/iovisor/bpftrace
http://www.brendangregg.com/bpf-performance-tools-book.html
http://www.brendangregg.com/bpf-performance-tools-book.html
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whenever possible from the probe type or function used. The following shows how the probe 
context should work:

kprobe/kretprobe (kernel context):

 ■ arg0...argN, retval: When dereferenced, are kernel addresses.

 ■ *addr: Dereferences a kernel address.

 ■ str(addr): Fetches a NULL-terminated kernel string.

 ■ *uptr(addr): Dereferences a user address.

 ■ str(uptr(addr)): Fetches a null-terminated user string.

uprobe/uretprobe (user context):

 ■ arg0...argN, retval: When dereferenced, are user addresses.

 ■ *addr: Dereferences a user address.

 ■ str(addr): Fetches a NULL-terminated user string.

 ■ *kptr(addr): Dereferences a kernel address.

 ■ str(kptr(addr)): Fetches a NULL-terminated kernel string.

So *addr and str() will continue to work, but will refer to the probe-context address space: kernel 
memory for kprobes and user memory for uprobes. To cross address spaces, the kptr() and uptr() 
functions must be used. Some functions, such as curtask(), will always return a kernel pointer, 
regardless of the context (as would be expected).

Other probe types default to kernel context, but there will be some exceptions, documented in 
the “bpftrace Reference Guide” [66]. One exception will be syscall tracepoints, which refer to user 
address space pointers, and so their probe action will be in user space context.

5.15.2 Other Additions

Other planned additions include:

 ■ Additional probe types for memory watchpoints,14 socket and skb programs, and raw 
tracepoints

 ■ uprobe and kprobe function offset probes

 ■ for and while loops that make use of BPF bounded loops in Linux 5.3

 ■ Raw PMC probes (providing a umask and event select)

 ■ uprobes to also support relative names without full paths (e.g., both uprobe:/lib/x86_64-
linux-gnu/libc.so.6:... and uprobe:libc:... should work)

 ■ signal() to raise a signal (including SIGKILL) to processes

14 Dan Xu has already developed a proof of concept implementation for memory watchpoints that is included in 

bpftrace [71].
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 ■ return() or override() to rewrite the return of events (using bpf_override_return())

 ■ ehist() for exponential histograms. Any tool or one-liner that currently uses the power-
of-two hist() could be switched to ehist() for more resolution.

 ■ pcomm to return the process name. comm returns the thread name, which is usually the 
same, but some applications, such as Java, may set comm to per-thread names; in that case, 
pcomm would still return "java".

 ■ A helper function for struct file pointers to full pathnames

Once these additions are available, you may want to switch a few tools in this book from hist() to 
ehist() for more resolution, and some uprobe tools to use relative library names instead of the full 
paths for ease of use.

5.15.3 ply

The ply BPF front end, created by Tobias Waldekranz, provides a high-level language similar to 
bpftrace and requires minimal dependencies (no LLVM or Clang). This makes it suited to resource-
constrained environments, with the drawback that struct navigation and including header files 
(as required by many tools in this book) are not possible.

An example of ply instrumenting the open(2) tracepoint:

# ply 'tracepoint:syscalls/sys_enter_open {

    printf("PID: %d (%s) opening: %s\n", pid, comm, str(data->filename)); }'

ply: active

PID: 22737 (Chrome_IOThread) opening: /dev/shm/.org.chromium.Chromium.dh4msB

PID: 22737 (Chrome_IOThread) opening: /dev/shm/.org.chromium.Chromium.dh4msB

PID: 22737 (Chrome_IOThread) opening: /dev/shm/.org.chromium.Chromium.2mIlx4

[...]

The above one-liner is almost identical to the equivalent in bpftrace. A future version of ply 
could support the bpftrace language directly, providing a lightweight tool for running bpftrace 
one-liners. These one-liners typically do not use struct navigation other than the tracepoint 
arguments (as shown by this example), which ply already supports. In the distant future, with 
BTF availability, ply could use BTF for struct information, allowing it to run more of the 
bpftrace tools.

5.16 bpftrace Internals

Figure 5-3 shows the internal operation of bpftrace.

http://.org.chromium
http://.org.chromium
http://.org.chromium
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Figure 5-3 bpftrace internals

bpftrace uses libbcc and libbpf to attach to probes, load programs, and use USDT. It also uses 
LLVM for compiling the program to BPF bytecode.

The bpftrace language is defined by lex and yacc files that are processed by flex and bison. The 
output is the program as an abstract syntax tree (AST). Tracepoint and Clang parsers then process 
structs. A semantic analyzer checks the use of language elements, and throws errors for misuse. 
The next step is code generation—converting the AST nodes to LLVM IR, which LLVM finally 
compiles to BPF bytecode.

The next section introduces bpftrace debugging modes that show these steps in action: -d prints 
the AST and the LLVM IR, and -v prints the BPF bytecode.

5.17 bpftrace Debugging

There are various ways to debug and troubleshoot bpftrace programs. This section summarizes 
printf() statements and bpftrace debug modes. If you are here because you are troubleshooting an 
issue, also see Chapter 18, which covers common issues, including missing events, missing stacks, 
and missing symbols.

While bpftrace is a powerful language, it is really composed from a set of rigid capabilities that are 
designed to work safely together and to reject misuse. In comparison, BCC, which allows C and 
Python programs, uses a much larger set of capabilities that were not designed solely for tracing 
and that may not necessarily work together. The result is that bpftrace programs tend to fail with 
human-readable messages that do not require further debugging, whereas BCC programs can fail 
in unexpected ways, and require debugging modes to solve.
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5.17.1 printf() Debugging

printf() statements can be added to show whether probes are really firing and  whether variables 
are what you think they are. Consider the following program: it prints a histogram of vfs_read() 
duration. However, if you run it, you may discover that the output includes outliers with 
unbelievably high durations. Can you spot the bug?

kprobe:vfs_read

{

        @start[tid] = nsecs;

}

 

kretprobe:vfs_read

{

        $duration_ms = (nsecs - @start[tid]) / 1000000;

        @ms = hist($duration_ms);

        delete(@start[tid]);

}

If bpftrace begins running halfway through a vfs_read() call, then only the kretprobe will fire, and 
the latency calculation becomes "nsecs - 0", as @start[tid] is uninitialized. The fix is to use a filter 
on the kretprobe to check that @start[tid] is non-zero before you use it in the calculation. This 
could be debugged with a printf() statement to examine the inputs:

printf("$duration_ms = (%d - %d) / 1000000\n", nsecs, @start[tid]);

There are bpftrace debug modes (covered next), but bugs like this may be quickly solved with a 
well-placed printf().

5.17.2 Debug Mode

The -d option to bpftrace runs debug mode, which does not run the program but instead shows 
how it was parsed and converted to LLVM IR. Note that this mode may only really be of interest to 
developers of bpftrace itself, and it is included here for awareness.

It begins by printing an abstract syntax tree (AST) representation of the program:

# bpftrace -d -e 'k:vfs_read { @[pid] = count(); }'

Program

 k:vfs_read

  =

   map: @

    builtin: pid

   call: count
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followed by the program converted to LLVM IR assembly:

; ModuleID = 'bpftrace'

source_filename = "bpftrace"

target datalayout = "e-m:e-p:64:64-i64:64-n32:64-S128"

target triple = "bpf-pc-linux"

 

; Function Attrs: nounwind

declare i64 @llvm.bpf.pseudo(i64, i64) #0

 

; Function Attrs: argmemonly nounwind

declare void @llvm.lifetime.start.p0i8(i64, i8* nocapture) #1

 

define i64 @"kprobe:vfs_read"(i8* nocapture readnone) local_unnamed_addr section 

"s_kprobe:vfs_read_1" {

entry:

  %"@_val" = alloca i64, align 8

  %"@_key" = alloca [8 x i8], align 8

  %1 = getelementptr inbounds [8 x i8], [8 x i8]* %"@_key", i64 0, i64 0

  call void @llvm.lifetime.start.p0i8(i64 -1, i8* nonnull %1)

  %get_pid_tgid = tail call i64 inttoptr (i64 14 to i64 ()*)()

  %2 = lshr i64 %get_pid_tgid, 32

  store i64 %2, i8* %1, align 8

  %pseudo = tail call i64 @llvm.bpf.pseudo(i64 1, i64 1)

  %lookup_elem = call i8* inttoptr (i64 1 to i8* (i8*, i8*)*)(i64 %pseudo, [8 x i8]* 

nonnull %"@_key")

  %map_lookup_cond = icmp eq i8* %lookup_elem, null

  br i1 %map_lookup_cond, label %lookup_merge, label %lookup_success

 

lookup_success:                                   ; preds = %entry

  %3 = load i64, i8* %lookup_elem, align 8

  %phitmp = add i64 %3, 1

  br label %lookup_merge

 

lookup_merge:                                     ; preds = %entry, %lookup_success

  %lookup_elem_val.0 = phi i64 [ %phitmp, %lookup_success ], [ 1, %entry ]

  %4 = bitcast i64* %"@_val" to i8*

  call void @llvm.lifetime.start.p0i8(i64 -1, i8* nonnull %4)

  store i64 %lookup_elem_val.0, i64* %"@_val", align 8

  %pseudo1 = call i64 @llvm.bpf.pseudo(i64 1, i64 1)

  %update_elem = call i64 inttoptr (i64 2 to i64 (i8*, i8*, i8*, i64)*)(i64 %pseudo1, 

[8 x i8]* nonnull %"@_key", i64* nonnull %"@_val", i64 0)
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  call void @llvm.lifetime.end.p0i8(i64 -1, i8* nonnull %1)

  call void @llvm.lifetime.end.p0i8(i64 -1, i8* nonnull %4)

  ret i64 0

}

 

; Function Attrs: argmemonly nounwind

declare void @llvm.lifetime.end.p0i8(i64, i8* nocapture) #1

 

attributes #0 = { nounwind }

attributes #1 = { argmemonly nounwind }

There is also a -dd mode, verbose debug, that prints extra information: the LLVM IR assembly 
before and after optimization.

5.17.3 Verbose Mode

The -v option to bpftrace is verbose mode, printing extra information while running the 
program. For example:

# bpftrace -v -e 'k:vfs_read { @[pid] = count(); }'

Attaching 1 probe...

 

Program ID: 5994

 

Bytecode:

0: (85) call bpf_get_current_pid_tgid#14

1: (77) r0 >>= 32

2: (7b) *(u64 *)(r10 -16) = r0

3: (18) r1 = 0xffff892f8c92be00

5: (bf) r2 = r10

6: (07) r2 += -16

7: (85) call bpf_map_lookup_elem#1

8: (b7) r1 = 1

9: (15) if r0 == 0x0 goto pc+2

 R0=map_value(id=0,off=0,ks=8,vs=8,imm=0) R1=inv1 R10=fp0

10: (79) r1 = *(u64 *)(r0 +0)

 R0=map_value(id=0,off=0,ks=8,vs=8,imm=0) R1=inv1 R10=fp0

11: (07) r1 += 1

12: (7b) *(u64 *)(r10 -8) = r1

13: (18) r1 = 0xffff892f8c92be00

15: (bf) r2 = r10

16: (07) r2 += -16

17: (bf) r3 = r10

18: (07) r3 += -8
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19: (b7) r4 = 0

20: (85) call bpf_map_update_elem#2

21: (b7) r0 = 0

22: (95) exit

 

from 9 to 12: safe

processed 22 insns, stack depth 16

 

Attaching kprobe:vfs_read

Running...

^C

 

@[6169]: 1

@[28178]: 1

[...]

The program ID can be used with bpftool to print information on BPF kernel state, as shown in 
Chapter 2. The BPF bytecode is then printed, followed by the probe it is attaching to.

As with -d, this level of detail may only be of use to developers of bpftrace internals. Users should 
not need to be reading BPF bytecode while using bpftrace.

5.18 Summary

bpftrace is a powerful tracer with a concise high-level language. This chapter describes its features, 
tools, and example one-liners. It also covers programming and provides sections on probes, flow 
control, variables, and functions. The chapter finishes with debugging and internals.

The following chapters cover targets of analysis and include both BCC and bpftrace tools. An 
advantage of bpftrace tools is that their source code is often so concise that it can be included in 
this book.
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CPUs execute all software and are a common starting point for performance analysis. If you find 
a workload to be limited by the CPUs (“CPU bound”), you can investigate further by using CPU 
and processor-centric tools. There are countless sampling profilers and metrics available to help 
you understand CPU usage. Nonetheless (if perhaps surprisingly), there are still a number of areas 
where BPF tracing can help even further with CPU analysis.

Learning Objectives:

 ■ Understand CPU modes, the behavior of the CPU scheduler, and CPU caches

 ■ Understand areas for CPU scheduler, usage, and hardware analysis with BPF

 ■ Learn a strategy for successful analysis of CPU performance

 ■ Solve issues of short-lived processes consuming CPU resources

 ■ Discover and quantify issues of run queue latency

 ■ Determine CPU usage through profi led stack traces and function counts

 ■ Determine reasons why threads block and leave the CPU

 ■ Understand system CPU time by tracing syscalls

 ■ Investigate CPU consumption by soft and hard interrupts

 ■ Use bpftrace one-liners to explore CPU usage in custom ways

This chapter begins with the background you need to understand CPU analysis, summarizing the 
behavior of the CPU scheduler and CPU caches. I explore what questions BPF can answer, and 
provide an overall strategy to follow. To avoid reinventing the wheel and to direct further analysis, 
I first summarize traditional CPU tools, then BPF tools, including a list of BPF one-liners. This 
chapter ends with optional exercises.

6.1 Background

This section covers CPU fundamentals, BPF capabilities, and a suggested strategy for CPU analysis.
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6.1.1 CPU Fundamentals

CPU Modes

CPUs and other resources are managed by the kernel, which runs in a special privileged state 
called system mode. User-level applications run in user mode, which can only access resources 
through kernel requests. These requests can be explicit, such as system calls, or implicit, such as 
page faults triggered by memory loads and stores. The kernel tracks the amount of time that the 
CPUs are not idle, as well as CPU time spent in user mode and system mode. Various performance 
tools show this user/system time split.

The kernel usually only runs on demand, triggered by syscalls and interrupts. There are some 
exceptions, such as housekeeping threads that run in the background, consuming CPU resources. 
An example of this is a kernel routine to balance memory pages on non-uniform memory access 
(NUMA) systems, which can consume significant CPU resources without an explicit request from 
user-level applications. (This can be tuned or disabled.) Some file systems also have background 
routines, such as for periodically verifying checksums for data integrity.

CPU Scheduler

The kernel is also responsible for sharing CPU resources between consumers, which it manages via 
a CPU scheduler. The main consumers are threads (also called tasks) which belong to processes 
or kernel routines. Other CPU consumers include interrupt routines: These can be soft interrupts 
triggered by running software or hard interrupts triggered by hardware.

Figure 6-1 shows the CPU scheduler, picturing threads waiting their turn on run queues and how 
they move between different thread states.

Figure 6-1 CPU scheduler
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Three thread states are pictured in this diagram: ON-PROC for threads that are running on a CPU, 
RUNNABLE for threads that could run but are awaiting their turn, and SLEEP for threads that 
are blocked on another event, including uninterruptible waits. Threads waiting on a run queue 
are sorted by a priority value, which can be set by the kernel or by user processes to improve the 
performance of more important tasks. (Run queues are how scheduling was originally imple-
mented, and the term and mental model are still used to describe waiting tasks. However, the 
Linux CFS scheduler actually uses a red/black tree of future task execution.)

This book uses terminology based on these thread states: "on CPU" refers to ON-PROC, and "off 
CPU" refers to all other states, where the thread is not running on a CPU.

Threads leave the CPU in one of two ways: (1) voluntary, if they block on I/O, a lock, or a sleep; 
or (2) involuntary, if they have exceeded their scheduled allocation of CPU time and are desched-
uled so that other threads can run or if they are preempted by a higher-priority thread. When a 
CPU switches from running one process or thread to another, it switches address spaces and other 
metadata; this is called a context switch.1

Figure 6-1 also pictures thread migrations. If a thread is in the runnable state and sitting in a run 
queue while another CPU is idle, the scheduler may migrate the thread to the idle CPU’s run 
queue so that it can execute sooner. As a performance optimization, the scheduler uses logic to 
avoid migrations when the cost is expected to exceed the benefit, preferring to leave busy threads 
running on the same CPU where the CPU caches should still be warm.

CPU Caches

Whereas Figure 6-1 shows a software view of CPUs (the scheduler), Figure 6-2 provides a hardware 
view of the CPU caches.

Figure 6-2 Hardware caches

Depending on the processor model and type, there are typically multiple levels of CPU cache, 
increasing in both size and latency. They begin with the Level 1 cache, which is split into sepa-
rate instruction (I$) and data (D$) caches and is also small (Kbytes) and fast (nanoseconds). 
The caches end with the last-level cache (LLC), which is large (Mbytes) and much slower. On a 
processor with three levels of caches, the LLC is also the Level 3 cache. The Level 1 and 2 caches 
are usually per CPU core, and the Level 3 cache is usually shared across the socket. The memory 
management unit (MMU) responsible for translating virtual to physical addresses also has its own 
cache, the translation lookaside buffer (TLB).

1 There are also mode switches: Linux syscalls that do not block may only (depending on the processor) need to switch 

modes between user- and kernel-mode.
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CPUs have been scaling for decades by increasing clock speed, adding cores, and adding more 
hardware threads. Memory bandwidth and latency have also improved, especially by adding and 
increasing the size of CPU caches. However, memory performance has not scaled to the same 
degree as the CPUs. Workloads have become limited by memory performance (termed “memory-
bound”) rather than the CPU cores.

Further Reading

This has been a brief summary to arm you with some essential knowledge before you use the 
tools. CPU software and hardware are covered in much more depth in Chapter 6 of Systems 
Performance [Gregg 13b].

6.1.2 BPF Capabilities

Traditional performance tools provide various insights for CPU usage. For example, they can show 
CPU utilization by process, context switch rates, and run queue lengths. These traditional tools 
are summarized in the next section.

BPF tracing tools can provide many additional details, answering:

 ■ What new processes are created? What is their lifespan?

 ■ Why is system time high? Are syscalls the culprit? What are they doing?

 ■ How long do threads spend on-CPU for each wakeup?

 ■ How long do threads spend waiting on the run queues?

 ■ What is the maximum length of the run queues?

 ■ Are the run queues balanced across the CPUs?

 ■ Why are threads voluntarily leaving the CPU? For how long?

 ■ What soft and hard IRQs are consuming CPUs?

 ■ How often are CPUs idle when work is available on other run queues?

 ■ What is the LLC hit ratio, by application request?

These questions can be answered using BPF by instrumenting tracepoints for scheduler and syscall 
events, kprobes for scheduler internal functions, uprobes for application-level functions, and 
PMCs for timed sampling and low-level CPU activity. These event sources can also be mixed: A 
BPF program could use uprobes to fetch application context and then associate that with instru-
mented PMC events. Such a program could show the LLC hit ratio by application request, for 
example.

Metrics that BPF provides can be examined per event or as summary statistics, with distributions 
shown as histograms. Stack traces can also be fetched to show the reasons for events. All these 
activities have been optimized using in-kernel BPF maps and output buffers for efficiency.
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Event Sources

Table 6-1 lists the event sources for instrumenting CPU usage.

Table 6-1 Event Sources for Instrumenting CPUs

Event Type Event Source

Kernel functions kprobes, kretprobes

User-level functions uprobes, uretprobes

System calls syscall tracepoints

Soft interrupts irq:softirq* tracepoints

Hard interrupts irq:irq_handler* tracepoints

Workqueue events workqueue tracepoints (see Chapter 14)

Timed sampling PMC- or timer-based sampling

CPU power events power tracepoints

CPU cycles PMCs

Overhead

When tracing scheduler events, efficiency is especially important because scheduler events such 
as context switches may occur millions of times per second. While BPF programs are short and 
fast (microseconds), executing them for every context switch may cause this tiny overhead to add 
up to something measurable, or even significant. In the worst case, scheduler tracing can add over 
10% overhead to a system. If BPF were not optimized, this overhead would be prohibitively high.

Scheduler tracing with BPF can be used for short-term, ad hoc analysis, with the understanding 
that there will be overhead. Such overhead can be quantified using testing or experimentation 
to determine: If CPU utilization is steady from second to second, what is it when the BPF tool is 
running and not running?

CPU tools can avoid overhead by not instrumenting frequent scheduler events. Infrequent events, 
such as process execution and thread migrations (with at most thousands of events per second) 
can be instrumented with negligible overhead. Profiling (timed sampling) also limits overhead to 
the fixed rate of samples, reducing overhead to negligible proportions.

6.1.3 Strategy

If you are new to CPU performance analysis, it can be difficult to know where to start—which 
target to begin analyzing and with which tool. Here is a suggested overall strategy that you can 
follow:

 1. Ensure that a CPU workload is running before you spend time with analysis tools. Check 
system CPU utilization (e.g., using mpstat(1)) and ensure that all the CPUs are still online 
(and some haven’t been offlined for some reason).
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 2. Confirm that the workload is CPU bound.

a. Look for high CPU utilization system-wide or on a single CPU (e.g., using mpstat(1)).

b. Look for high run queue latency (e.g., using BCC runqlat(1)). Software limits such as 
those used by containers can artificially limit the CPU available to processes, so an 
application may be CPU bound on a mostly idle system. This counterintuitive scenario 
can be identified by studying run queue latency.

 3. Quantify CPU usage as percent utilization system-wide and then broken down by process, 
CPU mode, and CPU ID. This can be done using traditional tools (e.g., mpstat(1), top(1)). 
Look for high utilization by a single process, mode, or CPU.

a. For high system time, frequency-count system calls by process and call type, and also 
examine arguments to look for inefficiencies (e.g., using perf(1), bpftrace one-liners, and 
BCC sysstat(8)).

 4. Use a profiler to sample stack traces, which can be visualized using a CPU flame graph. 
Many CPU issues can be found by browsing such flame graphs.

 5. For CPU consumers identified by profilers, consider writing custom tools to show more 
context. Profilers show the functions that are running but not the arguments and objects 
they are operating on, which may be needed to understand CPU usage. Examples:

a. Kernel mode: If a file system is consuming CPU resources doing stat() on files, what are 
their filenames? (This could be determined, for example, using BCC statsnoop(8) or in 
general using tracepoints or kprobes from BPF tools.)

b. User-mode: If an application is busy processing requests, what are the requests? (If an 
application-specific tool is unavailable, one could be developed using USDT or uprobes 
and BPF tools).

 6. Measure time in hardware interrupts, since this time may not be visible in timer-based 
profilers (e.g., BCC hardirqs(1)).

 7. Browse and execute the BPF tools listed in the BPF tools section of this chapter.

 8. Measure CPU instructions per cycle (IPC) using PMCs to explain at a high level how much 
the CPUs are stalled (e.g., using perf(1)). This can be explored with more PMCs, which may 
identify low cache hit ratios (e.g., BCC llcstat), temperature stalls, and so on.

The following sections explain the tools involved in this process in more detail.

6.2 Traditional Tools

Traditional tools (see Table 6-2) can provide CPU utilization metrics for each process (thread) and 
for each CPU, voluntary and involuntary context switch rates, the average run queue length, and 
the total time spent waiting on run queues. Profilers can show and quantify the software that is 
running, and PMC-based tools can show how well the CPUs are operating at the cycle level.

Apart from solving issues, traditional tools can also provide clues to direct your further use of BPF 
tools. They have been categorized here based on their source and measurement type: kernel statis-
tics, hardware statistics, and event tracing.
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Table 6-2 Traditional Tools

Tool Type Description

uptime Kernel statistics Shows load averages and system uptime

top Kernel statistics Shows CPU time by process and CPU mode times system-wide

mpstat Kernel statistics Shows CPU mode time by CPU

perf Kernel statistics, 
hardware statistics, 
event tracing

Profiles (timed sampling) of stack traces and event statistics 
and tracing of PMCs, tracepoints, USDT probes, kprobes, and 
uprobes

Ftrace Kernel statistics, 
event tracing

Reports kernel function count statistics and event tracing of 
kprobes and uprobes

The following sections summarize key functionality of these tools. Refer to their man pages and 
other resources, including Systems Performance [Gregg 13b], for more usage and explanations.

6.2.1 Kernel Statistics

Kernel statistics tools use statistical sources in the kernel, often exposed via the /proc interface. 
An advantage of these tools is that the metrics are usually enabled by the kernel, so there is little 
additional overhead in using them. They can also often be read by non-root users.

Load Averages

uptime(1) is one of several commands that print the system load averages: 

$ uptime

   00:34:10 up  6:29,  1 user,  load average: 20.29, 18.90, 18.70

The last three numbers are the 1-, 5-, and 15-minute load averages. By comparing these numbers, 
you can determine whether the load has been increasing, decreasing, or steady during the past 
15 minutes or so. This output is from a 48-CPU production cloud instance and shows that load is 
increasing slightly when comparing 1-minute (20.29) to 15-minutes (18.70) load averages.

The load averages are not simple averages (means) but are exponentially damped moving sums, 
and reflect time beyond 1, 5, and 15 minutes. The metrics that these summarize show demand 
on the system: tasks in the CPU runnable state, as well as tasks in the uninterruptible wait state 
[72]. If you assume that the load averages are showing CPU load, you can divide them by the CPU 
count to see whether the system is running at CPU saturation, which would be indicated by a 
ratio of over 1.0. However, a number of problems with load averages, including their inclusion of 
uninterruptible tasks (tasks blocked in disk I/O and locks) cast doubt on this interpretation, so 
they are only really useful for looking at trends over time. You must use other tools, such as the 
BPF-based offcputime(8), to see if the load is CPU or uninterruptible time based. See Section 6.3.9 
for information on offcputime(8) and Chapter 14 for more on measuring uninterruptible I/O.
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top

The top(1) tool shows top CPU-consuming processes in a table of process details, along with 
a header summary of the system:

$ top

top - 00:35:49 up  6:31,  1 user,  load average: 21.35, 19.96, 19.12

Tasks: 514 total,   1 running, 288 sleeping,   0 stopped,   0 zombie

%Cpu(s): 33.2 us,  1.4 sy,  0.0 ni, 64.9 id,  0.0 wa,  0.0 hi,  0.4 si,  0.0 st

KiB Mem : 19382528+total,  1099228 free, 18422233+used,  8503712 buff/cache

KiB Swap:        0 total,        0 free,        0 used.  7984072 avail Mem 

 

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM      TIME+ COMMAND 

 3606 www       20   0  0.197t 0.170t  38776 S  1681 94.2    7186:36 java 

 5737 snmp      20   0   22712   6676   4256 S   0.7  0.0    0:57.96 snmp-pass

  403 root      20   0       0      0      0 I   0.3  0.0    0:00.17 kworker/41:1

  983 root      20   0    9916    128      0 S   0.3  0.0    1:29.95 rngd 

29535 bgregg    20   0   41020   4224   3072 R   0.3  0.0    0:00.11 top 

    1 root      20   0  225308   8988   6656 S   0.0  0.0    0:03.09 systemd 

    2 root      20   0       0      0      0 S   0.0  0.0    0:00.01 kthreadd 

[...] 

This output is from a production instance and shows only one process that is CPU busy: A java 
process that is consuming a total of 1681% CPU, summed across all CPUs. For this 48-CPU system, 
the output shows that this java process is consuming 35% of overall CPU capacity. This concurs 
with the system-wide CPU average of 34.6% (shown in the header summary: 33.2% user and 1.4% 
system).

top(1) is especially useful for identifying issues of CPU load by an unexpected process. A common 
type of software bug causes a thread to become stuck in an infinite loop, which is easily found 
using top(1) as a process running at 100% CPU. Further analysis with profilers and BPF tools can 
confirm that the process is stuck in a loop, rather than busy processing work.

top(1) refreshes the screen by default so that the screen acts as a real-time dashboard. This is a 
problem: Issues can appear and then disappear before you are able to collect a screenshot. It can 
be important to add tool output and screenshots to ticketing systems to track work on perfor-
mance issues and to share the information with others. Tools such as pidstat(1) can be used to 
print rolling output of process CPU usage for this purpose; CPU usage by process may also be 
already recorded by monitoring systems, if they are in use.

There are other top(1) variants, such as htop(1), that have more customization options. 
Unfortunately, many top(1) variants focus on visual enhancements rather than performance 
metrics, making them prettier but unable to shed light on issues beyond the original top(1). 
Exceptions include tiptop(1), which sources PMCs; atop(1), which uses process events to 
display short-lived processes; and the biotop(8) and tcptop(8) tools, which use BPF (and which 
I developed).
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mpstat(1)

mpstat(1) can be used to examine per-CPU metrics:

$ mpstat -P ALL 1

Linux 4.15.0-1027-aws (api-...)     01/19/2019     _x86_64_      (48 CPU)

 

12:47:47 AM  CPU   %usr  %nice  %sys %iowait  %irq  %soft %steal %guest %gnice  %idle

12:47:48 AM  all  35.25   0.00  1.47    0.00  0.00   0.46   0.00   0.00   0.00  62.82

12:47:48 AM    0  44.55   0.00  1.98    0.00  0.00   0.99   0.00   0.00   0.00  52.48

12:47:48 AM    1  33.66   0.00  1.98    0.00  0.00   0.00   0.00   0.00   0.00  64.36

12:47:48 AM    2  30.21   0.00  2.08    0.00  0.00   0.00   0.00   0.00   0.00  67.71

12:47:48 AM    3  31.63   0.00  1.02    0.00  0.00   0.00   0.00   0.00   0.00  67.35

12:47:48 AM    4  26.21   0.00  0.00    0.00  0.00   0.97   0.00   0.00   0.00  72.82

12:47:48 AM    5  68.93   0.00  1.94    0.00  0.00   3.88   0.00   0.00   0.00  25.24

12:47:48 AM    6  26.26   0.00  3.03    0.00  0.00   0.00   0.00   0.00   0.00  70.71

12:47:48 AM    7  32.67   0.00  1.98    0.00  0.00   1.98   0.00   0.00   0.00  63.37

[...]

This output has been truncated because on this 48-CPU system it prints 48 lines of output per 
second: 1 line to summarize each CPU. This output can be used to identify issues of balance, 
where some CPUs have high utilization while others are idle. A CPU imbalance can occur for a 
number of reasons, such as misconfigured applications with a thread pool size too small to utilize 
all CPUs; software limits that limit a process or container to a subset of CPUs; and software bugs.

Time is broken down across the CPUs into many modes, including time in hard interrupts (%irq) 
and time in soft interrupts (%soft). These can be further investigated using the hardirqs(8) and 
softirqs(8) BPF tools.

6.2.2 Hardware Statistics

Hardware can also be a useful source of statistics—especially the performance monitoring coun-
ters (PMCs) available on the CPUs. PMCs were introduced in Chapter 2.

perf(1)

Linux perf(1) is a multi-tool that supports different instrumentation sources and presentations 
of data. First added to Linux in 2.6.31 (2009), it is considered the standard Linux profiler, and 
its code can be found in the Linux source code under tools/perf. I’ve published a detailed guide 
on how to use perf [73]. Among its many powerful capabilities is the ability to use PMCs in 
counting mode:
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$ perf stat -d gzip file1

 

 Performance counter stats for 'gzip file1':

 

    3952.239208  task-clock (msec)     #   0.999 CPUs utilized          

              6  context-switches      #   0.002 K/sec                  

              0  cpu-migrations        #   0.000 K/sec                  

            127  page-faults           #   0.032 K/sec                  

 14,863,135,172  cycles                #   3.761 GHz                   (62.35%)

 18,320,918,801  instructions          #   1.23  insn per cycle        (74.90%)

  3,876,390,410  branches              # 980.809 M/sec                 (74.90%)

    135,062,519  branch-misses         #   3.48% of all branches       (74.97%)

  3,725,936,639  L1-dcache-loads       # 942.741 M/sec                 (75.09%)

    657,864,906  L1-dcache-load-misses #  17.66% of all L1-dcache hits (75.16%)

     50,906,146  LLC-loads             #  12.880 M/sec                 (50.01%)

      1,411,636  LLC-load-misses       #   2.77% of all LL-cache hits  (49.87%)

The perf stat command counts events specified with -e arguments. If no such arguments are 
supplied, it defaults to a basic set of PMCs, or it uses an extended set if -d is used, as shown here. 
The output and usage varies a little depending on the version of Linux you are using and the 
PMCs available for your processor type. This example shows perf(1) on Linux 4.15.

Depending on your processor type and perf version, you may find a detailed list of PMCs by using 
perf list:

$ perf list

[...]

  mem_load_retired.l3_hit

       [Retired load instructions with L3 cache hits as data sources Supports address 

when precise (Precise event)]

  mem_load_retired.l3_miss

       [Retired load instructions missed L3 cache as data sources Supports address 

when precise (Precise event)]

[...]

This output shows the alias names you can use with -e. For example, you can count these events 
on all CPUs (using -a, which recently became the default) and print output with an interval of 
1000 milliseconds (-I 1000):

# perf stat -e mem_load_retired.l3_hit -e mem_load_retired.l3_miss -a -I 1000 

#           time             counts unit events

     1.001228842            675,693      mem_load_retired.l3_hit  

     1.001228842            868,728      mem_load_retired.l3_miss 

     2.002185329            746,869      mem_load_retired.l3_hit  

     2.002185329            965,421      mem_load_retired.l3_miss 

     3.002952548          1,723,796      mem_load_retired.l3_hit  

[...]
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This output shows per-second rates for these events system-wide.

There are hundreds of PMCs available, documented in the processor vendor guides [Intel 16] 
[AMD 10]. You can use PMCs together with model-specific registers (MSRs) to determine how CPU 
internal components are performing, the current clock rates of the CPUs, their temperatures and 
energy consumption, the throughput on CPU interconnects and memory buses, and more.

tlbstat

As an example use of PMCs, I developed the tlbstat tool to count and summarize translation 
lookaside buffer (TLB)–related PMCs. My goal was to analyze the performance impact of the Linux 
kernel page table isolation (KPTI) patches that work around the Meltdown vulnerability [74] [75]:

# tlbstat -C0 1

K_CYCLES  K_INSTR   IPC DTLB_WALKS ITLB_WALKS K_DTLBCYC  K_ITLBCYC  DTLB% ITLB%

2875793   276051   0.10 89709496   65862302   787913     650834     27.40 22.63

2860557   273767   0.10 88829158   65213248   780301     644292     27.28 22.52

2885138   276533   0.10 89683045   65813992   787391     650494     27.29 22.55

2532843   243104   0.10 79055465   58023221   693910     573168     27.40 22.63

[...]

tlbstat prints the following columns:

 ■ K_CYCLES: CPU cycles (in lots of 1000)

 ■ K_INSTR: CPU Instructions (in lots of 1000)

 ■ IPC: Instructions per cycle

 ■ DTLB_WALKS: Data TLB walks (count)

 ■ ITLB_WALKS: Instruction TLB walks (count)

 ■ K_DTLBCYC: Cycles (in lots of 1000) when at least one page-miss handler (PMH) is active 
with data TLB walks

 ■ K_ITLBCYC: Cycles (in lots of 1000) when at least one PMH is active with instruction 
TLB walks

 ■ DTLB%: Data TLB active cycles as a ratio of total cycles

 ■ ITLB%: Instruction TLB active cycles as a ratio of total cycles

The output shown earlier is from a stress test where the KPTI overhead was the worst: It shows 
27% of CPU cycles in the DTLB and 22% in the ITLB. This means that half of the system-wide 
CPU resources were consumed by the memory management unit servicing virtual-to-physical 
address translations. If tlbstat showed similar numbers for production workloads, you would want 
to direct your tuning efforts toward the TLB.
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6.2.3 Hardware Sampling

perf(1) can use PMCs in a different mode, where a count is chosen and, at a rate of one in every 
count, a PMC event causes an interrupt to be sent to the kernel so that it can capture event state. 
For example, the command below records the stack trace (-g) for L3 cache-miss events (-e ...) on 
all CPUs (-a) for 10 seconds (sleep 10, a dummy command used to set the duration):

# perf record -e mem_load_retired.l3_miss -c 50000 -a -g -- sleep 10

[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 3.355 MB perf.data (342 samples) ]

The samples can be summarized using perf report or dumped using perf list:

# perf list

kworker/u17:4 11563 [007] 2707575.286552: mem_load_retired.l3_miss: 

            7fffba5d8c52 move_freepages_block ([kernel.kallsyms])

            7fffba5d8e02 steal_suitable_fallback ([kernel.kallsyms])

            7fffba5da4a8 get_page_from_freelist ([kernel.kallsyms])

            7fffba5dc3fb __alloc_pages_nodemask ([kernel.kallsyms])

            7fffba63a8ea alloc_pages_current ([kernel.kallsyms])

            7fffc01faa5b crypt_page_alloc ([kernel.kallsyms])

            7fffba5d3781 mempool_alloc ([kernel.kallsyms])

            7fffc01fd870 kcryptd_crypt ([kernel.kallsyms])

            7fffba4a983e process_one_work ([kernel.kallsyms])

            7fffba4a9aa2 worker_thread ([kernel.kallsyms])

            7fffba4b0661 kthread ([kernel.kallsyms])

            7fffbae02205 ret_from_fork ([kernel.kallsyms])

[...]

This output shows a single stack trace sample. The stack is listed in order from child to parent, and 
in this case it shows the kernel functions that led to the L3 cache-miss event.

Note that you will want to use PMCs that support precise event-based sampling (PEBS) wherever 
possible to minimize issues of interrupt skid.

PMC hardware sampling can also trigger BPF programs. For example, instead of dumping all 
sampled stack traces to user space via the perf buffer, BPF can frequency-count them in kernel 
context to improve efficiency.

6.2.4 Timed Sampling

Many profilers support timer-based sampling (capturing the instruction pointer or stack trace 
at a timed interval). Such profilers provide a coarse, cheap-to-collect view of which software is 
consuming CPU resources. There are different types of profilers, some operating in user mode 
only and some in kernel mode. Kernel-mode profilers are usually preferred, as they can capture 
both kernel- and user-level stacks, providing a more complete picture.
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perf

perf(1) is a kernel-based profiler that supports timed sampling through software events or PMCs: 
it defaults to the most accurate technique available. In this example, it is capturing stacks across 
all CPUs at 99 Hertz (samples per second per CPU) for 30 seconds:

# perf record -F 99 -a -g -- sleep 30

[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 0.661 MB perf.data (2890 samples) ]

99 Hertz was chosen instead of 100 to avoid lockstep sampling with other software routines, 
which would otherwise skew the samples. (This is explained in more detail in Chapter 18.) 
Roughly 100 was chosen instead of, say, 10 or 10,000 as a balance between detail and overhead: 
Too low, and you don’t get enough samples to see the full picture of execution, including large 
and small code paths; too high, and the overhead of samples skews performance and results.

When this perf(1) command is run, it writes the samples to a perf.data file: this has been opti-
mized by use of a kernel buffer and an optimal number of writes to the file system. The output 
tells us it only needed to wake up once to write this data.

The output can be summarized using perf report, or each sample can be dumped using perf 
script. For example:

# perf report -n --stdio

[...]

# Children      Self       Samples  Command  Shared Object       Symbol       

# ........  ........  ............  .......  ..................  .....................

.........................

#

    99.41%     0.08%             2  iperf    libpthread-2.27.so  [.] __libc_write

            |          

             --99.33%--__libc_write

                       |          

                        --98.51%--entry_SYSCALL_64_after_hwframe

                                  |          

                                   --98.38%--do_syscall_64

                                             |          

                                              --98.29%--sys_write

                                                        |          

                                                         --97.78%--vfs_write

                                                                   |          

[...]

The perf report summary shows a tree of functions from root to child. (The order can be reversed, 
as it was by default in earlier versions.) Unfortunately, there is not much conclusive to say from 
this sample of output—and the full output was six thousand lines. The full output of perf script, 
dumping every event, was over sixty thousand lines. These profiles can easily be 10 times this size 
on busier systems. A solution in such a case is to visualize the stack samples as a flame graph.
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CPU Flame Graphs

Flame graphs, introduced in Chapter 2, enable visualization of stack traces. They are well suited 
for CPU profiles and are now commonly used for CPU analysis.

The flame graph in Figure 6-3 summarizes the same profile data captured in the previous section.

Figure 6-3 CPU flame graph
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When this data is presented as a flame graph, it is easy to see that the process named iperf 
was consuming all CPU and exactly how: via sock_sendmsg(), which led to two hot on-CPU 
functions, copy_user_enhanced_fast_string() and move_freepages_block(), seen as the two 
plateaus. On the right is a tower that continues back into the TCP receive path; this is iperf doing 
a loopback test.

Below are the steps to create CPU flame graphs using perf(1) to sample stacks at 49 Hertz for 
30 seconds, and my original flame graph implementation:

# git clone https://github.com/brendangregg/FlameGraph

# cd FlameGraph

# perf record -F 49 -ag -- sleep 30

# perf script --header | ./stackcollapse-perf.pl | ./flamegraph.pl > flame1.svg

The stackcollapse-perf.pl program converts perf script output into a standard format to be 
read by the flamegraph.pl program. There are converters in the FlameGraph repository for many 
other profilers. The flamegraph.pl program creates the flame graph as an SVG file with embedded 
JavaScript for interactivity when loaded in a browser. flamegraph.pl supports many options for 
customizations: run flamegraph.pl –help for details.

I recommend that you save the output of perf script --header for later analysis. Netflix has 
developed a newer flame graph implementation using d3, along with an additional tool that can 
read perf script output, FlameScope, which visualizes profiles as subsecond offset heatmaps 
from which time ranges can be selected to see the flame graph. [76] [77]

Internals

When perf(1) does timed sampling, it tries to use PMC-based hardware CPU cycle overflow events 
that trigger a non-maskable interrupt (NMI) to perform the sampling. In the cloud, however, 
many instance types do not have PMCs enabled. This may be visible in dmesg(1):

# dmesg | grep PMU

[    2.827349] Performance Events: unsupported p6 CPU model 85 no PMU driver, 
software events only.

On these systems, perf(1) falls back to an hrtimer-based software interrupt. You can see this when 
running perf with -v:

# perf record -F 99 -a -v

Warning:

The cycles event is not supported, trying to fall back to cpu-clock-ticks

[...]

This software interrupt is generally sufficient, although be aware that there are some kernel code 
paths that it cannot interrupt: those with IRQs disabled (including some code paths in schedul-
ing and hardware events). Your resulting profile will be missing samples from these code paths.

For more about how PMCs work, see Section 2.12 in Chapter 2.

http://stackcollapse-perf.pl
http://flamegraph.pl
http://flamegraph.pl
http://flamegraph.pl
http://flamegraph.pl
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6.2.5 Event Statistics and Tracing

Tools that trace events can also be used for CPU analysis. The traditional Linux tools that do this 
are perf(1) and Ftrace. These tools can not only trace events and save per-event details but can also 
count events in kernel context.

perf

perf(1) can instrument tracepoints, kprobes, uprobes, and (as of recently) USDT probes. These can 
provide some logical context for why CPU resources were consumed.

As an example, consider an issue where system-wide CPU utilization is high, but there is no 
visible process responsible in top(1). The issue could be short-lived processes. To test this hypoth-
esis, count the sched_process_exec tracepoint system-wide using perf script to show the rate of 
exec() family syscalls:

# perf stat -e sched:sched_process_exec -I 1000

#           time             counts unit events

     1.000258841                169      sched:sched_process_exec 

     2.000550707                168      sched:sched_process_exec 

     3.000676643                167      sched:sched_process_exec 

     4.000880905                167      sched:sched_process_exec 

[...]

This output shows that there were over 160 execs per second. You can record each event using 
perf record, then dump the events using perf script2:

# perf record -e sched:sched_process_exec -a

^C[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 3.464 MB perf.data (95 samples) ]

# perf script

    make 28767 [007] 712132.535241: sched:sched_process_exec: filename=/usr/bin/make 

pid=28767 old_pid=28767

      sh 28768 [004] 712132.537036: sched:sched_process_exec: filename=/bin/sh 

pid=28768 old_pid=28768

   cmake 28769 [007] 712132.538138: sched:sched_process_exec: filename=/usr/bin/cmake 

pid=28769 old_pid=28769

    make 28770 [001] 712132.548034: sched:sched_process_exec: filename=/usr/bin/make 

pid=28770 old_pid=28770

      sh 28771 [004] 712132.550399: sched:sched_process_exec: filename=/bin/sh 

pid=28771 old_pid=28771

[...]

2 In case anyone is wondering why I don’t use strace(1) for this. The current implementation of strace(1) uses break-

points that can greatly slow the target (over 100x), making it dangerous for production use. More than one replacement 

is in development, including the perf trace subcommand, and another that is BPF based. Also, this example traces the 

exec() syscall system-wide, which strace(1) currently cannot do.
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The output shows that the processes executed had names including make, sh, and cmake, which 
leads me to suspect that a software build is the culprit. Short-lived processes are such a common 
issue that there is a dedicated BPF tool for it: execsnoop(8). The fields in this output are: process 
name, PID, [CPU], timestamp (seconds), event name, and event arguments .

perf(1) has a special subcommand for CPU scheduler analysis called perf sched. It uses a dump-
and-post-process approach for analyzing scheduler behavior and provides various reports that 
can show the CPU runtime per wakeup, the average and maximum scheduler latency (delay), and 
ASCII visualizations to show thread execution per CPU and migrations. Some example output:

# perf sched record -- sleep 1

[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 1.886 MB perf.data (13502 samples) ]

# perf sched timehist

Samples do not have callchains.

           time    cpu  task name               wait time  sch delay   run time

                        [tid/pid]                  (msec)     (msec)     (msec)

--------------- ------  ----------------------  ---------  ---------  ---------

[...]

  991963.885740 [0001]  :17008[17008]              25.613      0.000      0.057 

  991963.886009 [0001]  sleep[16999]             1000.104      0.006      0.269 

  991963.886018 [0005]  cc1[17083]                 19.908      0.000      9.948 

[...]

The output is verbose, showing all scheduler context switch events as a line summary with the 
time sleeping (wait time), scheduler latency (sch delay), and time spent on CPU (runtime), all in 
milliseconds. This output shows a sleep(1) command that slept for 1 second, and a cc1 process 
that ran for 9.9 milliseconds and slept for 19.9 milliseconds.

The perf sched subcommand can help solve many types of scheduler issues, including problems 
with the kernel scheduler implementation (the kernel scheduler is complex code that balances 
many requirements). However, the dump-and-post-process style is costly: This example recorded 
scheduler events for 1 second on an eight-CPU system, resulting in a 1.9 Mbyte perf.data file. On a 
larger, busier system, and for a longer duration, that file could be hundreds of Mbytes, which can 
become a problem with the CPU time needed to generate the file and the file system I/O to write 
it to disk.

To make sense of so many scheduler events, perf(1) output is often visualized. perf(1) also has a 
timechart subcommand for its own visualization.

Where possible, I recommend using BPF instead of perf sched as it can do in-kernel summaries 
that answer similar questions and emit the results (for example, the runqlat(8) and runqlen(8) 
tools, covered in Sections 6.3.3 and 6.3.4).
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Ftrace

Ftrace is a collection of different tracing capabilities, developed by Steven Rostedt and first added 
to Linux 2.6.27 (2008). As with perf(1), it can also be used to explore the context of CPU usage via 
tracepoints and other events.

As an example, my perf-tools collection [78] mostly uses Ftrace for instrumentation, and includes 
funccount(8) for counting functions. This example counts the ext4 file system calls by matching 
those that begin with "ext":

# perf-tools/bin/funccount 'ext*'

Tracing "ext*"... Ctrl-C to end.

^C

FUNC                              COUNT

[...]

ext4_do_update_inode                523

ext4_inode_csum.isra.56             523

ext4_inode_csum_set                 523

ext4_mark_iloc_dirty                523

ext4_reserve_inode_write            523

ext4_inode_table                    551

ext4_get_group_desc                 564

ext4_nonda_switch                   586

ext4_bio_write_page                 604

ext4_journal_check_start           1001

ext4_es_can_be_merged              1111

ext4_file_getattr                  7159

ext4_getattr                       7285

The output here has been truncated to show only the most frequently used functions. The most 
frequent was ext4_getattr(), with 7285 calls while tracing.

Function calls consume CPU, and their names often provide clues as to the workload performed. 
In cases where the function name is ambiguous, it is often possible to find the source code to the 
function online and read it to understand what it does. This is especially true of Linux kernel 
functions, which are open source.

Ftrace has many useful canned capabilities, and recent enhancements have added histograms and 
more frequency counts (“hist triggers”). Unlike BPF, it is not fully programmable, so it cannot be 
used to fetch data and present it in completely custom ways.

6.3 BPF Tools

This section covers the BPF tools you can use for CPU performance analysis and troubleshooting. 
They are shown in Figure 6-4 and listed in Table 6-3.
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Figure 6-4 BPF tools for CPU analysis

These tools are either from the BCC and bpftrace repositories covered in Chapters 4 and 5, or were 
created for this book. Some tools appear in both BCC and bpftrace. Table 6-3 lists the origins of 
the tools covered in this section (BT is short for bpftrace.)

Table 6-3 CPU-Related Tools

Tool Source Target Description

execsnoop BCC/BT Sched Lists new process execution

exitsnoop BCC Sched Shows process lifespan and exit reason

runqlat BCC/BT Sched Summarizes CPU run queue latency

runqlen BCC/BT Sched Summarizes CPU run queue length

runqslower BCC Sched Prints run queue waits slower than a threshold

cpudist BCC Sched Summarizes on-CPU time 

cpufreq Book CPUs Samples CPU frequency by process

profile BCC CPUs Samples CPU stack traces

offcputime BCC/book Sched Summarizes off-CPU stack traces and times

syscount BCC/BT Syscalls Counts system calls by type and process

argdist BCC Syscalls Can be used for syscall analysis

trace BCC Syscalls Can be used for syscall analysis

funccount BCC Software Counts function calls

softirqs BCC Interrupts Summarizes soft interrupt time

hardirqs BCC Interrupts Summarizes hard interrupt time

smpcalls Book Kernel Times SMP remote CPU calls

llcstat BCC PMCs Summarizes LLC hit ratio by process
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For the tools from BCC and bpftrace, see their repositories for full and updated lists of tool 
options and capabilities. A selection of the most important capabilities are summarized here.

6.3.1 execsnoop

execsnoop(8)3 is a BCC and bpftrace tool that traces new process execution system-wide. It can 
find issues of short-lived processes that consume CPU resources and can also be used to debug 
software execution, including application start scripts.

Example output from the BCC version:

# execsnoop 

PCOMM            PID    PPID   RET ARGS

sshd             33096  2366     0 /usr/sbin/sshd -D -R

bash             33118  33096    0 /bin/bash

groups           33121  33119    0 /usr/bin/groups

ls               33123  33122    0 /bin/ls /etc/bash_completion.d

lesspipe         33125  33124    0 /usr/bin/lesspipe

basename         33126  33125    0 /usr/bin/basename /usr/bin/lesspipe

dirname          33129  33128    0 /usr/bin/dirname /usr/bin/lesspipe

tput             33130  33118    0 /usr/bin/tput setaf 1

dircolors        33132  33131    0 /usr/bin/dircolors -b

ls               33134  33133    0 /bin/ls /etc/bash_completion.d

mesg             33135  33118    0 /usr/bin/mesg n

sleep            33136  2015     0 /bin/sleep 30

sh               33143  33139    0 /bin/sh -c command -v debian-sa1 > /dev/null &&...

debian-sa1       33144  33143    0 /usr/lib/sysstat/debian-sa1 1 1

sa1              33144  33143    0 /usr/lib/sysstat/sa1 1 1

sadc             33144  33143    0 /usr/lib/sysstat/sadc -F -L -S DISK 1 1 /var/lo...

sleep            33148  2015     0 /bin/sleep 30

[...]

This tool captured the moment that a user logged into the system using SSH and the processes 
launched, including sshd(8), groups(1), and mesg(1). It also shows processes from the system 
activity recorder, sar, writing metrics to its log, including sa1(8) and sadc(8).

3 Origin: I created the first execsnoop using DTrace on 24-Mar-2004, to solve a common performance problem I was 

seeing with short-lived processes in Solaris environments. My prior analysis technique was to enable process account-

ing or BSM auditing and pick the exec events out of the logs, but both of these came with caveats: Process accounting 

truncated the process name and arguments to only eight characters. By comparison, my execsnoop tool could be run 

on a system immediately, without needing special audit modes, and could show much more of the command string. 

execsnoop is installed by default on OS X, and some Solaris and BSD versions. I also developed the BCC version on 

7-Feb-2016, and the bpftrace version on 15-Nov-2017, and for that I added the join() built-in to bpftrace.
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Use execsnoop(8) to look for high rates of short-lived processes that are consuming resources. 
They can be hard to spot as they may be very short-lived and may vanish before tools like top(1) 
or monitoring agents have a chance to see them. Chapter 1 shows an example of this, where a 
start script was failing to launch an application in a loop, perturbing the performance on the 
system. It was easily discovered using execsnoop(8). execsnoop(8) has been used to debug many 
production issues: perturbations from background jobs, slow or failing application startup, slow 
or failing container startup, and so on.

execsnoop(8) traces the execve(2) system call (the commonly used exec(2) variant) and shows 
details of the execve(2) arguments and return value. This catches new processes that follow the 
fork(2)/clone(2)->exec(2) sequence, as well as processes that re-exec(2) themselves. Some applica-
tions create new processes without calling exec(2), for example, when creating a pool of worker 
processes using fork(2) or clone(2) alone. These are not included in the execsnoop(8) output since 
they do not call execve(2). This situation should be uncommon: Applications should be creating 
pools of worker threads, not processes.

Since the rate of process execution is expected to be relatively low (<1000/second), the overhead 
of this tool is expected to be negligible.

BCC

The BCC version supports various options, including:

 ■ -x: Includes failed exec()s

 ■ -n pattern: Prints only commands containing patterns

 ■ -l pattern: Prints only commands where arguments contain patterns

 ■ --max-args args: Specifies the maximum number of arguments to print (with a default 
of 20)

bpftrace

The following is the code for the bpftrace version of execsnoop(8), which summarizes its core 
functionality. This version prints basic columns and does not support options:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("%-10s %-5s %s\n", "TIME(ms)", "PID", "ARGS");

}

 

tracepoint:syscalls:sys_enter_execve

{

        printf("%-10u %-5d ", elapsed / 1000000, pid);

        join(args->argv);

}
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BEGIN prints a header. To capture exec() events, the syscalls:sys_enter_execve tracepoint is instru-
mented to print a time since the program began running, the process ID, and the command name 
and arguments. It uses the join() function on the args->argv field from the tracepoint so that the 
command name and arguments can be printed on one line.

A future version of bpftrace may change join() to return a string rather than print it out,4 which 
would make this code:

tracepoint:syscalls:sys_enter_execve

{

        printf("%-10u %-5d %s\n", elapsed / 1000000, pid, join(args->argv));

}

The BCC version instruments both the entry and the return of the execve() syscall so that the 
return value can be printed. The bpftrace program could be easily enhanced to do this as well.5

See Chapter 13 for a similar tool, threadsnoop(8), which traces the creation of threads rather than 
process execution.

6.3.2 exitsnoop

exitsnoop(8)6 is a BCC tool that traces when processes exit, showing their age and exit reason. The 
age is the time from process creation to termination, and includes time both on and off CPU. Like 
execsnoop(8), exitsnoop(8) can help debug issues of short-lived processes, providing different 
information to help understand this type of workload. For example:

# exitsnoop

PCOMM            PID    PPID   TID    AGE(s)  EXIT_CODE 

cmake            8994   8993   8994   0.01    0

sh               8993   8951   8993   0.01    0

sleep            8946   7866   8946   1.00    0

cmake            8997   8996   8997   0.01    0

sh               8996   8995   8996   0.01    0

make             8995   8951   8995   0.02    0

cmake            9000   8999   9000   0.02    0

sh               8999   8998   8999   0.02    0

git              9003   9002   9003   0.00    0

DOM Worker       5111   4183   8301   221.25  0

sleep            8967   26663  8967   7.31    signal 9 (KILL)

git              9004   9002   9004   0.00    0

[...]

4 See bpftrace issue #26 [67].

5 This and later bpftrace programs can easily be enhanced to show more and more details. I’ve resisted doing so here 

to keep them short and to the point, as well as more easily understood.

6 Origin: This was created by Arturo Martin-de-Nicolas on 4-May-2019.
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This output shows many short-lived processes exiting, such as cmake(1), sh(1), and make(1): a 
software build was running. A sleep(1) process exited successfully (exit code 0) after 1.00 seconds, 
and another sleep(1) process exited after 7.31 seconds due to a KILL signal. This also caught a 
"DOM Worker" thread exiting after 221.25 seconds.

This tool works by instrumenting the sched:sched_process_exit tracepoint and its arguments, 
and it also uses bpf_get_current_task() so that the start time can be read from the task struct (an 
unstable interface detail). Since this tracepoint should fire infrequently, the overhead of this tool 
should be negligible.

Command line usage:

exitsnoop [options]

Options include:

 ■ -p PID: Measures this process only

 ■ -t: Includes timestamps

 ■ -x: Only trace fails (a non-zero exit reason)

There is not currently a bpftrace version of exitsnoop(8), but it might be a useful exercise to create 
one for those learning bpftrace programming.7

6.3.3 runqlat

runqlat(8)8 is a BCC and bpftrace tool for measuring CPU scheduler latency, often called run 
queue latency (even when no longer implemented using run queues). It is useful for identifying 
and quantifying issues of CPU saturation, where there is more demand for CPU resources than 
they can service. The metric measured by runqlat(8) is the time each thread (task) spends waiting 
for its turn on CPU.

The following shows BCC runqlat(8) running on a 48-CPU production API instance operating at 
about 42% CPU utilization system-wide. The arguments to runqlat(8) are "10 1" to set a 10-second 
interval and output only once:

# runqlat 10 1

Tracing run queue latency... Hit Ctrl-C to end.

 

     usecs               : count     distribution

         0 -> 1          : 3149     |                                        |

         2 -> 3          : 304613   |****************************************|

         4 -> 7          : 274541   |************************************    |

7 If you publish it, remember to credit the original BCC author: Arturo Martin-de-Nicolas.

8 Origin: I created the first version using DTrace as dispqlat.d, published on 13-Aug-2012, inspired by the DTrace sched 

provider probes and examples in the “Dynamic Tracing Guide,” Jan 2005 [Sun 05]. dispq is short for dispatcher queue, 

another term for run queue. I developed the BCC runqlat version on 7-Feb-2016, and bpftrace on 17-Sep-2018.
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         8 -> 15         : 58576    |*******                                 |

        16 -> 31         : 15485    |**                                      |

        32 -> 63         : 24877    |***                                     |

        64 -> 127        : 6727     |                                        |

       128 -> 255        : 1214     |                                        |

       256 -> 511        : 606      |                                        |

       512 -> 1023       : 489      |                                        |

      1024 -> 2047       : 315      |                                        |

      2048 -> 4095       : 122      |                                        |

      4096 -> 8191       : 24       |                                        |

      8192 -> 16383      : 2        |                                        |

This output shows that, most of the time, threads were waiting less than 15 microseconds, with a 
mode in the histogram between two and 15 microseconds. This is relatively fast—an example of a 
healthy system—and is expected for a system running at 42% CPU utilization. Occasionally run 
queue latency reached as high as the eight- to 16-millisecond bucket in this example, but those 
were outliers.

runqlat(8) works by instrumenting scheduler wakeup and context switch events to determine the 
time from wakeup to running. These events can be very frequent on busy production systems, 
exceeding one million events per second. Even though BPF is optimized, at these rates even 
adding one microsecond per event can cause noticeable overhead.9 Use with caution.

Misconfigured Build

Here is a different example for comparison. This time a 36-CPU build server is doing a software 
build, where the number of parallel jobs has been set to 72 by mistake, causing the CPUs to be 
overloaded:

# runqlat 10 1

Tracing run queue latency... Hit Ctrl-C to end.

 

     usecs               : count     distribution

         0 -> 1          : 1906     |***                                     |

         2 -> 3          : 22087    |****************************************|

         4 -> 7          : 21245    |**************************************  |

         8 -> 15         : 7333     |*************                           |

        16 -> 31         : 4902     |********                                |

        32 -> 63         : 6002     |**********                              |

        64 -> 127        : 7370     |*************                           |

       128 -> 255        : 13001    |***********************                 |

9 As a simple exercise, if you had a context switch rate of 1M/sec across a 10-CPU system, adding 1 microsecond per 

context switch would consume 10% of CPU resources (100% × (1 × 1000000 / 10 × 1000000)). See Chapter 18 for 

some real measurements of BPF overhead, which is typically much less than one microsecond per event.
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       256 -> 511        : 4823     |********                                |

       512 -> 1023       : 1519     |**                                      |

      1024 -> 2047       : 3682     |******                                  |

      2048 -> 4095       : 3170     |*****                                   |

      4096 -> 8191       : 5759     |**********                              |

      8192 -> 16383      : 14549    |**************************              |

     16384 -> 32767      : 5589     |**********                              |

     32768 -> 65535      : 372      |                                        |

     65536 -> 131071     : 10       |                                        |

The distribution is now tri-modal, with the slowest mode centered in the 8- to 16-millisecond 
bucket. This shows significant waiting by threads.

This particular issue is straightforward to identify from other tools and metrics. For example, 
sar(1) can show CPU utilization (-u) and run queue metrics (-q):

# sar -uq 1

Linux 4.18.0-virtual (...)   01/21/2019    _x86_64_      (36 CPU)

 

11:06:25 PM     CPU     %user     %nice   %system   %iowait    %steal     %idle

11:06:26 PM     all     88.06      0.00     11.94      0.00      0.00      0.00

 

11:06:25 PM   runq-sz  plist-sz   ldavg-1   ldavg-5  ldavg-15   blocked

11:06:26 PM        72      1030     65.90     41.52     34.75         0

[...]

This sar(1) output shows 0% CPU idle and an average run queue size of 72 (which includes both 
running and runnable)—more than the 36 CPUs available.

Chapter 15 has a runqlat(8) example showing per-container latency.

BCC

Command line usage for the BCC version:

runqlat [options] [interval [count]]

Options include:

 ■ -m: Prints output in milliseconds

 ■ -P: Prints a histogram per process ID

 ■ --pidnss: Prints a histogram per PID namespace

 ■ -p PID: Traces this process ID only

 ■ -T: Includes timestamps on output
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The -T option is useful for annotating per-interval output with the time. For example, runqlat 
-T 1 for timestamped per-second output.

bpftrace

The following is the code for the bpftrace version of runqlat(8), which summarizes its core 
functionality. This version does not support options.

#!/usr/local/bin/bpftrace

 

#include <linux/sched.h>

 

BEGIN

{

        printf("Tracing CPU scheduler... Hit Ctrl-C to end.\n");

}

 

tracepoint:sched:sched_wakeup,

tracepoint:sched:sched_wakeup_new

{

        @qtime[args->pid] = nsecs;

}

 

tracepoint:sched:sched_switch

{

        if (args->prev_state == TASK_RUNNING) {

                @qtime[args->prev_pid] = nsecs;

        }

 

        $ns = @qtime[args->next_pid];

        if ($ns) {

                @usecs = hist((nsecs - $ns) / 1000);

        }

        delete(@qtime[args->next_pid]);

}

 

END

{

        clear(@qtime);

}

The program records a timestamp on the sched_wakeup and sched_wakeup_new tracepoints, 
keyed by args->pid, which is the kernel thread ID.
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The sched_switch action stores a timestamp on args->prev_pid if that state was still runnable 
(TASK_RUNNING). This is handling an involuntary context switch where, the moment the thread 
leaves the CPU, it is returned to a run queue. That action also checks whether a timestamp was 
stored for the next runnable process and, if so, calculates the time delta and stores it in the @usecs 
histogram.

Since TASK_RUNNING was used, the linux/sched.h header file was read (#include) so that its 
definition was available.

The BCC version can break down by PID, which this bpftrace version can easily be modified to 
do by adding a pid key to the @usecs map. Another enhancement in BCC is to skip recording run 
queue latency for PID 0 to exclude the latency of scheduling the kernel idle thread.10 Again, this 
program can easily be modified to do the same.

6.3.4 runqlen

runqlen(8)11 is a BCC and bpftrace tool for sampling the length of the CPU run queues, counting 
how many tasks are waiting their turn, and presenting this as a linear histogram. This can be used 
to further characterize issues of run queue latency or as a cheaper approximation.

The following shows runqlet(8) from BCC running on a 48-CPU production API instance that is 
at about 42% CPU utilization system-wide (the same instance shown earlier with runqlat(8)). The 
arguments to runqlen(8) are "10 1" to set a 10-second interval and output only once:

# runqlen 10 1

Sampling run queue length... Hit Ctrl-C to end.

 

     runqlen       : count     distribution

        0          : 47284    |****************************************|

        1          : 211      |                                        |

        2          : 28       |                                        |

        3          : 6        |                                        |

        4          : 4        |                                        |

        5          : 1        |                                        |

        6          : 1        |                                        |

This shows that most of the time, the run queue length was zero, meaning that threads did not 
need to wait their turn.

I describe run queue length as a secondary performance metric and run queue latency as primary. 
Unlike length, latency directly and proportionately affects performance. Imagine joining a 
checkout line at a grocery store. What matters more to you: the length of the line or the time you 
actually spend waiting? runqlat(8) matters more. So why use runqlen(8)?

10 Thanks, Ivan Babrou, for adding that.

11 Origin: I created the first version, called dispqlen.d, on 27-Jun-2005, to help characterize run queue lengths by CPU. 

I developed the BCC version on 12-Dec-2016 and the bpftrace version on 7-Oct-2018.
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First, runqlen(8) can be used to further characterize issues found in runqlat(8) and explain 
how latencies become high. Second, runqlen(8) employs timed sampling at 99 Hertz, whereas 
runqlat(8) traces scheduler events. This timed sampling has negligible overhead compared to 
runqlat(8)’s scheduler tracing. For 24x7 monitoring, it may be preferable to use runqlen(8) first to 
identify issues (since it is cheaper to run) and then use runqlat(8) ad hoc to quantify the latency.

Four Threads, One CPU

In this example, a CPU workload of four busy threads was bound to CPU 0. runqlen(8) was 
executed with -C to show per-CPU histograms:

# runqlen -C 

Sampling run queue length... Hit Ctrl-C to end.

^C

 

cpu = 0

     runqlen       : count     distribution

        0          : 0        |                                        |

        1          : 0        |                                        |

        2          : 0        |                                        |

        3          : 551      |****************************************|

 

cpu = 1

     runqlen       : count     distribution

        0          : 41       |****************************************|

 

cpu = 2

     runqlen       : count     distribution

        0          : 126      |****************************************|

[...]

The run queue length on CPU 0 was three: one thread on-CPU and three threads waiting. This 
per-CPU output is useful for checking scheduler balance.

BCC

Command line usage for the BCC version:

runqlen [options] [interval [count]]

Options include:

 ■ -C: Prints a histogram per CPU

 ■ -O: Prints run queue occupancy

 ■ -T: Includes timestamps on output
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Run queue occupancy is a separate metric that shows the percentage of time that there were 
threads waiting. This is sometimes useful when a single metric is needed for monitoring, alerting, 
and graphing.

bpftrace

The following is the code for the bpftrace version of runqlen(8), which summarizes its core func-
tionality. This version does not support options.

#!/usr/local/bin/bpftrace

 

#include <linux/sched.h>

 

struct cfs_rq_partial {

        struct load_weight load;

        unsigned long runnable_weight;

        unsigned int nr_running;

};

 

BEGIN

{

        printf("Sampling run queue length at 99 Hertz... Hit Ctrl-C to end.\n");

}

 

profile:hz:99

{

        $task = (struct task_struct *)curtask;

        $my_q = (struct cfs_rq_partial *)$task->se.cfs_rq;

        $len = $my_q->nr_running;

        $len = $len > 0 ? $len - 1 : 0;        // subtract currently running task

        @runqlen = lhist($len, 0, 100, 1);

}

The program needs to reference the nr_running member of the cfs_rq struct, but this struct is 
not available in the standard kernel headers. So the program begins by defining a cfs_rq_partial 
struct, enough to fetch the needed member. This workaround may no longer be needed once BTF 
is available (see Chapter 2).

The main event is the profile:hz:99 probe, which samples the run queue length at 99 Hertz on 
all CPUs. The length is fetched by walking from the current task struct to the run queue it is on 
and then reading the length of the run queue. These struct and member names may need to be 
adjusted if the kernel source changes.

You can have this bpftrace version break down by CPU by adding a cpu key to @runqlen.
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6.3.5 runqslower

runqslower(8)12 is a BCC tool that lists instances of run queue latency exceeding a configu-
rable threshold and shows the process that suffered the latency and its duration. The following 
example is from a 48-CPU production API instance currently running at 45% CPU utilization 
system-wide:

# runqslower

Tracing run queue latency higher than 10000 us

TIME     COMM             PID           LAT(us)

17:42:49 python3          4590            16345

17:42:50 pool-25-thread-  4683            50001

17:42:53 ForkJoinPool.co  5898            11935

17:42:56 python3          4590            10191

17:42:56 ForkJoinPool.co  5912            13738

17:42:56 ForkJoinPool.co  5908            11434

17:42:57 ForkJoinPool.co  5890            11436

17:43:00 ForkJoinPool.co  5477            10502

17:43:01 grpc-default-wo  5794            11637

17:43:02 tomcat-exec-296  6373            12083

[...]

This output shows that over a period of 13 seconds, there were 10 cases of run queue latency 
exceeding the default threshold of 10000 microseconds (10 milliseconds). This might seem 
surprising for a server with 55% idle CPU headroom, but this is a busy multi-threaded applica-
tion, and some run queue imbalance is likely until the scheduler can migrate threads to idle 
CPUs. This tool can confirm the affected applications.

This tool currently works by using kprobes for the kernel functions ttwu_do_wakeup(), 
wake_up_new_task(), and finish_task_switch(). A future version should switch to scheduler 
tracepoints, using code similar to the earlier bpftrace version of runqlat(8). The overhead is 
similar to that of runqlat(8); it can cause noticeable overhead on busy systems due to the cost of 
the kprobes, even while runqslower(8) is not printing any output.

Command line usage:

runqslower [options] [min_us]

Options include:

 ■ -p PID: Measures this process only

The default threshold is 10000 microseconds.

12 Origin: This was created by Ivan Babrou on 2-May-2018.

http://ForkJoinPool.co
http://ForkJoinPool.co
http://ForkJoinPool.co
http://ForkJoinPool.co
http://ForkJoinPool.co
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6.3.6 cpudist

cpudist(8)13 is a BCC tool for showing the distribution of on-CPU time for each thread wakeup. 
This can be used to help characterize CPU workloads, providing details for later tuning and design 
decisions. For example, from a 48-CPU production instance:

# cpudist 10 1

Tracing on-CPU time... Hit Ctrl-C to end.

 

     usecs               : count     distribution

         0 -> 1          : 103865   |***************************             |

         2 -> 3          : 91142    |************************                |

         4 -> 7          : 134188   |***********************************     |

         8 -> 15         : 149862   |****************************************|

        16 -> 31         : 122285   |********************************        |

        32 -> 63         : 71912    |*******************                     |

        64 -> 127        : 27103    |*******                                 |

       128 -> 255        : 4835     |*                                       |

       256 -> 511        : 692      |                                        |

       512 -> 1023       : 320      |                                        |

      1024 -> 2047       : 328      |                                        |

      2048 -> 4095       : 412      |                                        |

      4096 -> 8191       : 356      |                                        |

      8192 -> 16383      : 69       |                                        |

     16384 -> 32767      : 42       |                                        |

     32768 -> 65535      : 30       |                                        |

     65536 -> 131071     : 22       |                                        |

    131072 -> 262143     : 20       |                                        |

    262144 -> 524287     : 4        |                                        |

This output shows that the production application usually spends only a short amount of time 
on CPU: from 0 to 127 microseconds. 

Here is a CPU-heavy workload, with more busy threads than CPUs available, and with 
a histogram in milliseconds (-m):

# cpudist -m

Tracing on-CPU time... Hit Ctrl-C to end.

^C

     msecs               : count     distribution

         0 -> 1          : 521      |****************************************|

         2 -> 3          : 60       |****                                    |

13 Origin: I created cpudists on 27-Apr-2005, showing CPU runtime distributions for processes, the kernel, and the idle 

thread. Sasha Goldshtein developed the BCC cpudist(8) on 29-Jun-2016, with options for per-process distributions.
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         4 -> 7          : 272      |********************                    |

         8 -> 15         : 308      |***********************                 |

        16 -> 31         : 66       |*****                                   |

        32 -> 63         : 14       |*                                       |

Now there is a mode of on-CPU durations from 4 to 15 milliseconds: this is likely threads 
exhausting their scheduler time quanta and then encountering an involuntary context switch.

This tool was used to help understand a Netflix production change, where a machine learning 
application began running three times faster. The perf(1) command was used to show that the 
context switch rate had dropped, and cpudist(8) was used to explain the affect this had: the appli-
cation was now usually running for two to four milliseconds between context switches, whereas 
earlier it could only run for between zero and three microseconds before being interrupted with a 
context switch.

cpudist(8) works by tracing scheduler context switch events, which can be very frequent on busy 
production workloads (over one million events/sec). As with runqlat(8), the overhead of this tool 
could be significant, so use it with caution.

Command line usage:

cpudist [options] [interval [count]]

Options include:

 ■ -m: Prints output in milliseconds (default is microseconds)

 ■ -O: Shows off-CPU time instead of on-CPU time

 ■ -P: Prints a histogram per process

 ■ -p PID: Measures this process only

There is currently no bpftrace version of cpudist(8). I’ve resisted creating one and instead have 
added it as an optional exercise at the end of this chapter.

6.3.7 cpufreq

cpufreq(8)14 samples the CPU frequency and shows it as a system-wide histogram, with 
per-process name histograms. This only works for CPU scaling governors that change the 
frequency, such as powersave, and can be used to determine the clock speed at which your appli-
cations are running. For example:

14 Origin: I created it for this book on 24-Apr-2019, inspired by the time_in_state BPF tool from Android by Connor 

O'Brien, with some initial work by Joel Fernandes; it uses sched tracepoints to track the frequency more precisely.
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# cpufreq.bt

Sampling CPU freq system-wide & by process. Ctrl-C to end.

^C

[...]

 

@process_mhz[snmpd]: 

[1200, 1400)           1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@process_mhz[python3]: 

[1600, 1800)           1 |@                                                   |

[1800, 2000)           0 |                                                    |

[2000, 2200)           0 |                                                    |

[2200, 2400)           0 |                                                    |

[2400, 2600)           0 |                                                    |

[2600, 2800)           2 |@@@                                                 |

[2800, 3000)           0 |                                                    |

[3000, 3200)          29 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@process_mhz[java]: 

[1200, 1400)         216 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[1400, 1600)          23 |@@@@@                                               |

[1600, 1800)          18 |@@@@                                                |

[1800, 2000)          16 |@@@                                                 |

[2000, 2200)          12 |@@                                                  |

[2200, 2400)           0 |                                                    |

[2400, 2600)           4 |                                                    |

[2600, 2800)           2 |                                                    |

[2800, 3000)           1 |                                                    |

[3000, 3200)          18 |@@@@                                                |

 

 

@system_mhz: 

[1200, 1400)       22041 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[1400, 1600)         903 |@@                                                  |

[1600, 1800)         474 |@                                                   |

[1800, 2000)         368 |                                                    |

[2000, 2200)          30 |                                                    |

[2200, 2400)           3 |                                                    |

[2400, 2600)          21 |                                                    |

[2600, 2800)          33 |                                                    |

[2800, 3000)          15 |                                                    |

[3000, 3200)         270 |                                                    |

[...]
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This shows that, system-wide, the CPU frequency was usually in the 1200 to 1400 MHz range, so 
this is a mostly idle system. Similar frequencies were encountered by the java process, with only 
some samples (18 while sampling) reaching the 3.0 to 3.2 GHz range. This application was mostly 
doing disk I/O, causing the CPUs to enter a power saving state. python3 processes were usually 
running at full speed.

This tool works by tracing frequency change tracepoints to determine the speed of each CPU, 
and then samples that speed at 100 Hertz. The performance overhead should be low to 
negligible. The previous output is from a system using the powersave scaling governor, as set in 
/sys/devices/system/cpu/cpufreq/.../scaling_governor. When the system is set to the performance 
governor, this tool shows nothing as there are no more frequency changes to instrument: the 
CPUs are pinned at the highest frequency.

Here is an excerpt from a production workload I just discovered:

@process_mhz[nginx]: 

[1200, 1400)          35 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                |

[1400, 1600)          17 |@@@@@@@@@@@@@@@@@                                   |

[1600, 1800)          16 |@@@@@@@@@@@@@@@@                                    |

[1800, 2000)          17 |@@@@@@@@@@@@@@@@@                                   |

[2000, 2200)           0 |                                                    |

[2200, 2400)           0 |                                                    |

[2400, 2600)           0 |                                                    |

[2600, 2800)           0 |                                                    |

[2800, 3000)           0 |                                                    |

[3000, 3200)           0 |                                                    |

[3200, 3400)           0 |                                                    |

[3400, 3600)           0 |                                                    |

[3600, 3800)          50 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

It shows that the production application, nginx, was often running at low CPU clock frequencies. 
The CPU scaling_governor had not been set to performance and had defaulted to powersave.

The source for cpufreq(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Sampling CPU freq system-wide & by process. Ctrl-C to end.\n");

}

 

tracepoint:power:cpu_frequency 

{

        @curfreq[cpu] = args->state;

}
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profile:hz:100

/@curfreq[cpu]/

{

        @system_mhz = lhist(@curfreq[cpu] / 1000, 0, 5000, 200);

        if (pid) {

                @process_mhz[comm] = lhist(@curfreq[cpu] / 1000, 0, 5000, 200);

        }

}

 

END

{

        clear(@curfreq);

}

The frequency changes are traced using the power:cpu_frequency tracepoint and saved in 
a @curfreq BPF map by CPU, for later lookup while sampling. The histograms track frequencies 
from 0 to 5000 MHz in steps of 200 MHz; these parameters can be adjusted in the tool if needed.

6.3.8 profile

profile(8)15 is a BCC tool that samples stack traces at a timed interval and reports a frequency 
count of stack traces. This is the most useful tool in BCC for understanding CPU consumption as 
it summarizes almost all code paths that are consuming CPU resources. (See the hardirqs(8) tool 
in Section 6.3.14 for more CPU consumers.) It can also be used with relatively negligible overhead, 
as the event rate is fixed to the sample rate, which can be tuned.

By default, this tool samples both user and kernel stack traces at 49 Hertz across all CPUs. This can 
be customized using options, and the settings are printed at the start of the output. For example:

# profile

Sampling at 49 Hertz of all threads by user + kernel stack... Hit Ctrl-C to end.

^C

 

    sk_stream_alloc_skb

    sk_stream_alloc_skb

    tcp_sendmsg_locked

    tcp_sendmsg

    sock_sendmsg

15 Origin: there have been many profilers in the past, including gprof from 1982 [Graham 82] (rewritten in 1988 by Jay 

Fenlason for the GNU project). I developed this version for BCC on 15-Jul-2016, based on code from Sasha Goldshtein, 

Andrew Birchall, Evgeny Vereshchagin, and Teng Qin. My first version predated kernel support and worked by using a 

hack: I added a tracepoint on perf samples, to be used in conjunction with perf_event_open(). My patch to add this 

tracepoint to Linux was rejected by Peter Zijistra, in favor of developing proper profiling support with BPF, which Alexei 

Starovoitov added.
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    sock_write_iter

    __vfs_write

    vfs_write

    ksys_write

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    __GI___write

    [unknown]

    -                iperf (29136)

        1

 

[...]

 

    __free_pages_ok

    __free_pages_ok

    skb_release_data

    __kfree_skb

    tcp_ack

    tcp_rcv_established

    tcp_v4_do_rcv

    __release_sock

    release_sock

    tcp_sendmsg

    sock_sendmsg

    sock_write_iter

    __vfs_write

    vfs_write

    ksys_write

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    __GI___write

    [unknown]

    -                iperf (29136)

        1889

 

    get_page_from_freelist

    get_page_from_freelist

    __alloc_pages_nodemask

    skb_page_frag_refill

    sk_page_frag_refill

    tcp_sendmsg_locked

    tcp_sendmsg

    sock_sendmsg
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    sock_write_iter

    __vfs_write

    vfs_write

    ksys_write

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    __GI___write

    [unknown]

    -                iperf (29136)

        2673

The output shows the stack traces as a list of functions, followed by a dash ("-") and the process 
name and PID in parentheses, and finally a count for that stack trace. The stack traces are printed 
in frequency count order, from least to most frequent.

The full output in this example was 17,254 lines long and has been truncated here to show only the 
first and final two stack traces. The most frequent stack trace, showing a path through vfs_write() 
and ending with get_page_from_freelist() on CPU, was seen 2673 times while sampling.

CPU Flame Graphs

Flame graphs are visualizations of stack traces that can help you quickly understand profile(8) 
output. They were introduced in Chapter 2.

To support flame graphs, profile(8) can produce output in folded format using -f: Stack traces are 
printed on one line, with functions separated by semicolons. For example, writing a 30-second 
profile to an out.stacks01 file and including kernel annotations (-a):

# profile -af 30 > out.stacks01

# tail -3 out.stacks01

iperf;

[unknown];__GI___write;entry_SYSCALL_64_after_hwframe_[k];do_syscall_64_[k];ksys_writ

e_[k];vfs_write_[k];__vfs_write_[k];sock_write_iter_[k];sock_sendmsg_[k];tcp_sendmsg_

[k];tcp_sendmsg_locked_[k];_copy_from_iter_full_[k];copyin_[k];copy_user_enhanced_fas

t_string_[k];copy_user_enhanced_fast_string_[k] 5844

iperf;

[unknown];__GI___write;entry_SYSCALL_64_after_hwframe_[k];do_syscall_64_[k];ksys_writ

e_[k];vfs_write_[k];__vfs_write_[k];sock_write_iter_[k];sock_sendmsg_[k];tcp_sendmsg_

[k];release_sock_[k];__release_sock_[k];tcp_v4_do_rcv_[k];tcp_rcv_established_[k];tcp

_ack_[k];__kfree_skb_[k];skb_release_data_[k];__free_pages_ok_[k];__free_pages_ok_[k] 

10713

iperf;

[unknown];__GI___write;entry_SYSCALL_64_after_hwframe_[k];do_syscall_64_[k];ksys_writ

e_[k];vfs_write_[k];__vfs_write_[k];sock_write_iter_[k];sock_sendmsg_[k];tcp_sendmsg_

[k];tcp_sendmsg_locked_[k];sk_page_frag_refill_[k];skb_page_frag_refill_[k];__alloc_p

ages_nodemask_[k];get_page_from_freelist_[k];get_page_from_freelist_[k] 15088
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Only the last three lines are shown here. This output can be fed into my original flame graph 
software to generate a CPU flame graph:

$ git clone https://github.com/brendangregg/FlameGraph

$ cd FlameGraph

$ ./flamegraph.pl --color=java < ../out.stacks01 > out.svg

flamegraph.pl supports different color palettes. The java palette used here makes use of the kernel 
annotations ("_[k]") for choosing color hues. The generated SVG is shown in Figure 6-5.

Figure 6-5 CPU flame graph from BPF sampled stacks

This flame graph shows that the hottest code paths ended in get_page_from_freelist_() 
and __free_pages_ok_()—these are the widest towers, with width proportional to their frequency 
in the profile. In a browser, this SVG supports click-to-zoom so that narrow towers can be 
expanded and their functions read.

What makes profile(8) different from other CPU profilers is that this frequency count is calculated 
in kernel space for efficiency. Other kernel-based profilers, such as perf(1), send every sampled 
stack trace to user space, where it is post-processed into a summary. This can be CPU expensive 
and, depending on the invocation, it can also involve file system and disk I/O to record the 
samples. profile(8) avoids those expenses.

http://flamegraph.pl
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Command line usage:

profile [options] [-F frequency]

Options include:

 ■ -U: Includes user-level stacks only

 ■ -K: Includes kernel-level stacks only

 ■ -a:  Includes frame annotations (e.g., "_[k]" for kernel frames)

 ■ -d:  Includes delimiters between kernel/user stacks

 ■ -f: Provides output in folded format

 ■ -p PID: Profiles this process only

bpftrace

The core functionality of profile(8) can be implemented as a bpftrace one-liner:

bpftrace -e 'profile:hz:49 /pid/ { @samples[ustack, kstack, comm] = count(); }'

This frequency-counts using the user stack, kernel stack, and process name as the key. A filter on 
the pid is included to ensure that it is non-zero: this excludes the CPU idle thread stacks. This 
one-liner can be customized as desired.

6.3.9 offcputime

offcputime(8)16 is a BCC and bpftrace tool to summarize time spent by threads blocked and 
off CPU, showing stack traces to explain why. For CPU analysis, this tool explains why threads 
are not running on a CPU. It’s a counterpart to profile(8); between them, they show the entire 
time spent by threads on the system: on-CPU time with profile(8) and off-CPU time with 
offcputime(8).

The following example shows offcputime(8) from BCC, tracing for five seconds:

# offcputime 5

Tracing off-CPU time (us) of all threads by user + kernel stack for 5 secs.

 

[...]

 

16 Origin: I created off-CPU analysis as a methodology, and DTrace one-liners to apply it, in 2005, after exploring uses 

of the DTrace sched provider and its sched:::off-cpu probe. When I first explained this to a Sun engineer in Adelaide, he 

said I should not call it “off-CPU” since the CPU isn’t off! My first off-CPU tools were uoffcpu.d and koffcpu.d in 2010 

for my DTrace book [Gregg 11]. For Linux, I published off-CPU analysis using perf(1), with extremely high overhead, on 

26-Feb-2015. I finally developed offcputime efficiently using BCC on 13-Jan-2016, and bpftrace for this book on 

16-Feb-2019.
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    finish_task_switch

    schedule

    schedule_timeout

    wait_woken

    sk_stream_wait_memory

    tcp_sendmsg_locked

    tcp_sendmsg

    inet_sendmsg

    sock_sendmsg

    sock_write_iter

    new_sync_write

    __vfs_write

    vfs_write

    SyS_write

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    __write

    [unknown]

    -                iperf (14657)

        5625

 

[...]

 

    finish_task_switch

    schedule

    schedule_timeout

    wait_woken

    sk_wait_data

    tcp_recvmsg

    inet_recvmsg

    sock_recvmsg

    SYSC_recvfrom

    sys_recvfrom

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    recv

    -                iperf (14659)

        1021497

 

[...]
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    finish_task_switch

    schedule

    schedule_hrtimeout_range_clock

    schedule_hrtimeout_range

    poll_schedule_timeout

    do_select

    core_sys_select

    sys_select

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    __libc_select

    [unknown]

    -                offcputime (14667)

        5004039

The output has been truncated to only show three stacks from the hundreds that were printed. 
Each stack shows the kernel frames (if present), then user-level frames, then the process name and 
PID, and finally the total time this combination was seen, in microseconds. The first stack shows 
iperf(1) blocking in sk_stream_wait_memory() for memory, for a total of 5 milliseconds. The 
second shows iperf(1) waiting for data on a socket via sk_wait_data(), for a total of 1.02 seconds. 
The last shows the offcputime(8) tool itself waiting in a select(2) syscall for 5.00 seconds; this is 
likely for the 5-second timeout specified at the command line.

Note that, in all three stacks, the user-level stack traces are incomplete. This is because they 
ended at libc, and this version does not support the frame pointer. This is more evident in 
offcputime(8) than profile(8), since blocking stacks often pass through system libraries such as 
libc or libpthread. See the discussions on broken stack traces and solutions in Chapters 2, 12, 13, 
and 18, in particular Section 13.2.9.

offcputime(8) has been used to find various production issues, including finding unexpected time 
blocked in lock acquisition and the stack traces responsible.

offcputime(8) works by instrumenting context switches and recording the time from when a 
thread leaves the CPU to when it returns, along with the stack trace. The times and stack traces 
are frequency-counted in kernel context for efficiency. Context switch events can nonetheless be 
very frequent, and the overhead of this tool can become significant (say, >10%) for busy produc-
tion workloads. This tool is best run for only short durations to minimize production impact.

Off-CPU Time Flame Graphs

As with profile(8), the output of offcputime(8) can be so verbose that you may find it preferable to 
examine it as a flame graph, though of a different type than introduced in Chapter 2. Instead of a 
CPU flame graph, offcputime(8) can be visualized as an off-CPU time flame graph.17 

17 These were first published by Yichun Zhang [80].
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This example creates an off-CPU time flame graph of kernel stacks for five seconds:

# offcputime -fKu 5 > out.offcputime01.txt

$ flamegraph.pl --hash --bgcolors=blue --title="Off-CPU Time Flame Graph" \

    < out.offcputime01.txt > out.offcputime01.svg

I used --bgcolors to change the background color to blue as a visual differentiator from CPU 
flame graphs. You can also change the frame colors with --colors, and I’ve published many 
off-CPU flame graphs using a blue palette for the frames18.

These commands produced the flame graph shown in Figure 6-6.

Figure 6-6 Off-CPU time flame graph

This flame graph is dominated by threads sleeping, waiting for work. Applications of interest can 
be examined by clicking their names to zoom in. For more on off-CPU flame graphs, including 
examples with full user stack traces, see Chapters 12, 13, and 14.

BCC

Command line usage:

offcputime [options] [duration]

Options include:

 ■ -f: Prints output in folded format

 ■ -p PID: Measures this process only

 ■ -u: Traces only user threads

 ■ -k: Traces only kernel threads

 ■ -U: Shows only user stack traces

 ■ -K: Shows only kernel stack traces

18 Nowadays, I prefer to just change the background color to blue, which leaves the frame color to use the same pal-

ette as CPU flame graphs for consistency.

http://flamegraph.pl
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Some of these options can help reduce overhead by filtering to record only one PID or stack 
type.

bpftrace

The following is the code for the bpftrace version of offcputime(8), which summarizes its core 
functionality. This version supports an optional PID argument for the target to trace:

#!/usr/local/bin/bpftrace

 

#include <linux/sched.h>

 

BEGIN

{

        printf("Tracing nanosecond time in off-CPU stacks. Ctrl-C to end.\n");

}

 

kprobe:finish_task_switch

{

        // record previous thread sleep time

        $prev = (struct task_struct *)arg0;

        if ($1 == 0 || $prev->tgid == $1) {

                @start[$prev->pid] = nsecs;

        }

 

        // get the current thread start time

        $last = @start[tid];

        if ($last != 0) {

                @[kstack, ustack, comm] = sum(nsecs - $last);

                delete(@start[tid]);

        }

}

 

END

{

        clear(@start);

}

This program records a timestamp for the thread that is leaving the CPU and also sums the 
off-CPU time for the thread that is starting, in the one finish_task_switch() kprobe.
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6.3.10 syscount

syscount(8)19 is a BCC and bpftrace tool for counting system calls system-wide. It is included in 
this chapter because it can be a starting point for investigating cases of high system CPU time.

The following output shows syscount(8) from BCC printing per-second syscall rates (-i 1) on 
a production instance:

# syscount -i 1

Tracing syscalls, printing top 10... Ctrl+C to quit.

[00:04:18]

SYSCALL                   COUNT

futex                    152923

read                      29973

epoll_wait                27865

write                     21707

epoll_ctl                  4696

poll                       2625

writev                     2460

recvfrom                   1594

close                      1385

sendto                     1343

 

[...]

This output shows the top 10 syscalls every second, with a timestamp. The most frequent syscall 
is futex(2), at more than 150,000 calls per second. To further explore each syscall, check the man 
pages for documentation, and use more BPF tools to trace and inspect their arguments (e.g., BCC 
trace(8) or bpftrace one-liners). In some situations, running strace(1) can be the quickest path for 
understanding how a given syscall is used, but keep in mind that the current ptrace-based imple-
mentation of strace(1) can slow the target application one hundredfold, which can cause serious 
issues in many production environments (e.g., exceeding latency SLOs, or triggering failovers). 
strace(1) should be considered a last resort after you’ve tried BPF tooling.

The -P option can be used to count by process ID instead: 

# syscount -Pi 1

Tracing syscalls, printing top 10... Ctrl+C to quit.

[00:04:25]

PID    COMM               COUNT

3622   java              294783

990    snmpd                124

2392   redis-server          64

19 Origin: I first created this using Ftrace and perf(1) for the perf-tools collection on 7-Jul-2014, and Sasha Goldshtein 

developed the BCC version on 15-Feb-2017.
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4790   snmp-pass             32

27035  python                31

26970  sshd                  24

2380   svscan                11

2441   atlas-system-ag        5

2453   apache2                2

4786   snmp-pass              1

 

[...]

The java process is making almost 300,000 syscalls per second. Other tools show that this is 
consuming only 1.6% system time across this 48-CPU system.

This tool works by instrumenting the raw_syscalls:sys_enter tracepoint rather than the usual 
syscalls:sys_enter_* tracepoints. The reason is that this is one tracepoint that can see all syscalls, 
making it quicker to initialize instrumentation. The downside is that it only provides syscall IDs, 
which must be translated back into the names. BCC provides a library call, syscall_name(), 
to do this.

The overhead of this tool may become noticeable for very high syscall rates. As an example, 
I stress-tested one CPU with a syscall rate of 3.2 million syscalls/second/CPU. While running 
syscount(8), the workload suffered a 30% slowdown. This helps estimate the overhead for 
production: The 48-CPU instance with a rate of 300,000 syscalls/second is performing 
about 6000 syscalls/second/CPU, so it would be expected to suffer a 0.06% slowdown 
(30% × 6250 / 3200000). I tried to measure this directly in production, but it was too small to 
measure with a variable workload.

BCC

Command line usage:

syscount [options] [-i interval] [-d duration]

Options include:

 ■ -T TOP: Prints the specified number of top entries

 ■ -L: Shows the total time (latency) in syscalls

 ■ -P: Counts by process

 ■ -p PID: Measures this process only

An example of the -L option is shown in Chapter 13.
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bpftrace

There is a bpftrace version of syscount(8) that has the core functionality, but you can also use this 
one-liner:

# bpftrace -e 't:syscalls:sys_enter_* { @[probe] = count(); }'

Attaching 316 probes...

^C

 

[...]

@[tracepoint:syscalls:sys_enter_ioctl]: 9465

@[tracepoint:syscalls:sys_enter_epoll_wait]: 9807

@[tracepoint:syscalls:sys_enter_gettid]: 10311

@[tracepoint:syscalls:sys_enter_futex]: 14062

@[tracepoint:syscalls:sys_enter_recvmsg]: 22342

In this case, all 316 syscall tracepoints were instrumented (for this kernel version), and a frequency 
count was performed on the probe name. Currently there is a delay during program startup and 
shutdown to instrument all 316 tracepoints. It’s preferable to use the single raw_syscalls:sys_enter 
tracepoint, as BCC does, but that then requires an extra step to translate from syscall ID back to 
syscall name. This is included as an example in Chapter 14.

6.3.11 argdist and trace

argdist(8) and trace(8) are introduced in Chapter 4, and are BCC tools that can examine events in 
custom ways. As a follow-on from syscount(8), if a syscall was found to be called frequently, you 
can use these tools to examine it in more detail.

For example, the read(2) syscall was frequent in the previous syscount(8) output. You can use 
argdist(8) to summarize its arguments and return value by instrumenting either the syscall trace-
point or its kernel functions. For the tracepoint, you need to find the argument names, which the 
BCC tool tplist(8) prints out with the -v option:

# tplist -v syscalls:sys_enter_read

syscalls:sys_enter_read

    int __syscall_nr;

    unsigned int fd;

    char * buf;

    size_t count;

The count argument is the size of the read(2). Summarizing this using argdist(8) as a histogram 
(-H):

# argdist -H 't:syscalls:sys_enter_read():int:args->count'

[09:08:31]

     args->count         : count     distribution

         0 -> 1          : 169      |*****************                       |
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         2 -> 3          : 243      |*************************               |

         4 -> 7          : 1        |                                        |

         8 -> 15         : 0        |                                        |

        16 -> 31         : 384      |****************************************|

        32 -> 63         : 0        |                                        |

        64 -> 127        : 0        |                                        |

       128 -> 255        : 0        |                                        |

       256 -> 511        : 0        |                                        |

       512 -> 1023       : 0        |                                        |

      1024 -> 2047       : 267      |***************************             |

      2048 -> 4095       : 2        |                                        |

      4096 -> 8191       : 23       |**                                      |

 

[...]

This output shows that there were many reads in the 16- to 31-byte range, as well as the 
1024- to 2047-byte range. The -C option to argdist(8) can be used instead of -H to summarize 
as a frequency count of sizes rather than a histogram.

This is showing the read requested size since the entry to the syscall was instrumented. Compare 
it with the return value from the syscall exit, which is the number of bytes actually read:

# argdist -H 't:syscalls:sys_exit_read():int:args->ret'

[09:12:58]

     args->ret           : count     distribution

         0 -> 1          : 481      |****************************************|

         2 -> 3          : 116      |*********                               |

         4 -> 7          : 1        |                                        |

         8 -> 15         : 29       |**                                      |

        16 -> 31         : 6        |                                        |

        32 -> 63         : 31       |**                                      |

        64 -> 127        : 8        |                                        |

       128 -> 255        : 2        |                                        |

       256 -> 511        : 1        |                                        |

       512 -> 1023       : 2        |                                        |

      1024 -> 2047       : 13       |*                                       |

      2048 -> 4095       : 2        |                                        |

 

[...]

These are mostly zero- or one-byte reads.

Thanks to its in-kernel summary, argdist(8) is useful for examining syscalls that were called 
frequently. trace(8) prints per-event output and is suited for examining less-frequent syscalls, 
showing per-event timestamps and other details.
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bpftrace

This level of syscall analysis is possible using bpftrace one-liners. For example, examining the 
requested read size as a histogram:

# bpftrace -e 't:syscalls:sys_enter_read { @ = hist(args->count); }'

Attaching 1 probe...

^C

 

@: 

[1]                 1102 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[2, 4)               902 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@          |

[4, 8)                20 |                                                    |

[8, 16)               17 |                                                    |

[16, 32)             538 |@@@@@@@@@@@@@@@@@@@@@@@@@                           |

[32, 64)              56 |@@                                                  |

[64, 128)              0 |                                                    |

[128, 256)             0 |                                                    |

[256, 512)             0 |                                                    |

[512, 1K)              0 |                                                    |

[1K, 2K)             119 |@@@@@                                               |

[2K, 4K)              26 |@                                                   |

[4K, 8K)             334 |@@@@@@@@@@@@@@@                                     |

And the return value:

# bpftrace -e 't:syscalls:sys_exit_read { @ = hist(args->ret); }'

Attaching 1 probe...

^C

 

@: 

(..., 0)             105 |@@@@                                                |

[0]                   18 |                                                    |

[1]                 1161 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[2, 4)               196 |@@@@@@@@                                            |

[4, 8)                 8 |                                                    |

[8, 16)              384 |@@@@@@@@@@@@@@@@@                                   |

[16, 32)              87 |@@@                                                 |

[32, 64)             118 |@@@@@                                               |

[64, 128)             37 |@                                                   |

[128, 256)             6 |                                                    |

[256, 512)            13 |                                                    |

[512, 1K)              3 |                                                    |

[1K, 2K)               3 |                                                    |

[2K, 4K)              15 |                                                    |
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bpftrace has a separate bucket for negative values ("(..., 0)"), which are error codes returned by 
read(2) to indicate an error. You can craft a bpftrace one-liner to print these as a frequency count 
(as shown in Chapter 5) or a linear histogram so that the individual numbers can be seen:

#  bpftrace -e 't:syscalls:sys_exit_read /args->ret < 0/ {

    @ = lhist(- args->ret, 0, 100, 1); }'

Attaching 1 probe...

^C

 

@: 

[11, 12)             123 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

This output shows that error code 11 was always returned. Checking the Linux headers 
(asm-generic/errno-base.h):

#define EAGAIN          11      /* Try again */

Error code 11 is for “try again,” an error state that can occur in normal operation.

6.3.12 funccount

funccount(8), introduced in Chapter 4, is a BCC tool that can frequency-count functions and 
other events. It can be used to provide more context for software CPU usage, showing which func-
tions are called and how frequently. profile(8) may be able to show that a function is hot on CPU, 
but it can’t explain why20: whether the function is slow, or whether it was simply called millions 
of times per second.

As an example, this frequency-counts kernel TCP functions on a busy production instance by 
matching those that begin with "tcp_":

# funccount 'tcp_*'

Tracing 316 functions for "tcp_*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

[...]

tcp_stream_memory_free                 368048

tcp_established_options                381234

tcp_v4_md5_lookup                      402945

tcp_gro_receive                        484571

tcp_md5_do_lookup                      510322

Detaching...

20 profile(8) can’t explain this easily. Profilers including profile(8) sample the CPU instruction pointer, and so a compari-

son with the function’s disassembly may show whether it was stuck in a loop or called many times. In practice, it can be 

harder than it sounds: see Section 2.12.2 in Chapter 2.
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This output shows that tcp_md5_do_lookup() was most frequent, with 510,000 calls while 
tracing.

Per-interval output can be generated using -i. For example, the earlier profile(8) output shows 
that the function get_page_from_freelist() was hot on CPU. Was that because it was called often or 
because it was slow? Measuring its per-second rate:

# funccount -i 1 get_page_from_freelist

Tracing 1 functions for "get_page_from_freelist"... Hit Ctrl-C to end.

 

FUNC                                    COUNT

get_page_from_freelist                 586452

 

FUNC                                    COUNT

get_page_from_freelist                 586241

[...]

The function was called over half a million times per second.

This works by using dynamic tracing of the function: It uses kprobes for kernel functions and 
uprobes for user-level functions (kprobes and uprobes are explained in Chapter 2). The overhead 
of this tool is relative to the rate of the functions. Some functions, such as malloc() and 
get_page_from_freelist(), tend to occur frequently, so tracing them can slow down the target 
application significantly, in excess of 10 percent—use caution. See Section 18.1 in Chapter 18 for 
more about understanding overhead.

Command line usage:

funccount [options] [-i interval] [-d duration] pattern

Options include:

 ■ -r: Use regular expressions for the pattern match

 ■ -p PID: Measures this process only

Patterns:

 ■ name or p:name: Instrument the kernel function called name()

 ■ lib:name: Instrument the user-level function called name() in library lib

 ■ path:name: Instrument the user-level function called name() in the file at path

 ■ t:system:name: Instruments the tracepoint called system:name

 ■ *: A wildcard to match any string (globbing)

See Section 4.5 in Chapter 4 for more examples.
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bpftrace

The core functionality of funccount(8) can be implemented as a bpftrace one-liner:

# bpftrace -e 'k:tcp_* { @[probe] = count(); }'

Attaching 320 probes...

[...]

@[kprobe:tcp_release_cb]: 153001

@[kprobe:tcp_v4_md5_lookup]: 154896

@[kprobe:tcp_gro_receive]: 177187

This can be adjusted to do per-interval output, for example, with this addition:

interval:s:1 { print(@); clear(@); }

As with BCC, use caution when tracing frequent functions, as they may incur significant 
overhead.

6.3.13 softirqs

softirqs(8) is a BCC tool that shows the time spent servicing soft IRQs (soft interrupts). The 
system-wide time in soft interrupts is readily available from different tools. For example, 
mpstat(1) shows it as %soft. There is also /proc/softirqs to show counts of soft IRQ events. The 
BCC softirqs(8) tool differs in that it can show time per soft IRQ rather than event count.

For example, from a 48-CPU production instance and a 10-second trace:

# softirqs 10 1

Tracing soft irq event time... Hit Ctrl-C to end.

 

SOFTIRQ          TOTAL_usecs

net_tx                   633

tasklet                30939

rcu                   143859

sched                 185873

timer                 389144

net_rx               1358268

This output shows that the most time was spent servicing net_rx, totaling 1358 milliseconds. This 
is significant, as it works out to be 3 percent of the CPU time on this 48-CPU system.

softirqs(8) works by using the irq:softirq_enter and irq:softirq_exit tracepoints. The overhead of 
this tool is relative to the event rate, which could be high for busy production systems and high 
network packet rates. Use caution and check overhead.
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Command line usage:

softirqs [options] [interval [count]]

Options include:

 ■ -d: Shows IRQ time as histograms

 ■ -T: Includes timestamps on output

The -d option can be used to explore the distribution and identify whether there are latency 
outliers while servicing these interrupts.

bpftrace

A bpftrace version of softirqs(8) does not exist, but could be created. The following one-liner is a 
starting point, counting IRQs by vector ID:

# bpftrace -e 'tracepoint:irq:softirq_entry { @[args->vec] = count(); }'

Attaching 1 probe...

^C

 

@[3]: 11

@[6]: 45

@[0]: 395

@[9]: 405

@[1]: 524

@[7]: 561

These vector IDs can be translated to the softirq names in the same way the BCC tool does this: by 
using a lookup table. Determining the time spent in soft IRQs involves tracing the irq:softirq_exit 
tracepoint as well.

6.3.14 hardirqs

hardirqs(8)21 is a BCC tool that shows time spent servicing hard IRQs (hard interrupts). The 
system-wide time in hard interrupts is readily available from different tools. For example, 
mpstat(1) shows it as %irq. There is also /proc/interrupts to show counts of hard IRQ events. 
The BCC hardirqs(8) tool differs in that it can show time per hard IRQ rather than 
event count.

21 Origin: I first created this as inttimes.d on 28-Jun-2005, for printing time sums and intoncpu.d for printing histo-

grams on 9-May-2005, which was based on intr.d from the “Dynamic Tracing Guide,” Jan 2005 [Sun 05]. I also devel-

oped a DTrace tool to show interrupts by CPU but have not ported it to BPF since Linux has /proc/interrupts for that 

task. I developed this BCC version that does both sums and histograms on 20-Oct-2015.
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For example, from a 48-CPU production instance and a 10-second trace:

# hardirqs 10 1

Tracing hard irq event time... Hit Ctrl-C to end.

 

HARDIRQ                    TOTAL_usecs

ena-mgmnt@pci:0000:00:05.0          43

nvme0q0                             46

eth0-Tx-Rx-7                     47424

eth0-Tx-Rx-6                     48199

eth0-Tx-Rx-5                     48524

eth0-Tx-Rx-2                     49482

eth0-Tx-Rx-3                     49750

eth0-Tx-Rx-0                     51084

eth0-Tx-Rx-4                     51106

eth0-Tx-Rx-1                     52649

This output shows that several hard IRQs named eth0-Tx-Rx* had total times of around 
50 milliseconds for this 10-second trace.

hardirqs(8) can provide insight for CPU usage that is not visible to CPU profilers. See the Internals 
section of Section 6.2.4 for profiling on cloud instances that lack a hardware PMU.

This tool currently works by using dynamic tracing of the handle_irq_event_percpu() kernel 
function, although a future version should switch to the irq:irq_handler_entry and irq:
irq_handler_exit tracepoints.

Command line usage:

hardirqs [options] [interval [count]]

Options include:

 ■ -d: Shows IRQ time as histograms

 ■ -T: Includes timestamps on output

The -d option can be used to explore the distribution and identify whether there are latency 
outliers while servicing these interrupts.

6.3.15 smpcalls

smpcalls(8)22 is a bpftrace tool to trace and summarize time in the SMP call functions (also known 
as cross calls). These are a way for one CPU to run functions on other CPUs, including all other 

22 Origin: I created smpcalls.bt for this book on 23-Jan-2019. The name comes from my earlier tool, xcallsbypid.d 

(named after CPU cross calls), which I created on 17-Sep-2005.
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CPUs, which can become an expensive activity on large multi-processor systems. For example, on 
a 36-CPU system:

# smpcalls.bt

Attaching 8 probes...

Tracing SMP calls. Hit Ctrl-C to stop.

^C

 

@time_ns[do_flush_tlb_all]: 

[32K, 64K)             1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[64K, 128K)            1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@time_ns[remote_function]: 

[4K, 8K)               1 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |

[8K, 16K)              1 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |

[16K, 32K)             0 |                                                    |

[32K, 64K)             2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@time_ns[do_sync_core]: 

[32K, 64K)            15 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[64K, 128K)            9 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                     |

 

@time_ns[native_smp_send_reschedule]: 

[2K, 4K)               7 |@@@@@@@@@@@@@@@@@@@                                 |

[4K, 8K)               3 |@@@@@@@@                                            |

[8K, 16K)             19 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16K, 32K)             3 |@@@@@@@@                                            |

 

@time_ns[aperfmperf_snapshot_khz]: 

[1K, 2K)               5 |@                                                   |

[2K, 4K)              12 |@@@                                                 |

[4K, 8K)              12 |@@@                                                 |

[8K, 16K)              6 |@                                                   |

[16K, 32K)             1 |                                                    |

[32K, 64K)           196 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[64K, 128K)           20 |@@@@@                                               |

This is the first time I’ve run this tool, and it’s identified an issue right away: The 
aperfmperf_snapshot_khz cross call is relatively frequent and slow, taking up to 
128 microseconds.
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The source to smpcalls(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing SMP calls. Hit Ctrl-C to stop.\n");

}

 

kprobe:smp_call_function_single,

kprobe:smp_call_function_many

{

        @ts[tid] = nsecs;

        @func[tid] = arg1;

}

 

kretprobe:smp_call_function_single,

kretprobe:smp_call_function_many

/@ts[tid]/

{

        @time_ns[ksym(@func[tid])] = hist(nsecs - @ts[tid]);

        delete(@ts[tid]);

        delete(@func[tid]);

}

 

kprobe:native_smp_send_reschedule

{

        @ts[tid] = nsecs;

        @func[tid] = reg("ip");

}

 

kretprobe:native_smp_send_reschedule

/@ts[tid]/

{

        @time_ns[ksym(@func[tid])] = hist(nsecs - @ts[tid]);

        delete(@ts[tid]);

        delete(@func[tid]);

}

 

END

{

        clear(@ts);

        clear(@func);

}
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Many of the SMP calls are traced via kprobes for the smp_call_function_single() and 
smp_call_function_many() kernel functions. The entry to these functions has the remote 
CPU function as the second argument, which bpftrace accesses as arg1 and stores keyed by 
thread ID for lookup in the kretprobe. It is then converted into the human-readable symbol by 
the bpftrace ksym() built-in.

There is a special SMP call not covered by those functions, smp_send_reschedule(), which is 
traced via native_smp_send_reschedule(). I hope that a future kernel version supports SMP call 
tracepoints to simplify tracing of these calls.

The @time_ns histogram key can be modified to include the kernel stack trace and process name:

        @time_ns[comm, kstack, ksym(@func[tid])] = hist(nsecs - @ts[tid]);

This includes more details for the slow call:

@time_ns[snmp-pass,

    smp_call_function_single+1

    aperfmperf_snapshot_cpu+90

    arch_freq_prepare_all+61

    cpuinfo_open+14

    proc_reg_open+111

    do_dentry_open+484

    path_openat+692

    do_filp_open+153

    do_sys_open+294

    do_syscall_64+85

    entry_SYSCALL_64_after_hwframe+68

, aperfmperf_snapshot_khz]: 

[2K, 4K)               2 |@@                                                  |

[4K, 8K)               0 |                                                    |

[8K, 16K)              1 |@                                                   |

[16K, 32K)             1 |@                                                   |

[32K, 64K)            51 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[64K, 128K)           17 |@@@@@@@@@@@@@@@@@                                   |

This output shows that the process was snmp-pass, a monitoring agent, and it was doing an 
open() syscall that ends up in cpuinfo_open() and an expensive cross call.

Using another BPF tool, opensnoop(8), quickly confirms this behavior:

# opensnoop.py -Tn snmp-pass

TIME(s)       PID    COMM               FD ERR PATH

0.000000000   2440   snmp-pass           4   0 /proc/cpuinfo

0.000841000   2440   snmp-pass           4   0 /proc/stat

1.022128000   2440   snmp-pass           4   0 /proc/cpuinfo
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1.024696000   2440   snmp-pass           4   0 /proc/stat

2.046133000   2440   snmp-pass           4   0 /proc/cpuinfo

2.049020000   2440   snmp-pass           4   0 /proc/stat

3.070135000   2440   snmp-pass           4   0 /proc/cpuinfo

3.072869000   2440   snmp-pass           4   0 /proc/stat

[...]

This output shows that snmp-pass is reading the /proc/cpuinfo file every second! Most of the 
details in this file will not change, with the exception of the "cpu MHz" field.

Inspection of the software showed that it was reading /proc/cpuinfo merely to count the number 
of processors; the "cpu MHz" field was not used at all. This is an example of unnecessary work, 
and eliminating it should provide a small but easy win.

On Intel processors, these SMP calls are ultimately implemented as x2APIC IPI (inter-processor 
interrupt) calls, including x2apic_send_IPI(). These can also be instrumented, as shown in 
Section 6.4.2.

6.3.16 llcstat

llcstat(8)23 is a BCC tool that uses PMCs to show last-level cache (LLC) miss rates and hit ratios by 
process. PMCs are introduced in Chapter 2.

For example, from a 48-CPU production instance:

# llcstat 

Running for 10 seconds or hit Ctrl-C to end.

PID      NAME             CPU     REFERENCE         MISS    HIT%

0        swapper/15       15        1007300         1000  99.90%

4435     java             18          22000          200  99.09%

4116     java             7           11000          100  99.09%

4441     java             38          32200          300  99.07%

17387    java             17          10800          100  99.07%

4113     java             17          10500          100  99.05%

[...]

This output shows that the java processes (threads) were running with a very high hit ratio, 
over 99%.

This tool works by using overflow sampling of PMCs, where one in every so many cache refer-
ences or misses triggers a BPF program to read the currently running process and record stats. The 
default threshold is 100, and it can be tuned using -c. This one-in-a-hundred sampling helps keep 
the overhead low (and can be tuned to higher numbers, if needed); however, there are some issues 
related to sampling with it. For example, a process could by chance overflow misses more often 
than references, which doesn’t make sense (as misses are a subset of references).

23 Origin: This was created by Teng Qin on 19-Oct-2016, and is the first tool in BCC to use PMCs.
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Command line usage:

llcstat [options] [duration]

Options include:

 ■ -c SAMPLE_PERIOD: Sample one in this many events only

llcstat(8) is interesting in that it was the first BCC tool to use PMCs, outside of timed sampling.

6.3.17 Other Tools

Other BPF tools worth mentioning:

 ■ cpuwalk(8) from bpftrace samples which processes CPUs were running on and prints the 
result as a linear histogram. This provides a histogram view of CPU balance.

 ■ cpuunclaimed(8) from BCC is an experimental tool that samples CPU run queue lengths 
and determines how often there are idle CPUs yet threads in a runnable state on a different 
run queue. This sometimes happens due to CPU affinity, but if it happens often, it may be a 
sign of a scheduler misconfiguration or bug.

 ■ loads(8) from bpftrace is an example of fetching the load averages from a BPF tool. As 
discussed earlier, these numbers are misleading.

 ■ vltrace is a tool in development by Intel that will be a BPF-powered version of strace(1) that 
can be used for further characterization of syscalls that are consuming CPU time [79].

6.4 BPF One-Liners

This section provides BCC and bpftrace one-liners. Where possible, the same one-liner is imple-
mented using both BCC and bpftrace.

6.4.1 BCC

Trace new processes with arguments:

execsnoop

Show who is executing what:

trace 't:syscalls:sys_enter_execve "-> %s", args->filename'

Show the syscall count by process:

syscount -P

Show the syscall count by syscall name:

syscount
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Sample user-level stacks at 49 Hertz, for PID 189:

profile -F 49 -U -p 189

Sample all stack traces and process names:

profile

Count kernel functions beginning with "vfs_":

funccount 'vfs_*'

Trace new threads via pthread_create():

trace /lib/x86_64-linux-gnu/libpthread-2.27.so:pthread_create

6.4.2 bpftrace

Trace new processes with arguments:

bpftrace -e 'tracepoint:syscalls:sys_enter_execve { join(args->argv); }'

Show who is executing what:

bpftrace -e 'tracepoint:syscalls:sys_enter_execve { printf("%s -> %s\n", comm,

    str(args->filename)); }'

Show the syscall count by program:

bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'

Show the syscall count by process:

bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[pid, comm] = count(); }'

Show the syscall count by syscall probe name:

bpftrace -e 'tracepoint:syscalls:sys_enter_* { @[probe] = count(); }'

Show the syscall count by syscall function:

bpftrace -e 'tracepoint:raw_syscalls:sys_enter {

    @[sym(*(kaddr("sys_call_table") + args->id * 8))] = count(); }'

Sample running process names at 99 Hertz:

bpftrace -e 'profile:hz:99 { @[comm] = count(); }'

Sample user-level stacks at 49 Hertz, for PID 189:

bpftrace -e 'profile:hz:49 /pid == 189/ { @[ustack] = count(); }'

Sample all stack traces and process names:

bpftrace -e 'profile:hz:49 { @[ustack, stack, comm] = count(); }'

Sample the running CPU at 99 Hertz and show it as a linear histogram:

bpftrace -e 'profile:hz:99 { @cpu = lhist(cpu, 0, 256, 1); }'
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Count kernel functions beginning with vfs_:

bpftrace -e 'kprobe:vfs_* { @[func] = count(); }'

Count SMP calls by name and kernel stack:

bpftrace -e 'kprobe:smp_call* { @[probe, kstack(5)] = count(); }'

Count Intel x2APIC calls by name and kernel stack:

bpftrace -e 'kprobe:x2apic_send_IPI* { @[probe, kstack(5)] = count(); }'

Trace new threads via pthread_create():

bpftrace -e 'u:/lib/x86_64-linux-gnu/libpthread-2.27.so:pthread_create {

    printf("%s by %s (%d)\n", probe, comm, pid); }'

6.5 Optional Exercises

If not specified, these can be completed using either bpftrace or BCC:

 1. Use execsnoop(8) to show the new processes for the man ls command.

 2. Run execsnoop(8) with -t and output to a log file for 10 minutes on a production or local 
system. What new processes did you find?

 3. On a test system, create an overloaded CPU. This creates two CPU-bound threads that are 
bound to CPU 0:

taskset -c 0 sh -c 'while :; do :; done' &

taskset -c 0 sh -c 'while :; do :; done' &

  Now use uptime(1) (load averages), mpstat(1) (-P ALL), runqlen(8), and runqlat(8) to 
characterize the workload on CPU 0. (Remember to kill the workload when you are done.)

 4. Develop a tool/one-liner to sample kernel stacks on CPU 0 only.

 5. Use profile(8) to capture kernel CPU stacks to determine where CPU time is spent by the 
following workload:

dd if=/dev/nvme0n1p3 bs=8k iflag=direct | dd of=/dev/null bs=1

  Modify the infile (if=) device to be a local disk (see df -h for a candidate). You can either 
profile system-wide or filter for each of those dd(1) processes.

 6. Generate a CPU flame graph of the Exercise 5 output.

 7. Use offcputime(8) to capture kernel CPU stacks to determine where blocked time is spent 
for the workload of Exercise 5.

 8. Generate an off-CPU time flame graph for the output of Exercise 7.
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 9. execsnoop(8) only sees new processes that call exec(2) (execve(2)), although some may 
fork(2) or clone(2) and not exec(2) (e.g., the creation of worker processes). Write a new tool 
called procsnoop(8) to show all new processes with as many details as possible. You could 
trace fork() and clone(), or use the sched tracepoints, or do something else.

 10. Develop a bpftrace version of softirqs(8) that prints the softirq name.

 11. Implement cpudist(8) in bpftrace.

 12. With cpudist(8) (either version), show separate histograms for voluntary and involuntary 
context switches.

 13. (Advanced, unsolved) Develop a tool to show a histogram of time spent by tasks in CPU 
affinity wait: runnable while other CPUs are idle but not migrated due to cache warmth 
(see kernel.sched_migration_cost_ns, task_hot()—which may be inlined and not traceable, 
and can_migrate_task()).

6.6 Summary

This chapter summarizes how CPUs are used by a system, and how to analyze them using tradi-
tional tools: statistics, profilers, and tracers. This chapter also shows how to use BPF tools to 
uncover issues of short-lived processes, examine run queue latency in detail, profile CPU usage 
efficiency, count function calls, and show CPU usage by soft and hard interrupts.
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Chapter 7
Memory

Linux is a virtual memory–based system where each process has its own virtual address space, and 
mappings to physical memory are made on demand. Its design allows for over-subscription of 
physical memory, which Linux manages with a page out daemon and physical swap devices and 
(as a last resort) the out-of-memory (OOM) killer. Linux uses spare memory as a file system cache, 
a topic covered in Chapter 8. 

This chapter shows how BPF can expose application memory usage in new ways and help you 
examine how the kernel is responding to memory pressure. As CPU scalability has grown faster 
than memory speeds, memory I/O has become the new bottleneck. Understanding memory 
usage can lead to finding many performance wins.

Learning Objectives:

 ■ Understand memory allocation and paging behavior

 ■ Learn a strategy for successful analysis of memory behavior using tracers

 ■ Use traditional tools to understand memory capacity usage

 ■ Use BPF tools to identify code paths causing heap and RSS growth

 ■ Characterize page faults by fi lename and stack trace

 ■ Analyze the behavior of the VM scanner

 ■ Determine the performance impact of memory reclaim

 ■ Identify which processes are waiting for swap-ins

 ■ Use bpftrace one-liners to explore memory usage in custom ways

This chapter begins with some necessary background for memory analysis, with a focus on 
application usage, summarizing virtual and physical allocation, and paging. Questions that BPF 
can answer are explored, as well as an overall strategy to follow. Traditional memory analysis 
tools are summarized first, and then BPF tools are covered, including a list of BPF one-liners. This 
chapter ends with optional exercises.

Chapter 14 provides additional tools for kernel memory analysis.
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7.1 Background

This section covers memory fundamentals, BPF capabilities, and a suggested strategy for memory 
analysis.

7.1.1 Memory Fundamentals

Memory Allocators

Figure 7-1 shows commonly used memory allocation systems for user- and kernel-level software. 
For processes using libc for memory allocation, memory is stored on a dynamic segment of the 
process’s virtual address space called the heap. libc provides functions for memory allocation, 
including malloc() and free(). When memory is freed, libc tracks its location and can use that 
location information to fulfill a subsequent malloc(). libc needs to extend the size of the heap 
only when there is no available memory. There is usually no reason for libc to shrink the size of 
the heap as this is all virtual memory, not real physical memory.

The kernel and processor are responsible for mapping virtual memory to physical memory. For 
efficiency, memory mappings are created in groups of memory called pages, where the size of each 
page is a processor detail; four Kbytes is common, although most processors also support larger 
sizes—what Linux terms huge pages. The kernel can service physical memory page requests from 
its own free lists, which it maintains for each DRAM group and CPU for efficiency. The kernel’s 
own software also consumes memory from these free lists as well, usually via a kernel allocator 
such as the slab allocator.

Figure 7-1 Memory allocators

Other user allocation libraries include tcmalloc and jemalloc, and runtimes such as the JVM often 
provide their own allocator along with garbage collection. Other allocators may also map private 
segments for allocation outside of the heap.
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Figure 7-2 Memory page life cycle 

Memory Pages and Swapping

The life cycle of a typical user memory page is shown in Figure 7-2, with the following steps 
enumerated:

 1. The application begins with an allocation request for memory (e.g., libc malloc()).

 2. The allocation library can either service the memory request from its own free lists, or 
it may need to expand virtual memory to accommodate. Depending on the allocation 
library, it will either:

a. Extend the size of the heap by calling a brk() syscall and using the heap memory for the 
allocation.

b. Create a new memory segment via the mmap() syscall.

 3. Sometime later, the application tries to use the allocated memory range through store and 
load instructions, which involves calling in to the processor memory management unit 
(MMU) for virtual-to-physical address translation. At this point, the lie of virtual memory 
is revealed: There is no mapping for this address! This causes an MMU error called a page 
fault.

 4. The page fault is handled by the kernel, which establishes a mapping from its physical 
memory free lists to virtual memory and then informs the MMU of this mapping for later 
lookups. The process is now consuming an extra page of physical memory. The amount of 
physical memory in use by the process is called its resident set size (RSS).

 5. When there is too much memory demand on the system, the kernel page-out daemon 
(kswapd) may look for memory pages to free. It will free one of three types of memory 
(though only (c) is pictured in Figure 7-2, as it is showing a user memory page life cycle):

a. File system pages that were read from disk and not modified (termed "backed by disk"): 
These can be freed immediately and simply reread back when needed. These pages are 
application-executable text, data, and file system metadata.
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b. File system pages that have been modified: These are “dirty” and must be written to disk 
before they can be freed.

c. Pages of application memory: These are called anonymous memory because they have 
no file origin. If swap devices are in use, these can be freed by first being stored on a 
swap device. This writing of pages to a swap device is termed swapping (on Linux).

Memory allocation requests are typically frequent activities: User-level allocations can occur 
millions of times per second for a busy application. Load and store instructions and MMU 
lookups are even more frequent; they can occur billions of times per second. In Figure 7-2, these 
arrows are drawn in bold. Other activities are relatively infrequent: brk() and mmap() calls, 
page faults, and page-outs (lighter arrows). 

Page-Out Daemon

The page-out daemon (kswapd) is activated periodically to scan LRU lists of inactive and active 
pages in search of memory to free. It is woken up when free memory crosses a low threshold and 
goes back to sleep when it crosses a high threshold, as shown in Figure 7-3.

Figure 7-3 kswapd wakeups and modes

kswapd coordinates background page-outs; apart from CPU and disk I/O contention, these should 
not directly harm application performance. If kswapd cannot free memory quickly enough, a 
tunable minimum pages threshold is crossed, and direct reclaim is used; this is a foreground mode 
of freeing memory to satisfy allocations. In this mode, allocations block (stall) and synchronously 
wait for pages to be freed [Gorman 04] [81].

Direct reclaim can call kernel module shrinker functions: These free up memory that may have 
been kept in caches, including the kernel slab caches.

Swap Devices

Swap devices provide a degraded mode of operation for a system running out of memory: 
Processes can continue to allocate, but less frequently used pages are now moved to and from 
their swap devices, which usually causes applications to run much more slowly. Some production 
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systems run without swap; the rationale is that the degraded mode of operation is never accept-
able for those critical systems, which may have numerous redundant (and healthy!) servers that 
would be much better to use than one that has begun swapping. (This is usually the case for 
Netflix cloud instances, for example.) If a swap-less system runs out of memory, the kernel out-of-
memory killer sacrifices a process. Applications are configured to never exceed the memory limits 
of the system, to avoid this.

OOM Killer

The Linux out-of-memory killer is a last resort to free up memory: It will find victim processes 
using a heuristic, and sacrifice them by killing them. The heuristic looks for the largest victim 
that will free many pages, and that isn’t a critical task such as kernel threads or init (PID 1). Linux 
provides ways to tune the behavior of the OOM killer system-wide and per-process.

Page Compaction

Over time, the freed pages become fragmented, making it difficult for the kernel to allocate a large 
contiguous chunk, if needed. The kernel uses a compaction routine to move pages, freeing up 
contiguous regions [81].

File System Caching and Buffering

Linux borrows free memory for file system caching and returns it to the free status when there is 
demand. A consequence of such borrowing is that the free memory reported by the system rushes 
toward zero after Linux boots, which may cause a user to worry that the system is running out of 
memory when actually it’s just warming up its file system cache. In addition, the file system uses 
memory for write-back buffering.

Linux can be tuned to prefer freeing from the file system cache or freeing memory via swapping 
(vm.swappiness).

Caching and buffering are discussed further in Chapter 8.

Further Reading

This is a brief summary to arm you with essential knowledge before using the tools. Additional 
topics, including kernel page allocation and NUMA, are covered in Chapter 14. Memory alloca-
tion and paging are covered in much more depth in Chapter 7 of Systems Performance [Gregg 13b].

7.1.2 BPF Capabilities

Traditional performance tools provide some insight for memory internals. For example, they can 
show breakdowns of virtual and physical memory usage and the rates of page operations. These 
traditional tools are summarized in the next section.

BPF tracing tools can provide additional insight for memory activity, answering:

 ■ Why does the process physical memory (RSS) keep growing?

 ■ What code paths are causing page faults? For which files?
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 ■ What processes are blocked waiting on swap-ins?

 ■ What memory mappings are being created system-wide?

 ■ What is the system state at the time of an OOM kill?

 ■ What application code paths are allocating memory?

 ■ What types of objects are allocated by applications?

 ■ Are there memory allocations that are not freed after a while? (They could indicate 
potential leaks.)

These can be answered with BPF by instrumenting software events or tracepoints for faults and 
syscalls; kprobes for kernel memory allocation functions; uprobes for library, runtime, and 
application allocators; USDT probes for libc allocator events; and PMCs for overflow sampling 
of memory accesses. These event sources can also be mixed in one BPF program to share context 
between different systems.

Memory events including allocations, memory mappings, faults, and swapping, can all be instru-
mented using BPF. Stack traces can be fetched to show the reasons for many of these events.

Event Sources

Table 7-1 lists the event sources for instrumenting memory.

Table 7-1 Event Sources for Instrumenting Memory

Event Type Event Source

User memory allocations uprobes on allocator functions and libc USDT probes

Kernel memory allocations kprobes on allocator functions and kmem tracepoints

Heap expansions brk syscall tracepoints

Shared memory functions syscall tracepoints

Page faults kprobes, software events, and exception tracepoints

Page migrations migration tracepoints

Page compaction compaction tracepoints

VM scanner vmscan tracepoints

Memory access cycles PMCs

Here are the USDT probes available in libc:

# bpftrace -l usdt:/lib/x86_64-linux-gnu/libc-2.27.so

[...]

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt_arena_max

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt_arena_test

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_tunable_tcache_max_bytes
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usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_tunable_tcache_count

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_tunable_tcache_unsorted_limit

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt_trim_threshold

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt_top_pad

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt_mmap_threshold

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt_mmap_max

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt_perturb

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_heap_new

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_sbrk_less

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_arena_reuse

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_arena_reuse_wait

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_arena_new

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_arena_reuse_free_list

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_arena_retry

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_heap_free

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_heap_less

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_heap_more

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_sbrk_more

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt_free_dyn_thresholds

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_malloc_retry

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_memalign_retry

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_realloc_retry

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_calloc_retry

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt_mxfast

These probes provide insight into the internal operation of the libc allocator.

Overhead

As mentioned earlier, memory allocation events can occur millions of times per second. Although 
BPF programs are optimized to be fast, calling them millions of times per second can add up 
to significant overhead, slowing the target software by more than 10%, and in some cases by 
10 times (10x), depending on the rate of events traced and the BPF program used.

To work around this overhead, Figure 7-2 shows which paths are frequent by using bold arrows 
and which are infrequent by using lighter arrows. Many questions about memory usage can be 
answered, or approximated, by tracing the infrequent events: page faults, page outs, brk() calls, 
and mmap() calls. The overhead of tracing these events can be negligible.

One reason to trace the malloc() calls is to show the code paths that led to malloc(). These code 
paths can be revealed using a different technique: timed sampling of CPU stacks, as covered in 
Chapter 6. Searching for "malloc" in a CPU flame graph is a coarse but cheap way to identify the 
code paths calling this function frequently, without needing to trace the function directly.



ptg30854589

250 Chapter 7  Memory

The performance of uprobes may be greatly improved in the future (10x to 100x) through 
dynamic libraries involving user-to-user-space jumps rather than kernel traps (see Section 2.8.4 
in Chapter 2).

7.1.3 Strategy

If you are new to memory performance analysis, here is a suggested overall strategy to follow:

 1. Check system messages to see if the OOM killer has recently killed processes (e.g., using 
dmesg(1)).

 2. Check whether the system has swap devices and the amount of swap in use; also check 
whether those devices have active I/O (e.g., using swap(1), iostat(1), and vmstat(1)).

 3. Check the amount of free memory on the system and system-wide usage by caches 
(e.g., free(1)).

 4. Check per-process memory usage (e.g., using top(1) and ps(1)).

 5. Check the page fault rate and examine stack traces on page faults, which can explain RSS 
growth.

 6. Check the files that were backing page faults.

 7. Trace brk() and mmap() calls for a different view of memory usage.

 8. Browse and execute the BPF tools listed in the BPF tools section of this chapter.

 9. Measure hardware cache misses and memory accesses using PMCs (especially with PEBS 
enabled) to determine functions and instructions causing memory I/O (e.g., using perf(1)).

The following sections explain these tools in more detail.

7.2 Traditional Tools

Traditional performance tools provide many capacity-based memory usage statistics, including 
how much virtual and physical memory is in use by each process and system-wide, with some 
breakdowns such as by process segment or slab. Analyzing memory usage beyond basics such as 
the page fault rate required built-in instrumentation for each allocation by the allocation library, 
runtime, or application; or a virtual machine analyzer like Valgrind could be used; this latter 
approach can cause the target application to run over 10 times slower while instrumented. BPF 
tools are more efficient and cost smaller overheads.

Even where they are not sufficient on their own to solve issues, traditional tools can provide clues 
to direct your use of BPF tools. The traditional tools listed in Table 7-2 have been categorized here 
based on their source and measurement type.
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Table 7-2 Traditional Tools

Tool Type Description

dmesg Kernel log OOM killer event details

swapon Kernel statistics Swap device usage 

free Kernel statistics System-wide memory usage

ps Kernel statistics Process statistics, including memory usage

pmap Kernel statistics Process memory usage by segment

vmstat Kernel statistics Various statistics, including memory

sar Kernel statistics Can show page fault and page scanner rates

perf Software events, hardware 
statistics, hardware sampling

Memory-related PMC statistics and event sampling

The following sections summarize the key functionality of these tools. Refer to their man pages 
and other resources, including Systems Performance [Gregg 13b], for more usage and explanations. 
Chapter 14 includes slabtop(1) for kernel slab allocations.

7.2.1 Kernel Log

The kernel out-of-memory killer writes details to the system log, viewable using dmesg(1), for 
each time it needs to kill a process. For example:

# dmesg

[2156747.865271] run invoked oom-killer: gfp_mask=0x24201ca, order=0, oom_score_adj=0

[...]

[2156747.865330] Mem-Info:

[2156747.865333] active_anon:3773117 inactive_anon:20590 isolated_anon:0

[2156747.865333]  active_file:3 inactive_file:0 isolated_file:0

[2156747.865333]  unevictable:0 dirty:0 writeback:0 unstable:0

[2156747.865333]  slab_reclaimable:3980 slab_unreclaimable:5811

[2156747.865333]  mapped:36 shmem:20596 pagetables:10620 bounce:0

[2156747.865333]  free:18748 free_pcp:455 free_cma:0

[...]

[2156747.865385] [ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents 

oom_score_adj name

[2156747.865390] [  510]     0   510     4870       67      15       3        0             

0 upstart-udev-br

[2156747.865392] [  524]     0   524    12944      237      28       3        0         

-1000 systemd-udevd

[...]

[2156747.865574] Out of memory: Kill process 23409 (perl) score 329 or sacrifice child

[2156747.865583] Killed process 23409 (perl) total-vm:5370580kB, anon-rss:5224980kB, 

file-rss:4kB
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The output includes a summary of system-wide memory usage, the process table, and the target 
process that was sacrificed.

You should always check dmesg(1) before getting into deeper memory analysis.

7.2.2 Kernel Statistics

Kernel statistics tools use statistical sources in the kernel, often exposed via the /proc interface 
(e.g., /proc/meminfo, /proc/swaps). An advantage of these tools is that the metrics are usually 
always enabled by the kernel, so there is little additional overhead involved in using them. They 
can also often be read by non-root users.

swapon

swapon(1) can show whether swap devices have been configured and how much of their volume 
is in use. For example:

$ swapon

NAME      TYPE      SIZE USED PRIO

/dev/dm-2 partition 980M   0B   -2

This output shows a system with one swap partition of 980 Mbytes, which is not in use at all. 
Many systems nowadays do not have swap configured, and if this is the case, swapon(1) does not 
print any output.

If a swap device has active I/O, it can be seen in the "si" and "so" columns in vmstat(1), and as 
device I/O in iostat(1).

free

The free(1) tool summarizes memory usage and shows available free memory system-wide. This 
example uses -m for Mbytes:

$ free -m

              total        used        free      shared  buff/cache   available

Mem:         189282      183022        1103           4        5156        4716

Swap:             0           0           0                          

The output from free(1) has improved in recent years to be less confusing; it now includes 
an "available" column that shows how much memory is available for use, including the file 
system cache. This is less confusing than the "free" column, which only shows memory that is 
completely unused. If you think the system is running low on memory because "free" is low, you 
need to consider "available" instead.

The file system cached pages are seen in the "buff/cache" column, which sums two types: I/O 
buffers and file system cached pages. You can view these pages in separate columns by using the 
-w option (wide).



ptg30854589

2537.2 Traditional Tools

This particular example is from a production system with 184 Gbytes of total main memory, of 
which about 4 Gbytes is currently available. For more breakdowns of system-wide memory, 
cat /proc/meminfo.

ps

The ps(1) process status command can show memory usage by process:

$ ps aux

USER   PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND

[...]

root  2499  0.0  0.0  30028  2720 ?        Ss   Jan25   0:00 /usr/sbin/cron -f

root  2703  0.0  0.0      0     0 ?        I    04:13   0:00 [kworker/41:0]

pcp   2951  0.0  0.0 116716  3572 ?        S    Jan25   0:00 /usr/lib/pcp/bin/pmwe...

root  2992  0.0  0.0      0     0 ?        I    Jan25   0:00 [kworker/17:2]

root  3741  0.0  0.0      0     0 ?        I    Jan25   0:05 [kworker/0:3]

www   3785 1970 95.7 213734052 185542800 ? Sl   Jan25 15123:15 /apps/java/bin/java...

[...]

This output has columns for:

 ■ %MEM: The percentage of the system’s physical memory in use by this process

 ■ VSZ: Virtual memory size

 ■ RSS: Resident set size: the total physical memory in use by this process

This output shows that the java process is consuming 95.7% of the physical memory on the 
system. The ps(1) command can print custom columns to focus only on memory statistics 
(e.g., ps -eo pid,pmem,vsz,rss). These statistics and more can be found in the /proc files: 
/proc/PID/status.

pmap

The pmap(1) command can show process memory usage by address space segment. For example:

$ pmap -x 3785

3785:   /apps/java/bin/java -Dnop -XX:+UseG1GC -...

XX:+ParallelRefProcEnabled -XX:+ExplicitGCIn

Address           Kbytes     RSS   Dirty Mode  Mapping

0000000000400000       4       0       0 r-x-- java

0000000000400000       0       0       0 r-x-- java

0000000000600000       4       4       4 rw--- java

0000000000600000       0       0       0 rw--- java

00000000006c2000    5700    5572    5572 rw---   [ anon ]

00000000006c2000       0       0       0 rw---   [ anon ]

[...]
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00007f2ce5e61000       0       0       0 ----- libjvm.so

00007f2ce6061000     832     832     832 rw--- libjvm.so

00007f2ce6061000       0       0       0 rw--- libjvm.so

[...]

ffffffffff600000       4       0       0 r-x--   [ anon ]

ffffffffff600000       0       0       0 r-x--   [ anon ]

---------------- ------- ------- ------- 

total kB         213928940 185743916 185732800

This view can identify large memory consumers by libraries or mapped files. This extended (-x) 
output includes a column for “dirty” pages: pages that have changed in memory and are not yet 
saved on disk.

vmstat

The vmstat(1) command shows various system-wide statistics over time, including statistics for 
memory, CPUs, and storage I/O. For example, printing a summary line every one second:

$ vmstat 1

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----

 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st

12  0      0 1075868  13232 5288396    0    0    14    26   16   19 38  2 59  0  0

14  0      0 1075000  13232 5288932    0    0     0     0 28751 77964 22  1 77  0  0

 9  0      0 1074452  13232 5289440    0    0     0     0 28511 76371 18  1 81  0  0

15  0      0 1073824  13232 5289828    0    0     0     0 32411 86088 26  1 73  0  0

The "free", "buff", and "cache" columns show memory in Kbytes that is free, used by storage I/O 
buffers, and used for the file system cache. The "si" and "so" columns show memory swapped in 
and out from disk, if active.

The first line of output is the “summary since boot,” where most columns are an average since 
the system booted; however, the memory columns show the current state. The second and subse-
quent lines are the one-second summaries.

sar

The sar(1) command is a multi-tool that prints metrics for different targets. The -B option shows 
page statistics:

# sar -B 1

Linux 4.15.0-1031-aws (...)      01/26/2019          _x86_64_   (48 CPU)

 

06:10:38 PM  pgpgin/s pgpgout/s   fault/s  majflt/s  pgfree/s pgscank/s pgscand/s 

pgsteal/s    %vmeff

06:10:39 PM      0.00      0.00    286.00      0.00  16911.00      0.00      0.00      

0.00      0.00
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06:10:40 PM      0.00      0.00     90.00      0.00  19178.00      0.00      0.00      

0.00      0.00

06:10:41 PM      0.00      0.00    187.00      0.00  18949.00      0.00      0.00      

0.00      0.00

06:10:42 PM      0.00      0.00    110.00      0.00  24266.00      0.00      0.00      

0.00      0.00

[...]

This output is from a busy production server. The output is very wide, so the columns have 
wrapped and are a little hard to read here. The page fault rate ("fault/s") is low—less than 300 per 
second. There also isn’t any page scanning (the "pgscan" columns), indicating that the system is 
likely not running at memory saturation.

Here is output from a server doing a software build:

# sar -B 1

Linux 4.18.0-rc6-virtual (...)  01/26/2019           _x86_64_   (36 CPU)

 

06:16:08 PM  pgpgin/s pgpgout/s   fault/s  majflt/s  pgfree/s pgscank/s pgscand/s 

pgsteal/s    %vmeff

06:16:09 PM   1968.00    302.00 1454167.00      0.00 1372222.00      0.00      0.00      

0.00      0.00

06:16:10 PM   1680.00    171.00 1374786.00      0.00 1203463.00      0.00      0.00      

0.00      0.00

06:16:11 PM   1100.00    581.00 1453754.00      0.00 1457286.00      0.00      0.00      

0.00      0.00

06:16:12 PM   1376.00    227.00 1527580.00      0.00 1364191.00      0.00      0.00      

0.00      0.00

06:16:13 PM    880.00     68.00 1456732.00      0.00 1315536.00      0.00      0.00      

0.00      0.00

[...]

Now the page fault rate is huge—over one million faults per second. This is because the software 
build involves many short-lived processes, and each new process is faulting in its address space on 
first execution.

7.2.3 Hardware Statistics and Sampling

There are many PMCs for memory I/O events. To be clear, this is I/O from the CPU units on the 
processor to the banks of main memory, via the CPU caches. PMCs,  introduced in Chapter 2, can 
be used in two modes: counting and sampling. Counting provides statistical summaries, and costs 
virtually zero overhead to use. Sampling records some of the events to a file for later analysis.
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This example uses perf(1) in counting mode to measure last-level cache (LLC) loads and misses, 
system-wide (-a), with interval output every 1 second (-I 1000):

# perf stat -e LLC-loads,LLC-load-misses -a -I 1000

#           time         counts unit events

     1.000705801      8,402,738      LLC-loads

     1.000705801      3,610,704      LLC-load-misses  #   42.97% of all LL-cache hits   

     2.001219292      8,265,334      LLC-loads

     2.001219292      3,526,956      LLC-load-misses  #   42.32% of all LL-cache hits   

     3.001763602      9,586,619      LLC-loads

     3.001763602      3,842,810      LLC-load-misses  #   43.91% of all LL-cache hits   

[...]

For convenience, perf(1) has recognized how these PMCs are related and printed a percentage 
miss ratio. LLC misses are one measure of I/O to main memory, since once a memory load or store 
misses the LLC, it becomes a main memory access.

Now perf(1) is used in sampling mode to record details from every one in one hundred thousand 
L1 data cache misses:

# perf record -e L1-dcache-load-misses -c 100000 -a

^C[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 3.075 MB perf.data (612 samples) ]

# perf report -n --stdio

# Overhead  Samples  Command  Shared Object        Symbol                                      

# ........  .......  .......  ...................  ..................................

#

    30.56%      187  cksum    [kernel.kallsyms]    [k] copy_user_enhanced_fast_string

     8.33%       51  cksum    cksum                [.] 0x0000000000001cc9

     2.78%       17  cksum    cksum                [.] 0x0000000000001cb4

     2.45%       15  cksum    [kernel.kallsyms]    [k] generic_file_read_iter

     2.12%       13  cksum    cksum                [.] 0x0000000000001cbe

[...]

Such a large sampling threshold (-c 100000) was used because L1 accesses are very frequent, 
and a lower threshold might collect so many samples that it would perturb the performance of 
running software. If you are unsure of the rate of a PMC, use counting mode first (perf stat) to 
find it, and from that you can calculate an appropriate threshold.

The output of perf report shows the symbols for the L1 dcache misses. It is recommended to use 
PEBS with memory PMCs so that the sample instruction pointers are accurate. With perf, add :p, 
or :pp (better), or :ppp (best) to the end of the event name to enable PEBS; the more ps, the more 
accurate. (See the p modifier section of the perf-list(1) man page.)



ptg30854589

2577.3 BPF Tools

7.3 BPF Tools

This section covers the BPF tools you can use for memory performance analysis and troubleshoot-
ing (see Figure 7-4).

Figure 7-4 BPF tools for memory analysis

These tools are either from the BCC and bpftrace repositories covered in Chapters 4 and 5, or were 
created for this book. Some tools appear in both BCC and bpftrace. Table 7-3 lists the origins of 
the tools covered in this section (BT is short for bpftrace.)

Table 7-3 Memory-Related Tools

Tool Source Target Description

oomkill BCC/BT OOM Shows extra info on OOM kill events

memleak BCC Sched Shows possible memory leak code paths

mmapsnoop Book Syscalls Traces mmap(2) calls system-wide

brkstack Book Syscalls Shows brk() calls with user stack traces

shmsnoop BCC Syscalls Traces shared memory calls with details

faults Book Faults Shows page faults, by user stack trace

ffaults Book Faults Shows page faults, by filename

vmscan Book VM Measures VM scanner shrink and reclaim times

drsnoop BCC VM Traces direct reclaim events, showing latency

swapin Book VM Shows swap-ins by process

hfaults Book Faults Shows huge page faults, by process
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For tools from BCC and bpftrace, see their repositories for full and updated lists of tool options 
and capabilities. Some of the most important capabilities are summarized here.

Chapter 14 provides more BPF tools for kernel memory analysis: kmem(8), kpages(8), 
slabratetop(8), and numamove(8).

7.3.1 oomkill

oomkill(8)1 is a BCC and bpftrace tool for tracing out-of-memory killer events and printing details 
such as the load averages. Load averages provide some additional context for the system state at 
the time of the OOM, showing whether the system was getting busier or whether it was steady.

The following example shows oomkill(8) from BCC, from a 48-CPU production instance:

# oomkill

Tracing OOM kills... Ctrl-C to stop.

08:51:34 Triggered by PID 18601 ("perl"), OOM kill of PID 1165 ("java"), 18006224 

pages, loadavg: 10.66 7.17 5.06 2/755 18643

[...]

This output shows that PID 18601 (perl) needed memory, which triggered an OOM kill of PID 
1165 (java). PID 1165 had reached 18006224 pages in size; these are usually 4 Kbytes per page, 
depending on the processor and process memory settings. The load averages show that the system 
was getting busier at the time of the OOM kill.

This tool works by tracing the oom_kill_process() function using kprobes and printing various 
details. In this case, the load averages are fetched by simply reading /proc/loadavg. This tool can 
be enhanced to print other details, as desired, when debugging OOM events. In addition, oom 
tracepoints that can reveal more details about how tasks are selected are not yet used by this tool.

The BCC version currently does not use command line arguments.

bpftrace

The following is the code for the bpftrace version of oomkill(8):

#!/usr/local/bin/bpftrace

 

#include <linux/oom.h>

 

BEGIN

{

        printf("Tracing oom_kill_process()... Hit Ctrl-C to end.\n");

}

 

1 Origin: I created it on 9-Feb-2016, for BCC, to have a tool for launching extra debug info for the production OOM 

events I sometimes see. I wrote the bpftrace version on 7-Sep-2018.
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kprobe:oom_kill_process

{

        $oc = (struct oom_control *)arg1;

        time("%H:%M:%S ");

        printf("Triggered by PID %d (\"%s\"), ", pid, comm);

        printf("OOM kill of PID %d (\"%s\"), %d pages, loadavg: ",

            $oc->chosen->pid, $oc->chosen->comm, $oc->totalpages);

        cat("/proc/loadavg");

}

The program traces oom_kill_process() and casts the second argument as a struct oom_control, 
which contains details of the sacrificial process. It prints details of the current process (pid, 
comm) that led to the OOM event, and then the target details, and finally a system() call is used 
to print the load averages.

7.3.2 memleak

memleak(8)2 is a BCC tool that traces memory allocation and free events along with the alloca-
tion stack traces. Over time, it can show the long-term survivors—the allocations that have not 
been freed. This example shows memleak(8) running on a bash shell process3:

# memleak -p 3126

Attaching to pid 3228, Ctrl+C to quit.

 

[09:14:15] Top 10 stacks with outstanding allocations:

[...]

        960 bytes in 1 allocations from stack

                xrealloc+0x2a [bash]

                strvec_resize+0x2b [bash]

                maybe_make_export_env+0xa8 [bash]

                execute_simple_command+0x269 [bash]

                execute_command_internal+0x862 [bash]

                execute_connection+0x109 [bash]

                execute_command_internal+0xc18 [bash]

                execute_command+0x6b [bash]

                reader_loop+0x286 [bash]

                main+0x969 [bash]

                __libc_start_main+0xe7 [libc-2.27.so]

                [unknown]

2 Origin: This was created by Sasha Goldshtein and published on 7-Feb-2016.

3 To ensure that frame pointer–based stack traces work and regular malloc routines are used, this bash was compiled 

with CFLAGS=-fno-omit-frame-pointer ./configure --without-gnu-malloc.



ptg30854589

260 Chapter 7  Memory

        1473 bytes in 51 allocations from stack

                xmalloc+0x18 [bash]

                make_env_array_from_var_list+0xc8 [bash]

                make_var_export_array+0x3d [bash]

                maybe_make_export_env+0x12b [bash]

                execute_simple_command+0x269 [bash]

                execute_command_internal+0x862 [bash]

                execute_connection+0x109 [bash]

                execute_command_internal+0xc18 [bash]

                execute_command+0x6b [bash]

                reader_loop+0x286 [bash]

                main+0x969 [bash]

                __libc_start_main+0xe7 [libc-2.27.so]

                [unknown]

 

[...]

By default it prints output every five seconds, showing the allocation stacks and total bytes yet 
to be freed. The last stack shows that 1473 bytes were allocated via execute_command() and 
make_env_array_from_var_list().

memleak(8) alone cannot tell you whether these allocations are a genuine memory leak (that is, 
allocated memory with no references and which will never be freed), or memory growth, or just 
a long-term allocation. To differentiate between them, the code paths need to be studied and 
understood.

Without a -p PID provided, memleak(8) traces kernel allocations:

# memleak

Attaching to kernel allocators, Ctrl+C to quit.

[...]

[09:19:30] Top 10 stacks with outstanding allocations:

[...]

        15384576 bytes in 3756 allocations from stack

                __alloc_pages_nodemask+0x209 [kernel]

                alloc_pages_vma+0x88 [kernel]

                handle_pte_fault+0x3bf [kernel]

                __handle_mm_fault+0x478 [kernel]

                handle_mm_fault+0xb1 [kernel]

                __do_page_fault+0x250 [kernel]

                do_page_fault+0x2e [kernel]

                page_fault+0x45 [kernel]

[...]

For process targets, memleak(8) works by tracing the user-level allocation functions: malloc(), 
calloc(), free(), and so on. For the kernel, it uses the kmem tracepoints: kmem:kmalloc, 
kmem:kfree, and so on.
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Command line usage:

memleak [options] [-p PID] [-c COMMAND] [interval [count]]

Options include:

 ■ -s RATE: Samples one in every RATE allocations to lower overhead

 ■ -o OLDER: Prunes allocations younger than OLDER, in milliseconds

Allocations, especially user-level allocations, can be extremely frequent—millions of times per 
second. This can slow the target application by as much as 10x or more, depending on how busy 
it is. For now, this means memleak(8) is more of a troubleshooting or debugging tool than an 
everyday production analysis tool. As mentioned earlier, this will be the case until the perfor-
mance of uprobes is greatly improved.

7.3.3 mmapsnoop

mmapsnoop(8)4 traces the mmap(2) syscall system-wide and prints details of the requested 
mappings. This is useful for general debugging of memory mapping usage. Example output:

# mmapsnoop.py

PID    COMM           PROT MAP   OFFS(KB) SIZE(KB) FILE

6015   mmapsnoop.py   RW-  S---  0        260      [perf_event]

6015   mmapsnoop.py   RW-  S---  0        260      [perf_event]

[...]

6315   java           R-E  -P--  0        2222     libjava.so

6315   java           RW-  -PF-  168      8        libjava.so

6315   java           R--  -P--  0        43       ld.so.cache

6315   java           R-E  -P--  0        2081     libnss_compat-2.23.so

6315   java           RW-  -PF-  28       8        libnss_compat-2.23.so

6315   java           R-E  -P--  0        2146     libnsl-2.23.so

6315   java           RW-  -PF-  84       8        libnsl-2.23.so

6315   java           R--  -P--  0        43       ld.so.cache

6315   java           R-E  -P--  0        2093     libnss_nis-2.23.so

6315   java           RW-  -PF-  40       8        libnss_nis-2.23.so

6315   java           R-E  -P--  0        2117     libnss_files-2.23.so

6315   java           RW-  -PF-  40       8        libnss_files-2.23.so

6315   java           R--  S---  0        2        passwd

[...]

4 Origin: I first created this as mmap.d for DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD in 2010 

[Gregg 11], and I created this BCC version for this book on 3-Feb-2019.
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This output begins with mappings to the perf_event ring buffers that this BCC tool uses for 
fetching event output. Then java mappings can be seen for a new process startup, along with the 
protection and mapping flags.

Protection flags (PROT):

 ■ R: PROT_READ

 ■ W: PROT_WRITE

 ■ E: PROT_EXEC

Map flags (MAP):

 ■ S: MAP_SHARED

 ■ P: MAP_PRIVATE

 ■ F: MAP_FIXED

 ■ A: MAP_ANON

mmapsnoop(8) supports a -T option for printing a time column.

This tool works by instrumenting the syscalls:sys_enter_mmap tracepoint. The overhead of this 
tool should be negligible as the rate of new mappings should be relatively low.

Chapter 8 continues the analysis of memory-mapped files and includes the mmapfiles(8) and 
fmapfaults(8) tools.

7.3.4 brkstack

The usual memory store for application data is the heap, which grows via calls to the brk(2) syscall. 
It can be useful to trace brk(2) and show the user-level stack trace that led to this growth. There is 
also an sbrk(2) variant, but on Linux, sbrk(2) is implemented as a library call that calls brk(2).

brk(2) can be traced with the syscalls:syscall_enter_brk tracepoint, and stacks for this tracepoint 
can be shown using BCC’s trace(8) for per-event output and stackcount(8) for a frequency count, a 
bpftrace one-liner, and also perf(1). Examples using BCC tools:

# trace -U t:syscalls:sys_enter_brk

# stackcount -PU t:syscalls:sys_enter_brk

For example:

# stackcount -PU t:syscalls:sys_enter_brk

Tracing 1 functions for "t:syscalls:sys_enter_brk"... Hit Ctrl-C to end.

^C

[...]

 

  brk

  __sbrk
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  __default_morecore

  sysmalloc

  _int_malloc

  tcache_init

  __libc_malloc

  malloc_hook_ini

  __libc_malloc

  JLI_MemAlloc

  JLI_List_new

  main

  __libc_start_main

  _start

    java [8395]

    1

 

  [unknown]

    cron [8385]

    2

This truncated output shows a brk(2) stack from a "java" process, from JLI_List_new(), 
JLI_MemAlloc(), and via sbrk(3): it looks as if a list object triggered a heap expansion. The 
second stack trace from cron is broken. For the java stack to work, I had to use a libc version 
with frame pointers. This is discussed further in Section 13.2.9 in Chapter 13.

brk(2) growths are infrequent, and the stack trace may reveal a large and unusual allocation 
that needed more space than was available, or a normal code path that happened to need one 
byte more than was available. The code path needs to be studied to determine which is the case. 
Because these growths are infrequent, the overhead of tracing them is negligible, making brk 
tracing an inexpensive technique for finding some clues about memory growth. In comparison, 
tracing the much more frequent memory allocation functions directly (e.g., malloc()) can be so 
expensive to instrument that the overhead is prohibitive. Another low-overhead tool for analyz-
ing memory growth is faults(8), covered in Section 7.3.6, which traces page faults.

It can be easier to remember and find tools by their filename than to remember one-liners, so here 
is this important functionality implemented as a bpftrace tool, brkstack(8)5:

#!/usr/local/bin/bpftrace

 

tracepoint:syscalls:sys_enter_brk

{

        @[ustack, comm] = count();

}

5 Origin: I created it for this book on 26-Jan-2019. Tracing brk() stacks is something I’ve done for years, and in the past 

I have published brk(2) flame graphs [82].
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7.3.5 shmsnoop

shmsnoop(8)6 is a BCC tool that traces System V shared memory syscalls: shmget(2), shmat(2), 
shmdt(2), and shmctl(2). It can be used for debugging shared memory usage. For example, during 
startup of a Java application:

# shmsnoop

PID    COMM        SYS          RET ARGs

12520  java           SHMGET    58c000a key: 0x0, size: 65536, shmflg: 0x380 (IPC_CREAT|0600)

12520  java      SHMAT 7fde9c033000 shmid: 0x58c000a, shmaddr: 0x0, shmflg: 0x0

12520  java     SHMCTL            0 shmid: 0x58c000a, cmd: 0, buf: 0x0

12520  java      SHMDT            0 shmaddr: 0x7fde9c033000

1863   Xorg      SHMAT 7f98cd3b9000 shmid: 0x58c000a, shmaddr: 0x0, shmflg: 0x1000 

(SHM_RDONLY)

1863   Xorg     SHMCTL            0 shmid: 0x58c000a, cmd: 2, buf: 0x7ffdddd9e240

1863   Xorg      SHMDT            0 shmaddr: 0x7f98cd3b9000

[...]

This output shows Java allocating shared memory using shmget(2), followed by various shared-
memory operations and their arguments. The return of shmget(2) is 0x58c000a, the identi-
fier, which is used in subsequent calls by both Java and Xorg; in other words, they are sharing 
memory.

This tool works by tracing the shared memory syscalls, which should be infrequent enough that 
the overhead of the tool is negligible.

Command line usage:

shmsnoop [options]

Options include:

 ■ -T: Included timestamps

 ■ -p PID: Measured this process only

7.3.6 faults

Tracing page faults and their stack traces provides a particular view of memory usage: not the 
code paths that allocated memory, but the code paths that first used it and triggered a page fault. 
These page faults cause RSS growth, so the stack traces can explain why a process is growing. As 
with brk(), it’s possible to trace this event by using a one-liner with other tools, such as using BCC 
and stackcount(8) to frequency-count page user and kernel page faults with stack traces:

# stackcount -U t:exceptions:page_fault_user

# stackcount t:exceptions:page_fault_kernel 

6 Origin: This was created by Jiri Olsa on 8-Oct-2018.
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Example output, with -P for process details:

# stackcount -PU t:exceptions:page_fault_user

Tracing 1 functions for "t:exceptions:page_fault_user"... Hit Ctrl-C to end.

^C

[...]

 

  PhaseIdealLoop::Dominators()

  PhaseIdealLoop::build_and_optimize(LoopOptsMode)

  Compile::optimize_loops(PhaseIterGVN&, LoopOptsMode) [clone .part.344]

  Compile::Optimize()

  Compile::Compile(ciEnv*, C2Compiler*, ciMethod*, int, bool, bool, bool, Directiv...

  C2Compiler::compile_method(ciEnv*, ciMethod*, int, DirectiveSet*)

  CompileBroker::invoke_compiler_on_method(CompileTask*)

  CompileBroker::compiler_thread_loop()

  JavaThread::thread_main_inner()

  Thread::call_run()

  thread_native_entry(Thread*)

  start_thread

  __clone

    C2 CompilerThre [9124]

    1824

 

  __memset_avx2_erms

  PhaseCFG::global_code_motion()

  PhaseCFG::do_global_code_motion()

  Compile::Code_Gen()

  Compile::Compile(ciEnv*, C2Compiler*, ciMethod*, int, bool, bool, bool, Directiv...

  C2Compiler::compile_method(ciEnv*, ciMethod*, int, DirectiveSet*)

  CompileBroker::invoke_compiler_on_method(CompileTask*)

  CompileBroker::compiler_thread_loop()

  JavaThread::thread_main_inner()

  Thread::call_run()

  thread_native_entry(Thread*)

  start_thread

  __clone

    C2 CompilerThre [9124]

    2934
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This output shows the start of a Java process and its C2 compiler thread faulting memory as it 
compiled code to instruction text.

Page Fault Flame Graphs

Page fault stack traces can be visualized as a flame graph to aid navigation. (Flame graphs are 
introduced in Chapter 2.) These instructions use my original flame graph software [37] and result 
in a page fault flame graph, an area of which is shown in Figure 7-5:

# stackcount -f -PU t:exceptions:page_fault_user > out.pagefaults01.txt

$ flamegraph.pl --hash --width=800 --title="Page Fault Flame Graph" \

    --colors=java --bgcolor=green < out.pagefaults01.txt > out.pagefaults01.svg

Figure 7-5 Page fault flame graph

This zoomed area shows the code paths from the Java compiler thread that grew main memory 
and triggered a page fault.

Netflix has automated page fault flame graph generation from Vector, an instance analysis tool, so 
that Netflix developers can generate these graphs with the click of a button (see Chapter 17).

http://flamegraph.pl
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bpftrace

For ease of use, here is a bpftrace tool, faults(8)7, for tracing page faults with stacks:

#!/usr/local/bin/bpftrace

 

software:page-faults:1

{

        @[ustack, comm] = count();

}

This tool instruments the software event page faults with an overflow count of one: it runs 
the BPF program for every page fault and frequency-counts the user-level stack trace and process 
name.

7.3.7 ffaults

ffaults(8)8 traces page faults by filename. For example, from a software build:

# ffaults.bt

Attaching 1 probe...

 

[...]

@[cat]: 4576

@[make]: 7054

@[libbfd-2.26.1-system.so]: 8325

@[libtinfo.so.5.9]: 8484

@[libdl-2.23.so]: 9137

@[locale-archive]: 21137

@[cc1]: 23083

@[ld-2.23.so]: 27558

@[bash]: 45236

@[libopcodes-2.26.1-system.so]: 46369

@[libc-2.23.so]: 84814

@[]: 537925

This output shows that the most page faults were to regions without a filename—which would be 
process heaps—with 537,925 faults occurring during tracing. The libc library encountered 84,814 
faults while tracing. This is happening because the software build is creating many short-lived 
processes, which are faulting in their new address spaces.

7 Origin: I created it for this book on 27-Jan-2019, and I’ve traced page fault stacks in the past with other tracers [82].

8 Origin: I created it for this book on 26-Jan-2019.



ptg30854589

268 Chapter 7  Memory

The source to ffaults(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/mm.h>

 

kprobe:handle_mm_fault

{

        $vma = (struct vm_area_struct *)arg0;

        $file = $vma->vm_file->f_path.dentry->d_name.name;

        @[str($file)] = count();

}

This tool uses kprobes to trace the handle_mm_fault() kernel function and, from its arguments, 
determine the filename for the fault. The rate of file faults varies depending on the workload; 
you can check it using tools such as perf(1) or sar(1). For high rates, the overhead of this tool may 
begin to become noticeable.

7.3.8 vmscan

vmscan(8)9 uses the vmscan tracepoints to instrument the page-out daemon (kswapd), which 
frees memory for reuse when the system is under memory pressure. Note that, while the term 
scanner is still used to refer to this kernel function, for efficiency, Linux nowadays manages 
memory via linked lists of active and inactive memory.

Running vmscan on a 36-CPU system while it runs out of memory:

# vmscan.bt

Attaching 10 probes...

TIME         S-SLABms  D-RECLAIMms  M-RECLAIMms KSWAPD WRITEPAGE

21:30:25            0            0            0      0         0

21:30:26            0            0            0      0         0

21:30:27          276          555            0      2         1

21:30:28         5459         7333            0     15        72

21:30:29           41            0            0     49        35

21:30:30            1          454            0      2         2

21:30:31            0            0            0      0         0

^C

 

@direct_reclaim_ns: 

[256K, 512K)           5 |@                                                   |

[512K, 1M)            83 |@@@@@@@@@@@@@@@@@@@@@@@@                            |

9 Origin: I created it for this book on 26-Jan-2019. For an earlier tool that uses these tracepoints, see Mel Gorman’s 

trace-vmscan-postprocess.pl, which has been in the Linux source since 2009.

http://trace-vmscan-postprocess.pl
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[1M, 2M)             174 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[2M, 4M)             136 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@            |

[4M, 8M)              66 |@@@@@@@@@@@@@@@@@@@                                 |

[8M, 16M)             68 |@@@@@@@@@@@@@@@@@@@@                                |

[16M, 32M)             8 |@@                                                  |

[32M, 64M)             3 |                                                    |

[64M, 128M)            0 |                                                    |

[128M, 256M)           0 |                                                    |

[256M, 512M)          18 |@@@@@                                               |

 

@shrink_slab_ns: 

[128, 256)         12228 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                    |

[256, 512)         19859 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[512, 1K)           1899 |@@@@                                                |

[1K, 2K)            1052 |@@                                                  |

[2K, 4K)             546 |@                                                   |

[4K, 8K)             241 |                                                    |

[8K, 16K)            122 |                                                    |

[16K, 32K)           518 |@                                                   |

[32K, 64K)           600 |@                                                   |

[64K, 128K)           49 |                                                    |

[128K, 256K)          19 |                                                    |

[256K, 512K)           7 |                                                    |

[512K, 1M)             6 |                                                    |

[1M, 2M)               8 |                                                    |

[2M, 4M)               4 |                                                    |

[4M, 8M)               7 |                                                    |

[8M, 16M)             29 |                                                    |

[16M, 32M)            11 |                                                    |

[32M, 64M)             3 |                                                    |

[64M, 128M)            0 |                                                    |

[128M, 256M)           0 |                                                    |

[256M, 512M)          19 |                                                    |

The per-second columns show:

 ■ S-SLABms: Total time in shrink slab, in milliseconds. This is reclaiming memory from 
various kernel caches.

 ■ D-RECLAIMms: Total time in direct reclaim, in milliseconds. This is foreground reclaim, 
which blocks memory allocations while memory is written to disk.

 ■ M-RECLAIMms: Total time in memory cgroup reclaim, in milliseconds. If memory cgroups 
are in use, this shows when one cgroup has exceeded its limit and its own cgroup memory 
is reclaimed.
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 ■ KSWAPD: Number of kswapd wakeups.

 ■ WRITEPAGE: Number of kswapd page writes.

The times are totals across all CPUs, which provides a measure of cost beyond the counts seen by 
other tools, such as vmstat(1).

Look out for time in direct reclaims (D-RECLAIMms): This type of reclaim is “bad” but necessary, 
and will cause performance issues. It can hopefully be eliminated by tuning the other vm sysctl 
tunables to engage background reclaim sooner, before direct reclaim is necessary.

The output histograms show per-event times in direct reclaim and shrink slab, in nanoseconds.

The source to vmscan(8) is:

#!/usr/local/bin/bpftrace

 

tracepoint:vmscan:mm_shrink_slab_start { @start_ss[tid] = nsecs; }

tracepoint:vmscan:mm_shrink_slab_end /@start_ss[tid]/

{

        $dur_ss = nsecs - @start_ss[tid];

        @sum_ss = @sum_ss + $dur_ss;

        @shrink_slab_ns = hist($dur_ss);

        delete(@start_ss[tid]);

}

 

tracepoint:vmscan:mm_vmscan_direct_reclaim_begin { @start_dr[tid] = nsecs; }

tracepoint:vmscan:mm_vmscan_direct_reclaim_end /@start_dr[tid]/

{

        $dur_dr = nsecs - @start_dr[tid];

        @sum_dr = @sum_dr + $dur_dr;

        @direct_reclaim_ns = hist($dur_dr);

        delete(@start_dr[tid]);

}

 

 

tracepoint:vmscan:mm_vmscan_memcg_reclaim_begin { @start_mr[tid] = nsecs; }

tracepoint:vmscan:mm_vmscan_memcg_reclaim_end /@start_mr[tid]/

{

        $dur_mr = nsecs - @start_mr[tid];

        @sum_mr = @sum_mr + $dur_mr;

        @memcg_reclaim_ns = hist($dur_mr);

        delete(@start_mr[tid]);

}
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tracepoint:vmscan:mm_vmscan_wakeup_kswapd { @count_wk++; }

 

tracepoint:vmscan:mm_vmscan_writepage { @count_wp++; }

 

BEGIN

{

        printf("%-10s %10s %12s %12s %6s %9s\n", "TIME",

            "S-SLABms", "D-RECLAIMms", "M-RECLAIMms", "KSWAPD", "WRITEPAGE");

 

}

 

interval:s:1

{

        time("%H:%M:%S");

        printf("   %10d %12d %12d %6d %9d\n",

            @sum_ss / 1000000, @sum_dr / 1000000, @sum_mr / 1000000,

            @count_wk, @count_wp);

        clear(@sum_ss);

        clear(@sum_dr);

        clear(@sum_mr);

        clear(@count_wk);

        clear(@count_wp);

}

This tool uses various vmscan tracepoints to record times when events begin so that duration 
histograms and running totals can be maintained.

7.3.9 drsnoop

drsnoop(8)10 is a BCC tool for tracing the direct reclaim approach to freeing memory, showing 
the process affected and the latency: the time taken for the reclaim. It can be used to quantify the 
application performance impact of a memory-constrained system. For example:

# drsnoop -T

TIME(s)       COMM           PID     LAT(ms) PAGES

0.000000000   java           11266      1.72    57

0.004007000   java           11266      3.21    57

0.011856000   java           11266      2.02    43

0.018315000   java           11266      3.09    55

0.024647000   acpid          1209       6.46    73

[...]

10 Origin: This was created by Ethercflow on 10-Feb-2019.
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This output shows some direct reclaims for Java, taking between one and seven milliseconds. 
The rates of these reclaims and their duration can be considered in quantifying the application 
impact.

This tool works by tracing the vmscan mm_vmscan_direct_reclaim_begin and 
mm_vmscan_direct_reclaim_end tracepoints. These are expected to be low-frequency 
events (usually happening in bursts), so the overhead should be negligible.

Command line usage:

drsnoop [options]

Options include:

 ■ -T: Includes timestamps

 ■ -p PID: Measures this process only

7.3.10 swapin

swapin(8)11 shows which processes are being swapped in from the swap devices, if they exist and 
are in use. For example, this system swapped out some memory and had 36 Kbytes swapped back 
in ("si" column) while I was watching it with vmstat(1):

# vmstat 1

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----

 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st

[...]

46 11  29696 1585680   4384 1828440    0    0 88047  2034 21809 37316 81 18  0  1  0

776 57  29696 2842156   7976 1865276   36    0 52832  2283 18678 37025 85 15  0  1  0

294 135  29696 448580   4620 1860144    0    0 36503  5393 16745 35235 81 19  0  0  0

[...]

swapin(8) identifies the process that was swapped in. At the same time:

# swapin.bt

Attaching 2 probes...

 

[...]

06:57:43

 

06:57:44

11 Origin: I first created a similar tool called anonpgpid.d on 25-Jul-2005, with help from James Dickens. This was one 

of the long-standing performance issues I wrestled with beforehand: I could see that the system was swapping, but I 

wanted to show which processes were affected. I created this bpftrace version for this book on 26-Jan-2019.
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@[systemd-logind, 1354]: 9

 

06:57:45

[...]

This output shows that systemd-logind (PID 1354) had 9 swap-ins. With a 4 Kbyte page size, this 
adds up to the 36 Kbytes seen in vmstat(1). I logged into the system using ssh(1), and this compo-
nent in the login software had been swapped out, so the login took longer than usual.

Swap-ins occur when an application tries to use memory that has been moved to the swap 
device. This is an important measure of the performance pain suffered by an application due to 
swapping. Other swap metrics, like scanning and swap-outs, may not directly affect application 
performance.

The source to swapin(8) is:

#!/usr/local/bin/bpftrace

 

kprobe:swap_readpage

{

        @[comm, pid] = count();

}

 

interval:s:1

{

        time();

        print(@);

        clear(@);

}

This tool uses kprobes to trace the swap_readpage() kernel function, which runs in the context of 
the swapping thread, so the bpftrace built-ins for comm and pid reflect the swapping process.

7.3.11 hfaults

hfaults(8)12 traces huge page faults by their process details and can be used to confirm that huge 
pages are in use. For example:

# hfaults.bt

Attaching 2 probes...

Tracing Huge Page faults per process... Hit Ctrl-C to end.

^C

@[884, hugemmap]: 9

12 Origin: Amer Ather created it for this book on 6-May-2019.
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This output includes a test program, hugemmap, with PID 884, which triggered nine huge 
page faults.

The source to hfaults(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing Huge Page faults per process... Hit Ctrl-C to end.\n");

}

 

kprobe:hugetlb_fault

{

        @[pid, comm] = count();

}

If needed, more details can be fetched from function arguments, including struct mm_struct 
and struct vm_area_struct. The ffaults(8) tool (see Section 7.3.7) fetched the filename from the 
vm_area_struct.

7.3.12 Other Tools

Two other BPF tools are worth mentioning:

 ■ llcstat(8) from BCC is covered in Chapter 5; it shows the last-level cache hit ratio, by 
process.

 ■ profile(8) from BCC is covered in Chapter 5; it samples stack traces and can be used as a 
coarse and cheap way to find malloc() code paths.

7.4 BPF One-Liners

This section shows BCC and bpftrace one-liners. Where possible, the same one-liner is 
implemented using both BCC and bpftrace.

7.4.1 BCC

Count process heap expansion (brk()) by user-level stack trace:

stackcount -U t:syscalls:sys_enter_brk

Count user page faults by user-level stack trace:

stackcount -U t:exceptions:page_fault_user



ptg30854589

2757.5 Optional Exercises

Count vmscan operations by tracepoint:

funccount 't:vmscan:*'

Show hugepage_madvise() calls by process:

trace hugepage_madvise

Count page migrations:

funccount t:migrate:mm_migrate_pages

Trace compaction events:

trace t:compaction:mm_compaction_begin 

7.4.2 bpftrace

Count process heap expansion (brk()) by code path:

bpftrace -e tracepoint:syscalls:sys_enter_brk { @[ustack, comm] = count(); }

Count page faults by process:

bpftrace -e 'software:page-fault:1 { @[comm, pid] = count(); }'

Count user page faults by user-level stack trace:

bpftrace -e 'tracepoint:exceptions:page_fault_user { @[ustack, comm] = count(); }'

Count vmscan operations by tracepoint:

bpftrace -e 'tracepoint:vmscan:* { @[probe] = count(); }'

Show hugepage_madvise() calls by process:

bpftrace -e 'kprobe:hugepage_madvise { printf("%s by PID %d\n", probe, pid); }'

Count page migrations:

bpftrace -e 'tracepoint:migrate:mm_migrate_pages { @ = count(); }'

Trace compaction events:

bpftrace -e 't:compaction:mm_compaction_begin { time(); }'

7.5 Optional Exercises

If not specified, these can be completed using either bpftrace or BCC:

 1. Run vmscan(8) for ten minutes on a production or local server. If any time was spent in 
direct reclaim (D-RECLAIMms), also run drsnoop(8) to measure this on a per-event basis.

 2. Modify vmscan(8) to print the header every 20 lines so that it remains onscreen.
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 3. During application startup (either a production or desktop application) use fault(8) 
to count page fault stack traces. This may involve fixing or finding an application that 
supports stack traces and symbols (see Chapters 13 and 18).

 4. Create a page fault flame graph from the output of Exercise 3.

 5. Develop a tool to trace process virtual memory growth via both brk(2) and mmap(2).

 6. Develop a tool to print the size of expansions via brk(2). It may use syscall tracepoints, 
kprobes, or libc USDT probes, as desired.

 7. Develop a tool to show the time spent in page compaction. You can use the 
compaction:mm_compaction_begin and compaction:mm_compaction_end tracepoints. 
Print the time per event and summarize it as a histogram.

 8. Develop a tool to show time spent in shrink slab, broken down by slab name (or shrinker 
function name).

 9. Use memleak(8) to find long-term survivors on some sample software in a test 
environment. Also estimate the performance overhead with and without memleak(8) 
running.

 10. (Advanced, unsolved) Develop a tool to investigate swap thrashing: Show the time spent by 
pages on the swap device as a histogram. This is likely to involve measuring the time from 
swap-out to swap-in.

7.6 Summary

This chapter summarizes how virtual and physical memory is used by processes and covers 
memory analysis using traditional tools, which focus on showing memory volumes by usage 
types. This chapter also shows how to use BPF tools to measure rates and time durations for 
memory activity by the OOM killer, user-level allocations, memory maps, page faults, vmscan, 
direct reclaim, and swap-ins.
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Analysis of file systems has historically focused on disk I/O and its performance, but file systems 
are often a more relevant target for beginning your analysis. It is the file system that applications 
usually interact with directly, and file systems can use caching, read-ahead, buffering, and 
asynchronous I/O to avoid exposing disk I/O latency to the application.

Since there are few traditional tools for file system analysis, it is an area where BPF tracing 
can really help. File system tracing can measure the full time an application was waiting on 
I/O, including disk I/O, locks, or other CPU work. It can show the process responsible, and 
the files operated upon: useful context that can be much harder to fetch from down at the 
disk level.

Learning Objectives:

 ■ Understand fi le system components: VFS, caches, and write-back

 ■ Understand targets for fi le system analysis with BPF

 ■ Learn a strategy for successful analysis of fi le system performance

 ■ Characterize fi le system workloads by fi le, operation type, and by process

 ■ Measure latency distributions for fi le system operations, and identify bi-modal distribu-
tions and issues of latency outliers

 ■ Measure the latency of fi le system write-back events

 ■ Analyze page cache and read ahead performance

 ■ Observe directory and inode cache behavior

 ■ Use bpftrace one-liners to explore fi le system usage in custom ways

This chapter begins with the necessary background for file system analysis, summarizing the I/O 
stack and caching. I explore the questions that BPF can answer, and provide an overall strategy 
to follow. I then focus on tools, starting with traditional file system tools and then BPF tools, 
including a list of BPF one-liners. This chapter ends with optional exercises.
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8.1 Background

This section covers file system fundamentals, BPF capabilities, and a suggested strategy for file 
system analysis.

8.1.1 File Systems Fundamentals

I/O Stack

A generic I/O stack is shown in Figure 8-1, showing the path of I/O from the application to disk 
devices.

Figure 8-1 Generic I/O stack

Some terminology has been included in the diagram: logical I/O describes requests to the file 
system. If these requests must be served from the storage devices, they become physical I/O. Not 
all I/O will; many logical read requests may be returned from the file system cache, and never 
become physical I/O. Raw I/O is included on the diagram, though it is rarely used nowadays: it is a 
way for applications to use disk devices with no file system.
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File systems are accessed via a virtual file system (VFS), a generic kernel interface allowing 
multiple different file systems to be supported using the same calls, and new file systems to be 
easily added. It provides operations for read, write, open, close, etc., which are mapped by file 
systems to their own internal functions.

After the file system, a volume manager may also be in use to manage the storage devices. There 
is also a block I/O subsystem for managing I/O to devices, including a queue, merge capabilities, 
and more. These are covered in Chapter 9.

File System Caches

Linux uses multiple caches to improve the performance of storage I/O via the file system, as 
shown in Figure 8-2.

Figure 8-2 Linux FS caches

These caches are:

 ■ Page cache: This contains virtual memory pages including the contents of files and I/O 
buffers (what was once a separate “buffer cache”), and improves the performance of file and 
directory I/O. 

 ■ Inode cache: Inodes (index nodes) are data structures used by file systems to describe their 
stored objects. VFS has its own generic version of an inode, and Linux keeps a cache of 
these because they are frequently read for permission checks and other metadata.

 ■ Directory cache: Called the dcache, this caches mappings from directory entry names to 
VFS inodes, improving the performance of path name lookups.



ptg30854589

280 Chapter 8  File Systems

The page cache grows to be the largest of all these, because it not only caches the contents of 
files, but also includes “dirty” pages that have been modified but not yet written to disk. Various 
situations can trigger a write of these dirty pages, including a set interval (e.g., 30 seconds), an 
explicit sync() call, and the page-out deamon (kswapd) explained in Chapter 7.

Read-Ahead

A file system feature called read ahead or prefetch, involves detecting a sequential read workload, 
predicting the next pages that will be accessed, and loading them into the page cache. This 
pre-warming improves read performance only for sequential access workloads, not random access 
workloads. Linux also supports an explicit readahead() syscall.

Write-Back

Linux supports file system writes in write-back mode, where buffers are dirtied in memory and 
flushed to disk sometime later by kernel worker threads, so as not to block applications directly 
on slow disk I/O.

Further Reading

This was a brief summary intended to arm you with essential knowledge before you use the tools. 
File systems are covered in much more depth in Chapter 8 of Systems Performance [Gregg 13b].

8.1.2 BPF Capabilities

Traditional performance tools have focused on disk I/O performance, not file system performance. 
BPF tools can provide this missing observability, showing operations, latencies, and internal 
functions of each file system.

Questions that BPF can help answer include:

 ■ What are the file system requests? Counts by type?

 ■ What are the read sizes to the file system?

 ■ How much write I/O was synchronous?

 ■ What is the file workload access pattern: random or sequential?

 ■ What files are accessed? By what process or code path? Bytes, I/O counts?

 ■ What file system errors occurred? What type, and for whom?

 ■ What is the source of file system latency? Is it disks, the code path, locks? 

 ■ What is the distribution of file system latency?

 ■ What is the ratio of Dcache and Icache hits vs misses?

 ■ What is the page cache hit ratio for reads?

 ■ How effective is prefetch/read-ahead? Should this be tuned?

As shown in the previous figures, you can trace the I/O involved to find the answers to many of 
these questions. 
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Event Sources

I/O types are listed in Table 8-1 with the event sources that can instrument them.

Table 8-1 I/O Types and Event Sources

I/O Type Event Source

Application and library I/O uprobes

System call I/O syscalls tracepoints

File system I/O ext4 (...) tracepoints, kprobes

Cache hits (reads), write-back (writes) kprobes

Cache misses (reads), write-through (writes) kprobes

Page cache write-back writeback tracepoints

Physical disk I/O block tracepoints, kprobes

Raw I/O kprobes

This provides visibility from the application to devices. File system I/O may be visible from file 
system tracepoints, depending on the file system. For example, ext4 provides over one hundred 
tracepoints.

Overhead

Logical I/O, especially reads and writes to the file system cache, can be very frequent: over 100k 
events per second. Use caution when tracing these, since the performance overhead at this rate 
may begin to become noticeable. Also be careful with VFS tracing: VFS is also used by many 
network I/O paths, so this adds overhead to packets as well, which may also have a high rate.1

Physical disk I/O on most servers is typically so low (less than 1000 IOPS), that tracing it incurs 
negligible overhead. Some storage and database servers may be exceptions: check the I/O rate 
beforehand with iostat(1).

8.1.3 Strategy

If you are new to file system performance analysis, here is a suggested overall strategy that you can 
follow. The next sections explain these tools in more detail.

 1. Identify the mounted file systems: see df(1) and mount(8).

 2. Check the capacity of mounted file systems: in the past, there have been performance 
issues when certain file systems approach 100% full, due to the use of different 
free-block-finding algorithms (e.g., FFS, ZFS2).

1 Although Linux uses software or hardware segmentation offload to reduce the number of packets at this layer, so the 

event rate may be much lower than the wire-packet rate; see the netsize(8) tool in Chapter 10.

2 The zpool 80% rule, although from memory I was able to move that to 99% when building storage products. Also see 

“Pool performance can degrade when a pool is very full” from the ZFS Recommended Storage Pool Practices guide [83].
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 3. Instead of using unfamiliar BPF tools to understand an unknown production workload, first 
use those on a known workload. On an idle system, create a known file system workload, 
e.g., using the fio(1) tool.

 4. Run opensnoop(8) to see which files are being opened.

 5. Run filelife(8) to check for issues of short-lived files.

 6. Look for unusually slow file system I/O, and examine process and file details (e.g., using 
ext4slower(8), btrfsslower(8), zfsslower(8), etc., or as a catch-all with possibly higher 
overhead, fileslower(8)). It may reveal a workload that can be eliminated, or quantify a 
problem to aid file system tuning.

 7. Examine the distribution of latency for your file systems (e.g., using ext4dist(8), btrfsdist(8), 
zfsdist(8), etc.). This may reveal bi-modal distributions or latency outliers that are causing 
performance problems, that can be isolated and investigated more with other tools.

 8. Examine the page cache hit ratio over time (e.g., using cachestat(8)): does any other 
workload perturb the hit ratio, or does any tuning improve it?

 9. Use vfsstat(8) to compare logical I/O rates to physical I/O rates from iostat(1): ideally, there 
is a much higher rate of logical than physical I/O, indicating that caching is effective.

 10. Browse and execute the BPF tools listed in the BPF tools section of this book.

8.2 Traditional Tools

Because analysis has historically focused on the disks, there are few traditional tools for observing 
file systems. This section summarizes file system analysis using df(1), mount(1), strace(1), perf(1), 
and fatrace(1).

Note that file system performance analysis has often been the domain of micro-benchmark 
tools, rather than observability tools. A recommended example of a file system micro-benchmark 
tool is fio(1).

8.2.1 df

df(1) shows file system disk usage:

$ df -h

Filesystem      Size  Used Avail Use% Mounted on

udev             93G     0   93G   0% /dev

tmpfs            19G  4.0M   19G   1% /run

/dev/nvme0n1    9.7G  5.1G  4.6G  53% /

tmpfs            93G     0   93G   0% /dev/shm

tmpfs           5.0M     0  5.0M   0% /run/lock

tmpfs            93G     0   93G   0% /sys/fs/cgroup

/dev/nvme1n1    120G   18G  103G  15% /mnt

tmpfs            19G     0   19G   0% /run/user/60000



ptg30854589

2838.2 Traditional Tools

The output includes some virtual physical systems, mounted using the tmpfs device, which are 
used for containing system state.

Check disk-based file systems for their percent utilization ("Use%" column). For example, in the 
above output this is "/" and "/mnt", at 53% and 15% full. Once a file system exceeds about 90% 
full, it may begin to suffer performance issues as available free blocks become fewer and more 
scattered, turning sequential write workloads into random write workloads. Or it may not: this is 
really dependent on the file system implementation. It’s just worth a quick look.

8.2.2 mount

The mount(1) command makes file systems accessible, and can also list their type and mount flags:

$ mount

sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)

proc on /proc type proc (rw,nosuid,nodev,noexec,relatime,gid=60243,hidepid=2)

udev on /dev type devtmpfs 

(rw,nosuid,relatime,size=96902412k,nr_inodes=24225603,mode=755)

devpts on /dev/pts type devpts 

(rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000)

tmpfs on /run type tmpfs (rw,nosuid,noexec,relatime,size=19382532k,mode=755)

/dev/nvme0n1 on / type ext4 (rw,noatime,nobarrier,data=ordered)

[...]

This output shows that the "/" (root) file system is ext4, mounted with options including 
"noatime," a performance tuning that skips recording access timestamps.

8.2.3 strace

strace(1) can trace system calls, which provides a view of file system operations. In this example, 
the -ttt option is used to print wall timestamps with microsecond resolution as the first field, 
and -T to print the time spent in syscalls as the last field. All times are printed in seconds.

$ strace cksum -tttT /usr/bin/cksum

[...]

1548892204.789115 openat(AT_FDCWD, "/usr/bin/cksum", O_RDONLY) = 3 <0.000030>

1548892204.789202 fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0 <0.000049>

1548892204.789308 fstat(3, {st_mode=S_IFREG|0755, st_size=35000, ...}) = 0 <0.000025>

1548892204.789397 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>

\0\1\0\0\0\0\33\0\0\0\0\0\0"..., 65536) = 35000 <0.000072>

1548892204.789526 read(3, "", 28672)    = 0 <0.000024>

1548892204.790011 lseek(3, 0, SEEK_CUR) = 35000 <0.000024>

1548892204.790087 close(3)              = 0 <0.000025>

[...]

strace(1) formats the arguments to syscalls in a human-readable way.
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All this information should be extremely valuable for performance analysis, but there’s a catch: 
strace(1) has historically been implemented to use ptrace(2), which operates by inserting 
breakpoints at the start and end of syscalls. This can massively slow down target software, by as 
much as over 100 fold, making strace(1) dangerous for use in production environments. It is more 
useful as a troubleshooting tool, where such slowdowns can be tolerated.

There have been multiple projects to develop an strace(1) replacement using buffered tracing. One 
is for perf(1), covered next.

8.2.4 perf

The Linux perf(1) multi-tool can trace file system tracepoints, use kprobes to inspect VFS and file 
system internals, and has a trace subcommand as a more efficient version of strace(1). For example:

# perf trace cksum /usr/bin/cksum

[...]

 0.683 ( 0.013 ms): cksum/20905 openat(dfd: CWD, filename: 0x4517a6cc)           = 3

 0.698 ( 0.002 ms): cksum/20905 fadvise64(fd: 3, advice: 2)                      = 0

 0.702 ( 0.002 ms): cksum/20905 fstat(fd: 3, statbuf: 0x7fff45169610)            = 0

 0.713 ( 0.059 ms): cksum/20905 read(fd: 3, buf: 0x7fff45169790, count: 65536)   = 35000

 0.774 ( 0.002 ms): cksum/20905 read(fd: 3, buf: 0x7fff45172048, count: 28672)   = 0

 0.875 ( 0.002 ms): cksum/20905 lseek(fd: 3, whence: CUR)                        = 35000

 0.879 ( 0.002 ms): cksum/20905 close(fd: 3)                                     = 0

[...]

The output of perf trace has been improving in each Linux version (the above demonstrates 
Linux 5.0). Arnaldo Carvalho de Melo has been improving this further, using kernel header 
parsing and BPF to improve the output [84]; future versions should, for example, show the 
filename string for the openat() call, instead of just the filename pointer address.

The more commonly used perf(1) subcommands, stat and record, can be used with file system 
tracepoints, when such tracepoints for a file system are available. For example, counting ext4 calls 
system-wide via ext4 tracepoints:

# perf stat -e 'ext4:*' -a

^C

 Performance counter stats for 'system wide':

                 0      ext4:ext4_other_inode_update_time                           

                 1      ext4:ext4_free_inode                                        

                 1      ext4:ext4_request_inode                                     

                 1      ext4:ext4_allocate_inode                                    

                 1      ext4:ext4_evict_inode                                       

                 1      ext4:ext4_drop_inode                                        

               163      ext4:ext4_mark_inode_dirty                                  

                 1      ext4:ext4_begin_ordered_truncate                            

                 0      ext4:ext4_write_begin                                       
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               260      ext4:ext4_da_write_begin                                    

                 0      ext4:ext4_write_end                                         

                 0      ext4:ext4_journalled_write_end                              

               260      ext4:ext4_da_write_end                                      

                 0      ext4:ext4_writepages                                        

                 0      ext4:ext4_da_write_pages       

[...]

The ext4 file system provides around one hundred tracepoints for visibility into its requests and 
internals. Each of these has format strings for associated information, for example (do not run 
this command):

# perf record -e ext4:ext4_da_write_begin -a

^C[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 1376.293 MB perf.data (14394798 samples) ]

Well, this is embarrassing, but it’s an important lesson for file system tracing. Because perf record 
will write events to the file system, if you trace file system (or disk) writes you can create a feed-
back loop, as I just did here, resulting in 14 million samples and a 1.3 Gbyte perf.data file!

The format string for this example looks like this:

# perf script

[...]

  perf 26768 [005] 275068.339717: ext4:ext4_da_write_begin: dev 253,1 ino 1967479 pos 
5260704 len 192 flags 0

  perf 26768 [005] 275068.339723: ext4:ext4_da_write_begin: dev 253,1 ino 1967479 pos 

5260896 len 8 flags 0

  perf 26768 [005] 275068.339729: ext4:ext4_da_write_begin: dev 253,1 ino 1967479 pos 

5260904 len 192 flags 0

  perf 26768 [005] 275068.339735: ext4:ext4_da_write_begin: dev 253,1 ino 1967479 pos 

5261096 len 8 flags 0

[...]

The format string (one has been highlighted in bold) includes the device, inode, position, length, 
and flags for the write.

File systems may support many tracepoints, or some, or none. XFS, for example, has around 500. If your 
file system does not have tracepoints, you can try to instrument its internals using kprobes instead.

For comparison with later BPF tools, consider the same tracepoint instrumented using bpftrace to 
summarize the length argument as a histogram:

# bpftrace -e 'tracepoint:ext4:ext4_da_write_begin { @ = hist(args->len); }'

Attaching 1 probe...

^C
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@: 

[16, 32)              26 |@@@@@@@@                                            |

[32, 64)               4 |@                                                   |

[64, 128)             27 |@@@@@@@@                                            |

[128, 256)            15 |@@@@                                                |

[256, 512)            10 |@@@                                                 |

[512, 1K)              0 |                                                    |

[1K, 2K)               0 |                                                    |

[2K, 4K)              20 |@@@@@@                                              |

[4K, 8K)             164 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

This shows that most of the lengths were between four and eight Kbytes. This summary is 
performed in kernel context, and does not require writing a perf.data file to the file system. This 
avoids not only the overhead of those writes and additional overhead to post-process, but also the 
risk of a feedback loop.

8.2.5 fatrace

fatrace(1) is a specialized tracer that uses the Linux fanotify API (file access notify). Example 
output:

# fatrace

cron(4794): CW /tmp/#9346 (deleted)

cron(4794): RO /etc/login.defs

cron(4794): RC /etc/login.defs

rsyslogd(872): W /var/log/auth.log

sshd(7553): O /etc/motd

sshd(7553): R /etc/motd

sshd(7553): C /etc/motd

[...]

Each line shows the process name, PID, type of event, full path, and optional status. The type of 
event can be opens (O), reads (R), writes (W), and closes (C). fatrace(1) can be used for workload 
characterization: understanding the files accessed, and looking for unnecessary work that could 
be eliminated.

However, for a busy file system workload, fatrace(1) can produce tens of thousands of lines of 
output every second, and can cost significant CPU resources. This may be alleviated somewhat by 
filtering to one type of event, for example, opens only:

# fatrace -f O

run(6383): O /bin/sleep

run(6383): RO /lib/x86_64-linux-gnu/ld-2.27.so

sleep(6383): O /etc/ld.so.cache

sleep(6383): RO /lib/x86_64-linux-gnu/libc-2.27.so

[...]
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In the following BPF section, a dedicated BPF tool is provided for this: opensnoop(8), which 
provides more command line options and is also much more efficient. Comparing the CPU 
overhead of fatrace -f O vs BCC opensnoop(8) for the same heavy file system workload:

# pidstat 10

[...]

09:38:54 PM   UID   PID    %usr %system  %guest   %wait    %CPU   CPU  Command

09:39:04 PM     0  6075   11.19   56.44    0.00    0.20   67.63     1  fatrace

[...]

09:50:32 PM     0  7079    0.90    0.20    0.00    0.00    1.10     2  opensnoop

[...]

opensnoop(8) is consuming 1.1% CPU vs fatrace(1)’s 67%.3

8.3 BPF Tools

This section covers the BPF tools you can use for file system performance analysis and 
troubleshooting (see Figure 8-3).

Figure 8-3 BPF tools for file system analysis

These tools are either from the BCC and bpftrace repositories (covered in Chapters 4 and 5), or 
were created for this book. Some tools appear in both BCC and bpftrace. Table 8-2 lists the origins 
of the tools covered in this section (BT is short for bpftrace).

3 This is running BCC opensnoop(8) as-is. By tuning the polling loop (inserting a delay to increase buffering), I was able 

to take the overhead down to 0.6%.
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Table 8-2 File System–Related Tools

Tool Source Target Description

opensnoop BCC/BT Syscalls Trace files opened

statsnoop BCC/BT Syscalls Trace calls to stat(2) varieties

syncsnoop BCC/BT Syscalls Trace sync(2) and variety calls with timestamps

mmapfiles Book Syscalls Count mmap(2) files

scread Book Syscalls Count read(2) files

fmapfault Book Page cache Count file map faults

filelife BCC/book VFS Trace short-lived files with their lifespan in seconds

vfsstat BCC/BT VFS Common VFS operation statistics

vfscount BCC/BT VFS Count all VFS operations

vfssize Book VFS Show VFS read/write sizes

fsrwstat Book VFS Show VFS reads/writes by file system type

fileslower BCC/book VFS Show slow file reads/writes

filetop BCC VFS Top files in use by IOPS and bytes

filetype Book VFS Show VFS reads/writes by file type and process

writesync Book VFS Show regular file writes by sync flag

cachestat BCC Page cache Page cache statistics

writeback BT Page cache Show write-back events and latencies

dcstat BCC/book Dcache Directory cache hit statistics

dcsnoop BCC/BT Dcache Trace directory cache lookups

mountsnoop BCC VFS Trace mount and umounts system-wide

xfsslower BCC XFS Show slow XFS operations

xfsdist BCC XFS Common XFS operation latency histograms

ext4dist BCC/book ext4 Common ext4 operation latency histograms

icstat Book Icache Inode cache hit statistics

bufgrow Book Buffer cache Buffer cache growth by process and bytes

readahead Book VFS Show read ahead hits and efficiency

For the tools from BCC and bpftrace, see their repositories for full and updated lists of tool 
options and capabilities. A selection of the most important capabilities are summarized here.

The following tool summaries include a discussion on translating file descriptors to filenames 
(see scread(8)).
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8.3.1 opensnoop

opensnoop(8)4 was shown in Chapters 1 and 4, and is provided by BCC and bpftrace. It traces 
file opens and is useful for discovering the location of data files, log files, and configuration 
files. It can also discover performance problems caused by frequent opens, or help troubleshoot 
issues caused by missing files. Example output from a production system, with -T to include 
timestamps:

# opensnoop -T

TIME(s)       PID    COMM     FD ERR PATH

0.000000000   3862   java   5248   0 /proc/loadavg

0.000036000   3862   java   5248   0 /sys/fs/cgroup/cpu,cpuacct/.../cpu.cfs_quota_us

0.000051000   3862   java   5248   0 /sys/fs/cgroup/cpu,cpuacct/.../cpu.cfs_period_us

0.000059000   3862   java   5248   0 /sys/fs/cgroup/cpu,cpuacct/.../cpu.shares

0.012956000   3862   java   5248   0 /proc/loadavg

0.012995000   3862   java   5248   0 /sys/fs/cgroup/cpu,cpuacct/.../cpu.cfs_quota_us

0.013012000   3862   java   5248   0 /sys/fs/cgroup/cpu,cpuacct/.../cpu.cfs_period_us

0.013020000   3862   java   5248   0 /sys/fs/cgroup/cpu,cpuacct/.../cpu.shares

0.021259000   3862   java   5248   0 /proc/loadavg

0.021301000   3862   java   5248   0 /sys/fs/cgroup/cpu,cpuacct/.../cpu.cfs_quota_us

0.021317000   3862   java   5248   0 /sys/fs/cgroup/cpu,cpuacct/.../cpu.cfs

0.021325000   3862   java   5248   0 /sys/fs/cgroup/cpu,cpuacct/.../cpu.shares

0.022079000   3862   java   5248   0 /proc/loadavg

[...]

The output rate was high, and shows that a group of four files are read at a rate of one hundred 
times per second by Java (I just discovered this5). The filename has been partially truncated in 
this book to fit. These are in-memory files of system metrics, and reading them should be fast, 
but does Java really need to read them one hundred times every second? My next step in analysis 
was to fetch the stack responsible. Since these were the only file opens that this Java process was 
performing, I simply counted stacks for the open tracepoint for this PID using:

 stackcount -p 3862 't:syscalls:sys_enter_openat'

This showed the full stack trace, including the Java methods6 responsible. The culprit turned out 
to be new load balancing software.

opensnoop(8) works by tracing the open(2) variant syscalls: open(2) and openat(2). The overhead 
is expected to be negligible as the open(2) rate is typically infrequent.

4 Origin: I created the first version as opensnoop.d on 9-May-2004, it was simple, useful, and being able to see opens 

system-wide was amazing. My prior approaches to achieve this had been to use truss(1M) on a single process only, 

or BSM auditing, which required changing the state of the system. The name “snoop” comes from the Solaris network 

sniffer, snoop(1M), and the terminology “snooping events.” opensnoop has since been ported to many other tracers, by 

myself and others. I wrote the BCC version on 17-Sep-2015, and bpftrace on 8-Sep-2018.

5 I intended to run opensnoop on several production servers to find some interesting output to include here. I saw this 

on the first one I tried.

6 See Chapter 18 for how to get Java stacks and symbols to work.
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BCC

Command line usage:

opensnoop [options]

Options include:

 ■ -x: Show only failed opens

 ■ -p PID: Measure this process only

 ■ -n NAME: Only show opens when the process name contains NAME

bpftrace

The following is the code for the bpftrace version, which summarizes its core functionality. This 
version does not support options.

#!/usr/local/bin/bpftrace

BEGIN

{

        printf("Tracing open syscalls... Hit Ctrl-C to end.\n");

        printf("%-6s %-16s %4s %3s %s\n", "PID", "COMM", "FD", "ERR", "PATH");

}

tracepoint:syscalls:sys_enter_open,

tracepoint:syscalls:sys_enter_openat

{

        @filename[tid] = args->filename;

}

tracepoint:syscalls:sys_exit_open,

tracepoint:syscalls:sys_exit_openat

/@filename[tid]/

{

        $ret = args->ret;

        $fd = $ret > 0 ? $ret : -1;

        $errno = $ret > 0 ? 0 : - $ret;

        printf("%-6d %-16s %4d %3d %s\n", pid, comm, $fd, $errno,

            str(@filename[tid]));

        delete(@filename[tid]);

}

END

{

        clear(@filename);

}
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This program traces open(2) and openat(2) syscalls, and teases apart the file descriptor or error 
number from the return value. The filename is cached on the entry probe so that it can be fetched 
and printed on syscall exit, along with the return value.

8.3.2 statsnoop

statsnoop(8)7 is a BCC and bpftrace tool similar to opensnoop(8) but for the stat(2) family syscalls. 
stat(2) returns file statistics. This tool is useful for the same reasons as opensnoop(8): discovering 
file locations, finding performance issues of load, and troubleshooting missing files. Example 
production output, with -t for timestamps:

# statsnoop -t

TIME(s)       PID    COMM             FD ERR PATH

0.000366347   9118   statsnoop        -1   2 /usr/lib/python2.7/encodings/ascii

0.238452415   744    systemd-resolve   0   0 /etc/resolv.conf

0.238462451   744    systemd-resolve   0   0 /run/systemd/resolve/resolv.conf

0.238470518   744    systemd-resolve   0   0 /run/systemd/resolve/stub-resolv.conf

0.238497017   744    systemd-resolve   0   0 /etc/resolv.conf

0.238506760   744    systemd-resolve   0   0 /run/systemd/resolve/resolv.conf

0.238514099   744    systemd-resolve   0   0 /run/systemd/resolve/stub-resolv.conf

0.238645046   744    systemd-resolve   0   0 /etc/resolv.conf

0.238659277   744    systemd-resolve   0   0 /run/systemd/resolve/resolv.conf

0.238667182   744    systemd-resolve   0   0 /run/systemd/resolve/stub-resolv.conf

[...]

This output shows systemd-resolve (which is really "systemd-resolved" truncated) calling stat(2) 
on the same three files in a loop.

I found a number of occasions when stat(2)s were called tens of thousands of times per second on 
production servers without a good reason; fortunately, it’s a fast syscall, so these were not causing 
major performance issues. There was one exception, however, where a Netflix microservice hit 
100% disk utilization, which I found was caused by a disk usage monitoring agent calling stat(2) 
continually on a large file system where the metadata did not fully cache, and the stat(2) calls 
became disk I/O.

This tool works by tracing stat(2) variants via tracepoints: statfs(2), statx(2), newstat(2), and 
newlstat(2). The overhead of this tool is expected to be negligible, unless the stat(2) rate was 
very high.

BCC

Command line usage:

statsnoop [options]

7 Origin: I first created this using DTrace on 9-Sep-2007 as a companion to opensnoop. I wrote the BCC version on 

8-Feb-2016 and bpftrace on 8-Sep-2018.
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Options include:

 ■ -x: Show only failed stats

 ■ -t: Include a column of timestamps (seconds)

 ■ -p PID: Measure this process only

bpftrace

The following is the code for the bpftrace version, which summarizes its core functionality. This 
version does not support options.

#!/usr/local/bin/bpftrace

BEGIN

{

        printf("Tracing stat syscalls... Hit Ctrl-C to end.\n");

        printf("%-6s %-16s %3s %s\n", "PID", "COMM", "ERR", "PATH");

}

tracepoint:syscalls:sys_enter_statfs

{

        @filename[tid] = args->pathname;

}

tracepoint:syscalls:sys_enter_statx,

tracepoint:syscalls:sys_enter_newstat,

tracepoint:syscalls:sys_enter_newlstat

{

        @filename[tid] = args->filename;

}

tracepoint:syscalls:sys_exit_statfs,

tracepoint:syscalls:sys_exit_statx,

tracepoint:syscalls:sys_exit_newstat,

tracepoint:syscalls:sys_exit_newlstat

/@filename[tid]/

{

        $ret = args->ret;

        $errno = $ret >= 0 ? 0 : - $ret;

        printf("%-6d %-16s %3d %s\n", pid, comm, $errno,

            str(@filename[tid]));

        delete(@filename[tid]);

}

END

{

        clear(@filename);

}
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The program stashes the filename on syscall entry, and fetches it on return to display with return 
details.

8.3.3 syncsnoop

syncsnoop(8)8 is a BCC and bpftrace tool to show sync(2) calls with timestamps. sync(2) flushes 
dirty data to disk. Here is some output from the bpftrace version:

# syncsnoop.bt 

Attaching 7 probes...

Tracing sync syscalls... Hit Ctrl-C to end.

TIME      PID    COMM             EVENT

08:48:31  14172  TaskSchedulerFo  tracepoint:syscalls:sys_enter_fdatasync

08:48:31  14172  TaskSchedulerFo  tracepoint:syscalls:sys_enter_fdatasync

08:48:31  14172  TaskSchedulerFo  tracepoint:syscalls:sys_enter_fdatasync

08:48:31  14172  TaskSchedulerFo  tracepoint:syscalls:sys_enter_fdatasync

08:48:31  14172  TaskSchedulerFo  tracepoint:syscalls:sys_enter_fdatasync

08:48:40  17822  sync             tracepoint:syscalls:sys_enter_sync

[...]

This output shows "TaskSchedulerFo" (a truncated name) calling fdatasync(2) five times in a row. 
sync(2) calls can trigger bursts of disk I/O, perturbing performance on the system. Timestamps 
are printed so that they can be correlated with performance issues seen in monitoring software, 
which would be a clue that sync(2) and the disk I/O it triggers is responsible.

This tool works by tracing sync(2) variants via tracepoints: sync(2), syncfs(2), fsync(2), 
fdatasync(2), sync_file_range(2), and msync(2). The overhead of this tool is expected to be 
negligible, as the rate of sync(2) is typically very infrequent.

BCC

The BCC version currently does not support options, and works similarly to the bpftrace version.

bpftrace

The following is the code for the bpftrace version:

#!/usr/local/bin/bpftrace

BEGIN

{

        printf("Tracing sync syscalls... Hit Ctrl-C to end.\n");

        printf("%-9s %-6s %-16s %s\n", "TIME", "PID", "COMM", "EVENT");

}

8 Origin: In the past, I’ve debugged issues of syncs causing application latency spikes, where disk reads then queued 

behind a bunch of writes from the sync. These syncs are usually infrequent, so it’s always been sufficient to have the 

second offset of when they occurred to correlate with performance monitoring dashboards. I created this tool for BCC 

on 13-Aug-2015 and bpftrace on 6-Sep-2018.
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tracepoint:syscalls:sys_enter_sync,

tracepoint:syscalls:sys_enter_syncfs,

tracepoint:syscalls:sys_enter_fsync,

tracepoint:syscalls:sys_enter_fdatasync,

tracepoint:syscalls:sys_enter_sync_file_range,

tracepoint:syscalls:sys_enter_msync

{

        time("%H:%M:%S  ");

        printf("%-6d %-16s %s\n", pid, comm, probe);

}

If sync(2) related calls were found to be a problem, they can be examined further with custom 
bpftrace, showing the arguments and return value, and issued disk I/O.

8.3.4 mmapfiles

mmapfiles(8)9 traces mmap(2) and frequency counts the file that is mapped to memory address 
ranges. For example:

# mmapfiles.bt

Attaching 1 probe...

^C

@[usr, bin, x86_64-linux-gnu-ar]: 2

@[lib, x86_64-linux-gnu, libreadline.so.6.3]: 2

@[usr, bin, x86_64-linux-gnu-objcopy]: 2

[...]

@[usr, bin, make]: 226

@[lib, x86_64-linux-gnu, libz.so.1.2.8]: 296

@[x86_64-linux-gnu, gconv, gconv-modules.cache]: 365

@[/, bin, bash]: 670

@[lib, x86_64-linux-gnu, libtinfo.so.5.9]: 672

@[/, bin, cat]: 1152

@[lib, x86_64-linux-gnu, libdl-2.23.so]: 1240

@[lib, locale, locale-archive]: 1424

@[/, etc, ld.so.cache]: 1449

@[lib, x86_64-linux-gnu, ld-2.23.so]: 2879

@[lib, x86_64-linux-gnu, libc-2.23.so]: 2879

@[, , ]: 8384

This example has traced a software build. Each file is shown by the filename and two parent 
directories. The last entry in the output above has no names: it is anonymous mappings for 
program private data.

9 Origin: I created this for DTrace on 18-Oct-2005, and this bpftrace version for this book on 26-Jan-2019.
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The source to mmapfiles(8) is:

#!/usr/local/bin/bpftrace

#include <linux/mm.h>

kprobe:do_mmap

{

        $file = (struct file *)arg0;

        $name = $file->f_path.dentry;

        $dir1 = $name->d_parent;

        $dir2 = $dir1->d_parent;

        @[str($dir2->d_name.name), str($dir1->d_name.name),

            str($name->d_name.name)] = count();

}

It uses kprobes to trace the kernel do_mmap() function, and reads the filename from its struct 
file * argument, via a struct dentry (directory entry). The dentry only has one component of the 
path name, so to provide more context on where this file is located, the parent directory and 
grandparent directory are read and included in the output.10 Since the mmap() call is expected to 
be relatively infrequent, the overhead of this tool is expected to be negligible.

The aggregation key can be easily modified to include the process name, to show who is 
making these mappings ("@[comm, ...]"), and the user-level stack as well to show the code path 
("@[comm, ustack, ...]").

Chapter 7 includes a per-event mmap() analysis tool: mmapsnoop(8).

8.3.5 scread

scread(8)11 traces the read(2) system call and shows the filename it is operating on. For example:

# scread.bt 

Attaching 1 probe...

^C

@filename[org.chromium.BkPmzg]: 1

@filename[locale.alias]: 2

@filename[chrome_200_percent.pak]: 4

@filename[passwd]: 7

@filename[17]: 44

@filename[scriptCache-current.bin]: 48

[...]

10 I’ve suggested adding a BPF kernel helper that takes a struct file or struct dentry, and returns the full path, similar 

to the kernel d_path().

11 Origin: I created it for this book on 26-Jan-2019.
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This shows the "scriptCache-current.bin" file was read(2) 48 times while tracing. This is a 
syscall-based view into file I/O; see the later filetop(8) tool for a VFS-level view. These tools help 
characterize file usage, so you can look for inefficiencies.

The source to scread(8) is:

#!/usr/local/bin/bpftrace

#include <linux/sched.h>

#include <linux/fs.h>

#include <linux/fdtable.h>

tracepoint:syscalls:sys_enter_read

{

        $task = (struct task_struct *)curtask;

        $file = (struct file *)*($task->files->fdt->fd + args->fd);

        @filename[str($file->f_path.dentry->d_name.name)] = count();

}

This pulls the filename from the file descriptor table. 

File Descriptor to Filename

This tool has also been included as an example of fetching the filename from a file descriptor (FD) 
integer. There are at least two ways to do this:

 1. Walk from the task_struct to the file descriptor table, and use the FD as the index to find 
the struct file. The filename can then be found from this struct. This is used by scread(2). 
This is an unstable technique: the way the file descriptor table is found (task->files->fdt->fd) 
refers to kernel internals that may change between kernel versions, which would break this 
script.12

 2. Trace the open(2) syscall(s), and build a lookup hash with the PID and FD as the keys, and 
the file/pathname as the value. This can then be queried during read(2) and other syscalls. 
While this adds additional probes (and overhead), it is a stable technique.

There are many other tools in this book (fmapfault(8), filelife(8), vfssize(8), etc.) that refer to 
the filename for different operations; however, those work by tracing via the VFS layer, which 
provides the struct file immediately. While that is also an unstable interface, it makes it possible 
to find the filename string in fewer steps. Another advantage of VFS tracing is that there is usually 
only one function per type of operation, whereas with syscalls there can be variants (e.g., read(2), 
readv(2), preadv(2), pread64(), etc.) that may all need to be traced.

12 Some changes are already being considered. Dave Watson has been considering rearranging it to improve 

performance. Matthew Wilox is also working on changing it to task_struct->files_struct->maple_node->fd[i]. [85] [86]
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8.3.6 fmapfault

fmapfault(8)13 traces page faults for memory mapped files, and counts the process name and 
filename. For example:

# fmapfault.bt 

Attaching 1 probe...

^C

@[dirname, libc-2.23.so]: 1

@[date, libc-2.23.so]: 1

[...]

@[cat, libc-2.23.so]: 901

@[sh, libtinfo.so.5.9]: 962

@[sed, ld-2.23.so]: 984

@[sh, libc-2.23.so]: 997

@[cat, ld-2.23.so]: 1252

@[sh, ld-2.23.so]: 1427

@[as, libbfd-2.26.1-system.so]: 3984

@[as, libopcodes-2.26.1-system.so]: 68455

This traced a software build, and shows the build processes and libraries in which they were 
faulting.

Later tools in this book, such as filetop(8), fileslower(8), xfsslower(8), and ext4dist(8), show file 
I/O via the read(2) and write(2) syscalls (and their variants). But these are not the only way that 
files can be read and written to: file mappings are another method, which avoids explicit syscalls. 
fmapfault(8) provides a view of their use, by tracing file page faults and the creation of new page 
maps. Note that the actual reads and writes to a file may be far higher than the fault rate.

The source to fmapfault(8) is:

#!/usr/local/bin/bpftrace

#include <linux/mm.h>

kprobe:filemap_fault

{

        $vf = (struct vm_fault *)arg0;

        $file = $vf->vma->vm_file->f_path.dentry->d_name.name;

        @[comm, str($file)] = count();

}

This works by using kprobes to trace the filemap_fault() kernel function and, from its struct vm_
fault argument, determine the filename for the mapping. These details will need to be updated as 
the kernel changes. The overhead of this tool may be noticeable for systems with high fault rates.

13 Origin: I created it for this book on 26-Jan-2019.
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8.3.7 filelife

filelife(8)14 is a BCC and bpftrace tool to show the lifespan of short-lived files: those that were 
created and then deleted while tracing.

The following shows filelife(8) from BCC, during a software build:

# filelife

TIME     PID    COMM             AGE(s)  FILE

17:04:51 3576   gcc              0.02    cc9JENsb.s

17:04:51 3632   rm               0.00    kernel.release.tmp

17:04:51 3656   rm               0.00    version.h.tmp

17:04:51 3678   rm               0.00    utsrelease.h.tmp

17:04:51 3698   gcc              0.01    ccTtEADr.s

17:04:51 3701   rm               0.00    .3697.tmp

17:04:51 736    systemd-udevd    0.00    queue

17:04:51 3703   gcc              0.16    cc05cPSr.s

17:04:51 3708   rm               0.01    .purgatory.o.d

17:04:51 3711   gcc              0.01    ccgk4xfE.s

17:04:51 3715   rm               0.01    .stack.o.d

17:04:51 3718   gcc              0.01    ccPiKOgD.s

17:04:51 3722   rm               0.01    .setup-x86_64.o.d

[...]

This output shows the many short-lived files created during the build process, which were 
removed at an age ("AGE(s)") of less than one second.

This tool has been used to find some small performance wins: discovering cases where 
applications were using temporary files which could be avoided.

This works by using kprobes to trace file creation and deletion via the VFS calls vfs_create() 
and vfs_unlink(). The overhead of this tool should be negligible as the rate of these should be 
relatively low.

BCC

Command line usage:

filelife [options]

Options include:

 ■ -p PID: Measure this process only

14 Origin: I first created it for BCC on 8-Feb-2015 to debug short-lived file usage, and for bpftrace for this book on 

31-Jan-2019. It’s inspired by my vfslife.d tool from the 2011 DTrace book [Gregg 11].
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bpftrace

The following is the code for the bpftrace version:

#!/usr/local/bin/bpftrace

#include <linux/fs.h>

BEGIN

{

        printf("%-6s %-16s %8s %s\n", "PID", "COMM", "AGE(ms)", "FILE");

}

kprobe:vfs_create,

kprobe:security_inode_create

{

        @birth[arg1] = nsecs;

}

kprobe:vfs_unlink

/@birth[arg1]/

{

        $dur = nsecs - @birth[arg1];

        delete(@birth[arg1]);

        $dentry = (struct dentry *)arg1;

        printf("%-6d %-16s %8d %s\n", pid, comm, $dur / 1000000,

            str($dentry->d_name.name));

}

Newer kernels may not use vfs_create(), so file creation can also be fetched via security_inode_
create(), the access-control hook (LSM) for inode creation (if both events occur for the same file, 
then the birth timestamp is overwritten, but this should not noticeably affect the file lifespan 
measurement). The birth timestamp is stored keyed on arg1 of those functions, which is the 
struct dentry pointer, and is used as a unique ID. The filename is also fetched from struct dentry.

8.3.8 vfsstat

vfsstat(8)15 is a BCC and bpftrace tool to summarize statistics for some common VFS calls: 
reads and writes (I/O), creates, opens, and fsyncs. This provides the highest-level workload 
characterization of virtual file system operations. The following shows vfsstat(8) from BCC on a 
36-CPU production Hadoop server:

# vfsstat 

TIME         READ/s  WRITE/s CREATE/s   OPEN/s  FSYNC/s

02:41:23:   1715013    38717        0     5379        0

02:41:24:    947879    30903        0    10547        0

15 Origin: I first created this for BCC on 14-Aug-2015 and for bpftrace on 6-Sep-2018.
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02:41:25:   1064800    34387        0    57883        0

02:41:26:   1150847    36104        0     5105        0

02:41:27:   1281686    33610        0     2703        0

02:41:28:   1075975    31496        0     6204        0

02:41:29:    868243    34139        0     5090        0

02:41:30:    889394    31388        0     2730        0

02:41:31:   1124013    35483        0     8121        0

17:21:47:     11443     7876        0      507        0

[...]

This output shows a workload reaching over one million reads/second. A surprising detail is the 
number of file opens per second: over five thousand. These are a slower operation, requiring path 
name lookups by the kernel and creating file descriptors, plus additional file metadata structs if 
they weren’t already cached. This workload can be investigated further using opensnoop(8) to 
find ways to reduce the number of opens.

vfsstat(8) works by using kprobes for the functions: vfs_read(), vfs_write(), vfs_fsync(), vfs_open(), 
and vfs_create(), and printing them as per-second summaries in a table. VFS functions can be very 
frequent, as shown by this real-world example and, at rates of over one million events per second, 
the overhead of this tool is expected to be measurable (e.g., 1–3% at this rate). This tool is suited for 
ad hoc investigations, not 24x7 monitoring, where we’d prefer the overhead to be less than 0.1%.

This tool is only useful for the beginning of your investigation. VFS operations include file 
systems and networking, and you will need to drill down using other tools (e.g., the following 
vfssize(8)) to differentiate between them.

BCC

Command line usage:

vfsstat [interval [count]]

This is modeled on other traditional tools (vmstat(1)).

bpftrace

There is a bpftrace version of vfsstat(8) which prints the same data:

#!/usr/local/bin/bpftrace

BEGIN

{

        printf("Tracing key VFS calls... Hit Ctrl-C to end.\n");

}

kprobe:vfs_read*,

kprobe:vfs_write*,

kprobe:vfs_fsync,

kprobe:vfs_open,

kprobe:vfs_create
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{

        @[func] = count();

}

interval:s:1

{

        time();

        print(@);

        clear(@);

}

END

{

        clear(@);

}

This outputs every one second, formatted as a list of counts. Wildcards have been used to match 
variants of vfs_read() and vfs_write(): vfs_readv(), etc. If desired, this could be enhanced to use 
positional parameters to allow a custom interval to be specified.

8.3.9 vfscount

Instead of these five VFS functions counted by vfsstat(8), you can count all of them (there are 
over 50) and print a frequency count of their calls using the vfscount(8)16 tool in BCC and 
bpftrace. For example, from BCC:

# vfscount

Tracing... Ctrl-C to end.

^C

ADDR             FUNC                          COUNT

ffffffffb8473d01 vfs_fallocate                     1

ffffffffb849d301 vfs_kern_mount                    1

ffffffffb84b0851 vfs_fsync_range                   2

ffffffffb8487271 vfs_mknod                         3

ffffffffb8487101 vfs_symlink                      68

ffffffffb8488231 vfs_unlink                      376

ffffffffb8478161 vfs_writev                      525

ffffffffb8486d51 vfs_rmdir                       638

ffffffffb8487971 vfs_rename                      762

ffffffffb84874c1 vfs_mkdir                       768

ffffffffb84a2d61 vfs_getxattr                    894

ffffffffb84da761 vfs_lock_file                  1601

ffffffffb848c861 vfs_readlink                   3309

16 Origin: I first created this for BCC on 14-Aug-2015 and bpftrace on 6-Sep-2018.
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ffffffffb84b2451 vfs_statfs                    18346

ffffffffb8475ea1 vfs_open                     108173

ffffffffb847dbf1 vfs_statx_fd                 193851

ffffffffb847dc71 vfs_statx                    274022

ffffffffb847dbb1 vfs_getattr                  330689

ffffffffb847db21 vfs_getattr_nosec            331766

ffffffffb84790a1 vfs_write                    355960

ffffffffb8478df1 vfs_read                     712610

While tracing, vfs_read() was most frequent with 712,610 calls, and vfs_fallocate() was called once. 
The overhead of this tool, like vfsstat(8), can become noticeable at high rates of VFS calls.

Its functionality can also be implemented using funccount(8) from BCC, and bpftrace(8) directly:

# funccount 'vfs_*'

# bpftrace -e 'kprobe:vfs_* { @[func] = count(); }'

Counting VFS calls like this is only useful as a high-level view, before digging deeper. These calls 
can be for any subsystem that operates via VFS, including sockets (networking), /dev files, and 
/proc. The fsrwstat(8) tool, covered next, shows one way to separate these types.

8.3.10 vfssize

vfssize(8)17 is a bpftrace tool that shows VFS read and write sizes as histograms, broken down by 
process name and VFS filename or type. Example output from a 48-CPU production API server:

# vfssize

Attaching 5 probes...

@[tomcat-exec-393, tomcat_access.log]: 

[8K, 16K)             31 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[...]

@[kafka-producer-, TCP]: 

[4, 8)              2061 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[8, 16)                0 |                                                    |

[16, 32)               0 |                                                    |

[32, 64)            2032 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |

@[EVCACHE_..., FIFO]: 

[1]                 6376 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[...]

17 Origin: I created it for this book on 17-Apr-2019.
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@[grpc-default-wo, TCP]: 

[4, 8)               101 |                                                    |

[8, 16)            12062 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16, 32)            8217 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                 |

[32, 64)            7459 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                    |

[64, 128)           5488 |@@@@@@@@@@@@@@@@@@@@@@@                             |

[128, 256)          2567 |@@@@@@@@@@@                                         |

[256, 512)         11030 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@     |

[512, 1K)           9022 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@              |

[1K, 2K)            6131 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |

[2K, 4K)            6276 |@@@@@@@@@@@@@@@@@@@@@@@@@@@                         |

[4K, 8K)            2581 |@@@@@@@@@@@                                         |

[8K, 16K)            950 |@@@@                                                |

@[grpc-default-wo, FIFO]: 

[1]               266897 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

This highlights how VFS handles networking and FIFO as well. Processes named "grpc-default-wo" 
(truncated) did 266,897 one-byte reads or writes while tracing: this sounds like an opportunity for 
a performance optimization, by increasing the I/O size. The same process names also performed 
many TCP reads and writes, with a bi-modal distribution of sizes. The output has only a single 
example of a file system file, "tomcat_access.log," with 31 total reads and writes by tomcat-exec-393.

Source for vfssize(8):

#!/usr/local/bin/bpftrace

#include <linux/fs.h>

kprobe:vfs_read,

kprobe:vfs_readv,

kprobe:vfs_write,

kprobe:vfs_writev

{

        @file[tid] = arg0;

}

kretprobe:vfs_read,

kretprobe:vfs_readv,

kretprobe:vfs_write,

kretprobe:vfs_writev

/@file[tid]/

{

        if (retval >= 0) {

                $file = (struct file *)@file[tid];

                $name = $file->f_path.dentry->d_name.name;
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                if ((($file->f_inode->i_mode >> 12) & 15) == DT_FIFO) {

                        @[comm, "FIFO"] = hist(retval);

                } else {

                        @[comm, str($name)] = hist(retval);

                }

        }

        delete(@file[tid]);

}

END

{

        clear(@file);

}

This fetches the struct file from the first argument to vfs_read(), vfs_readv(), vfs_write(), and 
vfs_writev(), and gets the resulting size from the kretprobe. Fortunately, for network protocols, 
the protocol name is stored in the filename. (This originates from struct proto: see Chapter 10 for 
more about this.) For FIFOs, there is nothing currently stored in the filename, so the text "FIFO" 
is hardcoded in this tool.

vfssize(8) can be enhanced to include the type of call (read or write) by adding "probe" as a key, 
the process ID ("pid"), and other details as desired.

8.3.11 fsrwstat

fsrwstat(8)18 shows how to customize vfsstat(8) to include the file system type. Example output:

# fsrwstat

Attaching 7 probes...

Tracing VFS reads and writes... Hit Ctrl-C to end.

18:29:27

@[sockfs, vfs_write]: 1

@[sysfs, vfs_read]: 4

@[sockfs, vfs_read]: 5

@[devtmpfs, vfs_read]: 57

@[pipefs, vfs_write]: 156

@[pipefs, vfs_read]: 160

@[anon_inodefs, vfs_read]: 164

@[sockfs, vfs_writev]: 223

@[anon_inodefs, vfs_write]: 292

@[devpts, vfs_write]: 2634

18 Origin: I created it for this book on 1-Feb-2019, inspired by my fsrwcount.d tool from the 2011 DTrace book [Gregg 11].
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@[ext4, vfs_write]: 104268

@[ext4, vfs_read]: 10495

[...]

This shows the different file system types as the first column, separating socket I/O from ext4 
file system I/O. This particular output shows a heavy (over 100,000 IOPS) ext4 read and write 
workload.

Source for fsrwstat(8):

#!/usr/local/bin/bpftrace

#include <linux/fs.h>

BEGIN

{

        printf("Tracing VFS reads and writes... Hit Ctrl-C to end.\n");

}

kprobe:vfs_read,

kprobe:vfs_readv,

kprobe:vfs_write,

kprobe:vfs_writev

{

        @[str(((struct file *)arg0)->f_inode->i_sb->s_type->name), func] =

            count();

}

interval:s:1

{

        time(); print(@); clear(@);

}

END

{

        clear(@);

}

The program traces four VFS functions and frequency counts the file system type and the 
function name. Since struct file * is the first argument to these functions, it can be cast from arg0, 
and then members walked until the file system type name is read. The path walked is file -> inode 
-> superblock -> file_system_type -> name. Because it uses kprobes, this path is an unstable inter-
face, and will need to be updated to match kernel changes.

fsrwstat(8) can be enhanced to include other VFS calls, so long as there is a path to the file system 
type from the instrumented function arguments (from arg0, or arg1, or arg2, etc.).
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8.3.12 fileslower

fileslower(8)19 is a BCC and bpftrace tool to show synchronous file reads and writes slower than a 
given threshold. The following shows fileslower(8) from BCC, tracing reads/writes slower than 
10 milliseconds (the default threshold), on a 36-CPU production Hadoop server:

# fileslower

Tracing sync read/writes slower than 10 ms

TIME(s)  COMM         TID    D BYTES   LAT(ms) FILENAME

0.142    java         111264 R 4096      25.53 part-00762-37d00f8d...

0.417    java         7122   R 65536     22.80 file.out.index

1.809    java         70560  R 8192      21.71 temp_local_3c9f655b...

2.592    java         47861  W 64512     10.43 blk_2191482458

2.605    java         47785  W 64512     34.45 blk_2191481297

4.454    java         47799  W 64512     24.84 blk_2191482039

4.987    java         111264 R 4096      10.36 part-00762-37d00f8d...

5.091    java         47895  W 64512     15.72 blk_2191483348

5.130    java         47906  W 64512     10.34 blk_2191484018

5.134    java         47799  W 504       13.73 blk_2191482039_1117768266.meta

5.303    java         47984  R 30        12.50 spark-core_2.11-2.3.2...

5.383    java         47899  W 64512     11.27 blk_2191483378

5.773    java         47998  W 64512     10.83 blk_2191487052

[...]

This output shows a Java process encountering writes as slow as 34 milliseconds, and displays the 
names of the files read and written. The direction is the "D" column: "R" for read or "W" for write. 
The "TIME(s)" column reveals that these slow reads and writes were not very frequent—only a few 
per second.

Synchronous reads and writes are important as processes block on them and suffer their latency 
directly. The introduction to this chapter discussed how file system analysis can be more relevant 
than disk I/O analysis, and this is an example case. In the next chapter, disk I/O latency will be 
measured, but at that level, applications may not be directly affected by latency issues. With disk 
I/O, it’s easy to find phenomena that look like problems of latency but aren’t really problems at 
all. However, if fileslower(8) shows a latency problem, it’s probably an actual problem.

Synchronous reads and writes will block a process. It is likely—but not certain—that this also 
causes application-level problems. The application could be using a background I/O thread 
for write flushing and cache warming, which is performing synchronous I/O but without an 
application request blocking on it.

This tool has been used to prove production latency originated from the file system, and in other 
cases exonerate the file system: showing no I/O was slow as was assumed.

fileslower(8) works by tracing the synchronous read and write codepath from VFS. The current 
implementation traces all VFS reads and writes and then filters on those that are synchronous, so 
the overhead may be higher than expected.

19 Origin: I first created this for BCC on 6-Feb-2016, and the bpftrace version for this book on 31-Jan-2019.
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BCC

Command line usage:

fileslower [options] [min_ms]

Options include:

 ■ -p PID: Measure this process only

The min_ms argument is the minimum time in milliseconds. If 0 is provided, then all 
synchronous reads and writes are printed out. This output may be thousands of lines per second, 
depending on their rate, and unless you have a good reason to see them all, that’s not likely 
something you want to do. A default of 10 milliseconds is used if no argument is provided.

bpftrace

The following is the code for the bpftrace version:

#!/usr/local/bin/bpftrace

#include <linux/fs.h>

BEGIN

{

        printf("%-8s %-16s %-6s T %-7s %7s %s\n", "TIMEms", "COMM", "PID",

            "BYTES", "LATms", "FILE");

}

        

kprobe:new_sync_read,

kprobe:new_sync_write

{

        $file = (struct file *)arg0;

        if ($file->f_path.dentry->d_name.len != 0) {

                @name[tid] = $file->f_path.dentry->d_name.name;

                @size[tid] = arg2;

                @start[tid] = nsecs;

        }

}

        

kretprobe:new_sync_read

/@start[tid]/

{

        $read_ms = (nsecs - @start[tid]) / 1000000;

        if ($read_ms >= 1) {

                printf("%-8d %-16s %-6d R %-7d %7d %s\n", nsecs / 1000000,

                    comm, pid, @size[tid], $read_ms, str(@name[tid]));

        }

        delete(@start[tid]); delete(@size[tid]); delete(@name[tid]);

}
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kretprobe:new_sync_write

/@start[tid]/

{

        $write_ms = (nsecs - @start[tid]) / 1000000;

        if ($write_ms >= 1) {

                printf("%-8d %-16s %-6d W %-7d %7d %s\n", nsecs / 1000000,

                    comm, pid, @size[tid], $write_ms, str(@name[tid]));

        }

        delete(@start[tid]); delete(@size[tid]); delete(@name[tid]);

}

        

END

{

        clear(@start); clear(@size); clear(@name);

}

This uses kprobes to trace the new_sync_read() and new_sync_write() kernel functions. As kprobes 
is an unstable interface, there’s no guarantee that these will work across different kernel versions, 
and I’ve already encountered kernels where they are not available for tracing (inlined). The BCC 
version employs the workaround, by tracing higher-level __vfs_read() and __vfs_write() internal 
functions and then filtering for those that are synchronous.

8.3.13 filetop

filetop(8)20 is BCC tool that is like top(1) for files, showing the most frequently read or written 
filenames. Example output on a 36-CPU production Hadoop server:

# filetop

Tracing... Output every 1 secs. Hit Ctrl-C to end

02:31:38 loadavg: 39.53 36.71 32.66 26/3427 30188

TID    COMM             READS  WRITES R_Kb    W_Kb    T FILE

113962 java             15171  0      60684   0       R part-00903-37d00f8d-ecf9-4...

23110  java             7      0      7168    0       R temp_local_6ba99afa-351d-4...

25836  java             48     0      3072    0       R map_4141.out                

26890  java             46     0      2944    0       R map_5827.out                

26788  java             42     0      2688    0       R map_4363.out                

26788  java             18     0      1152    0       R map_4756.out.merged         

70560  java             130    0      1085    0       R temp_local_1bd4386b-b33c-4...

70560  java             130    0      1079    0       R temp_local_a3938a84-9f23-4...

70560  java             127    0      1053    0       R temp_local_3c9f655b-06e4-4...

26890  java             16     0      1024    0       R map_11374.out.merged

26890  java             15     0      960     0       R map_5262.out.merged

20 Origin: I created this for BCC on 6-Feb-2016, inspired by top(1) by William LeFebvre.
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26788  java             15     0      960     0       R map_20423.out.merged

26788  java             14     0      896     0       R map_4371.out.merged

26890  java             14     0      896     0       R map_10138.out.merged

26890  java             13     0      832     0       R map_4991.out.merged

25836  java             13     0      832     0       R map_3994.out.merged

25836  java             13     0      832     0       R map_4651.out.merged

25836  java             13     0      832     0       R map_16267.out.merged

25836  java             13     0      832     0       R map_15255.out.merged

26788  java             12     0      768     0       R map_6917.out.merged

[...]

By default, the top twenty files are shown, sorted by the read bytes column, and the screen 
redraws every second. This particular output shows that a "part-00903-37d00f8d" file (file-
name truncated) had the most read bytes at around 60 Mbytes during that one-second interval, 
from about 15k reads. Not shown is the average read size, but that can be calculated from those 
numbers to be 4.0 Kbytes.

This tool is used for workload characterization and general file system observability. Just as you 
can discover an unexpected CPU-consuming process using top(1), this may help you discover an 
unexpected I/O-busy file.

filetop by default also only shows regular files.21 The -a option shows all files, including TCP sockets:

# filetop -a

[...]

TID    COMM             READS  WRITES R_Kb    W_Kb    T FILE

32857  java             718    0      15756   0       S TCP

120597 java             12     0      12288   0       R temp_local_3807d4ca-b41e-3...

32770  java             502    0      10118   0       S TCP

32507  java             199    0      4212    0       S TCP

88371  java             186    0      1775    0       R temp_local_215ae692-35a4-2...

[...]

The columns are:

 ■ TID: Thread ID

 ■ COMM: Process/thread name

 ■ READS: Number of reads during interval

 ■ WRITES: Number of writes during interval

 ■ R_Kb: Total read Kbytes during interval

 ■ W_Kb: Total write Kbytes during interval

 ■ T: Type: R == Regular file, S == Socket, O == Other

 ■ FILE: Filename

21 “regular” refers to the file type: DT_REG in the kernel source. Other file types include DT_DIR for directories, DT_BLK 

for block special devices, etc.
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This works by using kprobes to trace the vfs_read() and vfs_write() kernel functions. The file type 
is read from the inode mode, via the S_ISREG() and S_ISSOCK() macros.

The overhead of this tool, like earlier ones, can begin to be noticeable because VFS reads/writes 
can be frequent. This also traces various statistics, including the filename, which makes its 
overhead a little higher than for other tools.

Command line usage:

filetop [options] [interval [count]]

Options include:

 ■ -C: Don’t clear the screen: rolling output

 ■ -r ROWS: Print this many rows (default 20)

 ■ -p PID: Measure this process only

The -C option is useful for preserving the terminal’s scroll-back buffer, so that patterns over time 
can be examined.

8.3.14 writesync

writesync(8)22 is a bpftrace tool that traces VFS writes to regular files and shows which were using 
a synchronous write flag (O_SYNC or O_DSYNC). For example:

# writesync.bt

Attaching 2 probes...

Tracing VFS write sync flags... Hit Ctrl-C to end.

^C

@regular[cronolog, output_20190520_06.log]: 1

@regular[VM Thread, gc.log]: 2

@regular[cronolog, catalina_20190520_06.out]: 9

@regular[tomcat-exec-142, tomcat_access.log]: 15

[...]

@sync[dd, outfile]: 100

This output shows shows a number of regular writes to files, and one hundred writes from a "dd" 
process to a file called "outfile1." The dd(1) was an artificial test using:

dd if=/dev/zero of=outfile oflag=sync count=100

Synchronous writes must wait for the storage I/O to complete (write through), unlike normal 
I/O which can complete from cache (write-back). This makes synchronous I/O slow, and if the 
synchronous flag is unnecessary, removing it can greatly improve performance. 

22 Origin: I created it for this book on 19-May-2019.
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The source to writesync(8) is:

#!/usr/local/bin/bpftrace

#include <linux/fs.h>

#include <asm-generic/fcntl.h>

BEGIN

{

        printf("Tracing VFS write sync flags... Hit Ctrl-C to end.\n");

}

kprobe:vfs_write,

kprobe:vfs_writev

{

        $file = (struct file *)arg0;

        $name = $file->f_path.dentry->d_name.name;

        if ((($file->f_inode->i_mode >> 12) & 15) == DT_REG) {

                if ($file->f_flags & O_DSYNC) {

                        @sync[comm, str($name)] = count();

                } else {

                        @regular[comm, str($name)] = count();

                }

        }

}

This checks that the file is a regular file (DT_REG), and then checks for the presence of the 
O_DSYNC flag (which is also set by O_SYNC).

8.3.15 filetype

filetype(8)23 is a bpftrace tool that traces VFS reads and writes along with the type of the file and 
process name. For example, on a 36-CPU system during a software build:

# filetype.bt

Attaching 4 probes...

^C

@[regular, vfs_read, expr]: 1

@[character, vfs_read, bash]: 10

[...]

@[socket, vfs_write, sshd]: 435

@[fifo, vfs_write, cat]: 464

23 Origin: I created it for this book on 2-Feb-2019.
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@[regular, vfs_write, sh]: 697

@[regular, vfs_write, as]: 785

@[regular, vfs_read, objtool]: 932

@[fifo, vfs_read, make]: 1033

@[regular, vfs_read, as]: 1437

@[regular, vfs_read, gcc]: 1563

@[regular, vfs_read, cat]: 2196

@[regular, vfs_read, sh]: 8391

@[regular, vfs_read, fixdep]: 11299

@[fifo, vfs_read, sh]: 15422

@[regular, vfs_read, cc1]: 16851

@[regular, vfs_read, make]: 39600

This output shows that most of the file types were "regular", for normal files, which were read and 
written by build software (make(1), cc1(1), gcc(1), etc.). The output also includes socket writes for 
sshd, which is the SSH server sending packets, and character reads from bash, which would be the 
bash shell reading input from the /dev/pts/1 character device.

The output also includes FIFO24 reads and writes. Here’s a short demo to illustrate their role:

window1$ tar cf - dir1 | gzip > dir1.tar.gz

window2# filetype.bt

Attaching 4 probes...

^C

[...]

@[regular, vfs_write, gzip]: 36

@[fifo, vfs_write, tar]: 191

@[fifo, vfs_read, gzip]: 191

@[regular, vfs_read, tar]: 425

The FIFO type is for shell pipes. Here the tar(1) command is performing reads of regular files, and 
then writing them to a FIFO. gzip(1) is reading from the FIFO, and writing to a regular file. This is 
all visible in the output.

The source to filetype(8) is:

#!/usr/local/bin/bpftrace

#include <linux/fs.h>

BEGIN

{

        // from uapi/linux/stat.h:

        @type[0xc000] = "socket";

        @type[0xa000] = "link";

24 FIFO: first-in, first-out special file (named pipe). See the FIFO(7) man page.
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        @type[0x8000] = "regular";

        @type[0x6000] = "block";

        @type[0x4000] = "directory";

        @type[0x2000] = "character";

        @type[0x1000] = "fifo";

        @type[0] = "other";

}

kprobe:vfs_read,

kprobe:vfs_readv,

kprobe:vfs_write,

kprobe:vfs_writev

{

        $file = (struct file *)arg0;

        $mode = $file->f_inode->i_mode;

        @[@type[$mode & 0xf000], func, comm] = count();

}

END

{

        clear(@type);

}

The BEGIN program sets up a hash table (@type) for inode file modes to strings, which are then 
looked up in the kprobes for the VFS functions.

Two months after writing this tool, I was developing socket I/O tools and noticed that I had not 
written a VFS tool to expose the file modes from include/linux/fs.h (DT_FIFO, DT_CHR, etc.). 
I developed this tool to do it (dropping the "DT_" prefix):

#!/usr/local/bin/bpftrace

#include <linux/fs.h>

BEGIN

{

        printf("Tracing VFS reads and writes... Hit Ctrl-C to end.\n");

        // from include/linux/fs.h:

        @type2str[0] = "UNKNOWN";

        @type2str[1] = "FIFO";

        @type2str[2] = "CHR";

        @type2str[4] = "DIR";

        @type2str[6] = "BLK";

        @type2str[8] = "REG";

        @type2str[10] = "LNK";
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        @type2str[12] = "SOCK";

        @type2str[14] = "WHT";

}

kprobe:vfs_read,

kprobe:vfs_readv,

kprobe:vfs_write,

kprobe:vfs_writev

{

        $file = (struct file *)arg0;

        $type = ($file->f_inode->i_mode >> 12) & 15;

        @[@type2str[$type], func, comm] = count();

}

END

{

        clear(@type2str);

}

When I went to add it to this chapter, I discovered I had accidentally written a second version of 
filetype(8), this time using a different header file for file type lookups. I’ve included the source 
here as a lesson that sometimes there is more than one way to write these tools.

8.3.16 cachestat

cachestat(8)25 is a BCC tool that shows page cache hit and miss statistics. This can be used to 
check the hit ratio and efficiency of the page cache, and run while investigating system and 
application tuning for feedback on cache performance. For example, from a 36-CPU production 
Hadoop instance:

# cachestat

    HITS   MISSES  DIRTIES HITRATIO   BUFFERS_MB  CACHED_MB

   53401     2755    20953   95.09%           14      90223

   49599     4098    21460   92.37%           14      90230

   16601     2689    61329   86.06%           14      90381

   15197     2477    58028   85.99%           14      90522

   18169     4402    51421   80.50%           14      90656

   57604     3064    22117   94.95%           14      90693

   76559     3777     3128   95.30%           14      90692

   49044     3621    26570   93.12%           14      90743

[...]

25 Origin: I first created this as an experimental tool using Ftrace for my perf-tools collection on 28-Dec-2014, while I 

was on vacation in Yulara, near Uluru, in the outback of Australia [87]. Since it’s so tied to kernel internals, it contains a 

block comment in the header to describe it as a sand castle: a new kernel version can easily break it and wash it away. 

Allan McAleavy ported it to BCC on 6-Nov-2015.
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This output shows a hit ratio often exceeding 90%. Tuning the system and application to bring 
this 90% close to 100% can result in very large performance wins (much larger than the 10% 
difference in hit ratio), as the application more often runs from memory without waiting on 
disk I/O.

Large-scale cloud databases such as Cassandra, Elasticsearch, and PostgreSQL often make heavy 
usage of the page cache to ensure that the hot dataset is always live in memory. This means that 
one of the most important questions in provisioning datastores is if the working set fits into the 
provisioned memory capacity. Netflix teams managing stateful services use this cachestat(8) tool 
to help answer this question and inform decisions such as what data compression algorithms to 
use and if adding more memory to a cluster would actually help performance.

A couple of simple examples can better explain the cachestat(8) output. Here is an idle system, 
where a one-Gbyte file is created. The -T option is now used to show a timestamp column:

# cachestat -T 

TIME         HITS   MISSES  DIRTIES HITRATIO   BUFFERS_MB  CACHED_MB

21:06:47        0        0        0    0.00%            9        191

21:06:48        0        0   120889    0.00%            9        663

21:06:49        0        0   141167    0.00%            9       1215

21:06:50      795        0        1  100.00%            9       1215

21:06:51        0        0        0    0.00%            9       1215

The DIRTIES column shows pages being written to the page cache (they are “dirty”), and the 
CACHED_MB column increases by 1024 Mbytes: the size of the newly created file.

This file is then flushed to disk and dropped from the page cache (this drops all pages from the 
page cache):

# sync

# echo 3 > /proc/sys/vm/drop_caches

Now the file is read twice. This time a cachestat(8) interval of 10 seconds is used:

# cachestat -T 10

TIME         HITS   MISSES  DIRTIES HITRATIO   BUFFERS_MB  CACHED_MB

21:08:58      771        0        1  100.00%            8        190

21:09:08    33036    53975       16   37.97%            9        400

21:09:18       15    68544        2    0.02%            9        668

21:09:28      798    65632        1    1.20%            9        924

21:09:38        5    67424        0    0.01%            9       1187

21:09:48     3757    11329        0   24.90%            9       1232

21:09:58     2082        0        1  100.00%            9       1232

21:10:08   268421       11       12  100.00%            9       1232

21:10:18        6        0        0  100.00%            9       1232

21:10:19      784        0        1  100.00%            9       1232
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The file is read between 21:09:08 and 21:09:48, seen by the high rate of MISSES, a low HITRATIO, 
and the increase in the page cache size in CACHED_MB by 1024 Mbytes. At 21:10:08 the file was 
read the second time, now hitting entirely from the page cache (100%).

cachestat(8) works by using kprobes to instrument these kernel functions:

 ■ mark_page_accessed(): For measuring cache accesses

 ■ mark_buffer_dirty(): For measuring cache writes

 ■ add_to_page_cache_lru(): For measuring page additions

 ■ account_page_dirtied(): For measuring page dirties

While this tool provides crucial insight for the page cache hit ratio, it is also tied to kernel 
implementation details via these kprobes and will need maintenance to work on different kernel 
versions. Its best use may be simply to show that that such a tool is possible.26

These page cache functions can be very frequent: they can be called millions of times a second. 
The overhead for this tool for extreme workloads can exceed 30%, though for normal workloads it 
will be much less. You should test in a lab environment and quantify before production use.

Command line usage:

cachestat [options] [interval [count]]

There is a -T option to include the timestamp on the output.

There is another BCC tool, cachetop(8),27 that prints the cachestat(8) statistics by process in a 
top(1)-style display using the curses library.

8.3.17 writeback

writeback(8)28 is a bpftrace tool that shows the operation of page cache write-back: when pages 
are scanned, when dirty pages are flushed to disk, the type of write-back event, and the duration. 
For example, on a 36-CPU system:

# writeback.bt

Attaching 4 probes...

Tracing writeback... Hit Ctrl-C to end.

TIME      DEVICE   PAGES    REASON           ms

03:42:50  253:1    0        periodic         0.013

03:42:55  253:1    40       periodic         0.167

03:43:00  253:1    0        periodic         0.005

26 When I presented cachestat(8) in my LSFMM keynote, the mm engineers stressed that it will break, and later 

explained some of the challenges in doing this correctly for future kernels (thanks, Mel Gorman). Some of us, like at 

Netflix, have it working well enough for our kernels and workloads. But to become a robust tool for everyone, I think 

either (A) someone needs to spend a few weeks studying the kernel source, trying different workloads, and working with 

the mm engineers to truly solve it; or perhaps even better, (B) add /proc statistics so this can switch to being a counter-

based tool.

27 Origin: cachetop(8) was created by Emmanuel Bretelle on 13-Jul-2016.

28 Origin: I created it for bpftrace on 14-Sep-2018.
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03:43:01  253:1    11268    background       6.112

03:43:01  253:1    11266    background       7.977

03:43:01  253:1    11314    background       22.209

03:43:02  253:1    11266    background       20.698

03:43:02  253:1    11266    background       7.421

03:43:02  253:1    11266    background       11.382

03:43:02  253:1    11266    background       6.954

03:43:02  253:1    11266    background       8.749

03:43:02  253:1    11266    background       14.518

03:43:04  253:1    38836    sync             64.655

03:43:04  253:1    0        sync             0.004

03:43:04  253:1    0        sync             0.002

03:43:09  253:1    0        periodic         0.012

03:43:14  253:1    0        periodic         0.016

[...]

This output begins by showing a periodic write-back every five seconds. These were not 
writing many pages (0, 40, 0). Then there was a burst of background write-backs, writing tens 
of thousands of pages, and taking between 6 and 22 milliseconds for each write-back. This 
is asynchronous page flushing for when the system is running low on free memory. If the 
timestamps were correlated with application performance problems seen by other monitoring 
tools (e.g., cloud-wide performance monitoring), this would be a clue that the application 
problem was caused by file system write-back. The behavior of the write-back flushing is tunable 
(e.g., sysctl(8) and vm.dirty_writeback_centisecs). A sync write-back occurred at 3:43:04, writing 
38,836 pages in 64 milliseconds.

The source to writeback(8) is:

#!/usr/local/bin/bpftrace

BEGIN

{

        printf("Tracing writeback... Hit Ctrl-C to end.\n");

        printf("%-9s %-8s %-8s %-16s %s\n", "TIME", "DEVICE", "PAGES",

            "REASON", "ms");

        // see /sys/kernel/debug/tracing/events/writeback/writeback_start/format

        @reason[0] = "background";

        @reason[1] = "vmscan";

        @reason[2] = "sync";

        @reason[3] = "periodic";

        @reason[4] = "laptop_timer";

        @reason[5] = "free_more_memory";

        @reason[6] = "fs_free_space";

        @reason[7] = "forker_thread";

}
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tracepoint:writeback:writeback_start

{

        @start[args->sb_dev] = nsecs;

        @pages[args->sb_dev] = args->nr_pages;

}

tracepoint:writeback:writeback_written

/@start[args->sb_dev]/

{

        $sb_dev = args->sb_dev;

        $s = @start[$sb_dev];

        $lat = $s ? (nsecs - $s) / 1000 : 0;

        $pages = @pages[args->sb_dev] - args->nr_pages;

        time("%H:%M:%S  ");

        printf("%-8s %-8d %-16s %d.%03d\n", args->name, $pages,

            @reason[args->reason], $lat / 1000, $lat % 1000);

        delete(@start[$sb_dev]);

        delete(@pages[$sb_dev]);

}

END

{

        clear(@reason);

        clear(@start);

}

This populates @reason to map the reason identifiers to human-readable strings. The time during 
write-back is measured, keyed on the device, and all details are printed in the writeback_written 
tracepoint. The page count is determined by a drop in the args->nr_pages argument, following 
how the kernel accounts for this (see the wb_writeback() source in fs/fs-writeback.c).

8.3.18 dcstat

dcstat(8)29 is a BCC and bpftrace tool that shows directory entry cache (dcache) statistics. The 
following shows dcstat(8) from BCC, on a 36-CPU production Hadoop instance:

# dcstat

TIME         REFS/s   SLOW/s   MISS/s     HIT%

22:48:20:    661815    27942    20814    96.86

22:48:21:    540677    87375    80708    85.07

29 Origin: I first created a similar tool called dnlcstat on 10-Mar-2004 to instrument the Solaris directory name lookup 

cache, using the kernel Kstat statistics. I created the BCC dcstat(8) on 9-Feb-2016, and the bpftrace version for this 

book on 26-Mar-2019.
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22:48:22:    271719     4042      914    99.66

22:48:23:    434353     4765       37    99.99

22:48:24:    766316     5860      607    99.92

22:48:25:    567078     7866     2279    99.60

22:48:26:    556771    26845    20431    96.33

22:48:27:    558992     4095      747    99.87

22:48:28:    299356     3785      105    99.96

[...]

This output shows hit ratios of over 99%, and a workload of over 500k references per second. The 
columns are:

 ■ REFS/s: dcache references.

 ■ SLOW/s: Since Linux 2.5.11, the dcache has an optimization to avoid cacheline bouncing 
during lookups of common entries ("/", "/usr") [88]. This column shows when this 
optimization was not used, and the dcache lookup took the “slow” path.

 ■ MISS/s: The dcache lookup failed. The directory entry may still be memory as part of the 
page cache, but the specialized dcache did not return it.

 ■ HIT%: Ratio of hits to references.

This works by using kprobes to instrument the lookup_fast() kernel function, and kretprobes for 
d_lookup(). The overhead of this tool may become noticeable depending on the workload, since 
these functions can be frequently called as seen in the example output. Test and quantify in a lab 
environment.

BCC

Command line usage:

dcstat [interval [count]]

This is modeled on other traditional tools (e.g., vmstat(1)).

bpftrace

Example output from the bpftrace version:

# dcstat.bt

Attaching 4 probes...

Tracing dcache lookups... Hit Ctrl-C to end.

      REFS     MISSES  HIT%

    234096      16111   93%

    495104      36714   92%

    461846      36543   92%

    460245      36154   92%

[...]
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Source code:

#!/usr/local/bin/bpftrace

BEGIN

{

        printf("Tracing dcache lookups... Hit Ctrl-C to end.\n");

        printf("%10s %10s %5s%\n", "REFS", "MISSES", "HIT%");

}

kprobe:lookup_fast { @hits++; }

kretprobe:d_lookup /retval == 0/ { @misses++; }

interval:s:1

{

        $refs = @hits + @misses;

        $percent = $refs > 0 ? 100 * @hits / $refs : 0;

        printf("%10d %10d %4d%%\n", $refs, @misses, $percent);

        clear(@hits);

        clear(@misses);

}

END

{

        clear(@hits);

        clear(@misses);

}

This uses a ternary operator to avoid a divide-by-zero condition, in the unlikely case that there 
were zero hits and misses measured.30

8.3.19 dcsnoop

dcsnoop(8).31 is a BCC and bpftrace tool to trace directory entry cache (dcache) lookups, showing 
details on every lookup. The output can be verbose, thousands of lines per second, depending on 
the lookup rate. The following shows dcsnoop(8) from BCC, with -a to show all lookups:

# dcsnoop -a

TIME(s)     PID    COMM           T FILE

0.005463    2663   snmpd          R proc/sys/net/ipv6/conf/eth0/forwarding

30 Note that BPF does have protections against divide-by-zero [89]; it is still a good idea to check before sending a pro-

gram to BPF, to avoid being rejected by the BPF verifier.

31 Origin: I first created this as dnlcsnoop using DTrace on 17-Mar-2004, the BCC version on 9-Feb-2016, and the 

bpftrace version on 8-Sep-2018.
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0.005471    2663   snmpd          R sys/net/ipv6/conf/eth0/forwarding

0.005479    2663   snmpd          R net/ipv6/conf/eth0/forwarding

0.005487    2663   snmpd          R ipv6/conf/eth0/forwarding

0.005495    2663   snmpd          R conf/eth0/forwarding

0.005503    2663   snmpd          R eth0/forwarding

0.005511    2663   snmpd          R forwarding

[...]

This output shows a /proc/sys/net/ipv6/conf/eth0/forwarding path lookup by snmpd, and shows 
how the path is walked looking up each component. The "T" column is the type: R == reference, 
M == miss.

This works the same way as dcstat(8), using kprobes. The overhead of this tool is expected to be 
high for any moderate workload, as it is printing a line of output per event. It is intended to be 
used for short periods to investigate misses seen in dcstat(8).

BCC

The BCC version supports only one command line option: -a, to show both references and 
misses. By default, only misses are shown.

bpftrace

The following is the code for the bpftrace version:

#!/usr/local/bin/bpftrace

#include <linux/fs.h>

#include <linux/sched.h>

// from fs/namei.c:

struct nameidata {

        struct path     path;

        struct qstr     last;

        // [...]

};

BEGIN

{

        printf("Tracing dcache lookups... Hit Ctrl-C to end.\n");

        printf("%-8s %-6s %-16s %1s %s\n", "TIME", "PID", "COMM", "T", "FILE");

}

// comment out this block to avoid showing hits:

kprobe:lookup_fast
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{

        $nd = (struct nameidata *)arg0;

        printf("%-8d %-6d %-16s R %s\n", elapsed / 1000000, pid, comm,

            str($nd->last.name));

}

kprobe:d_lookup

{

        $name = (struct qstr *)arg1;

        @fname[tid] = $name->name;

}

kretprobe:d_lookup

/@fname[tid]/

{

        if (retval == 0) {

                printf("%-8d %-6d %-16s M %s\n", elapsed / 1000000, pid, comm,

                    str(@fname[tid]));

        }

        delete(@fname[tid]);

}

This program needed to reference the "last" member from the nameidata struct, which was not 
available in kernel headers, so enough of it was declared in this program to find that member.

8.3.20 mountsnoop

mountsnoop(8)32 is a BCC tool that shows when file systems are mounted. This can be used for 
troubleshooting, especially for container environments that mount file systems on container 
startup. Example output:

# mountsnoop

COMM             PID     TID     MNT_NS      CALL

systemd-logind   1392    1392    4026531840  mount("tmpfs", "/run/user/116", "tmpfs", 

MS_NOSUID|MS_NODEV, "mode=0700,uid=116,gid=65534,size=25778348032") = 0

systemd-logind   1392    1392    4026531840  umount("/run/user/116", MNT_DETACH) = 0

[...]

This output shows systemd-logind performing a mount(2) and umount(2) of a tmpfs at /run/
user/116.

This works by tracing the mount(2) and unmount(2) syscalls, using kprobes for the functions 
that perform these. Since mounts should be an infrequent activity, the overhead of this tool is 
expected to be negligible.

32 Origin: It was created by Omar Sandoval on 14-Oct-2016.
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8.3.21 xfsslower

xfsslower(8)33 is a BCC tool to trace common XFS file system operations; it prints per-event details 
for those operations that were slower than a given threshold. The operations traced are reads, 
writes, opens, and fsync.

The following shows xfsslower(8) from BCC tracing these operations slower than 10 milliseconds 
(the default) from a 36-CPU production instance:

# xfsslower

Tracing XFS operations slower than 10 ms

TIME     COMM         PID    T BYTES   OFF_KB   LAT(ms) FILENAME

02:04:07 java         5565   R 63559   360237     17.16 shuffle_2_63762_0.data

02:04:07 java         5565   R 44203   151427     12.59 shuffle_0_12138_0.data

02:04:07 java         5565   R 39911   106647     34.96 shuffle_0_12138_0.data

02:04:07 java         5565   R 65536   340788     14.80 shuffle_2_101288_0.data

02:04:07 java         5565   R 65536   340744     14.73 shuffle_2_103383_0.data

02:04:07 java         5565   R 64182   361925     59.44 shuffle_2_64928_0.data

02:04:07 java         5565   R 44215   108517     12.14 shuffle_0_12138_0.data

02:04:07 java         5565   R 63370   338650     23.23 shuffle_2_104532_0.data

02:04:07 java         5565   R 63708   360777     22.61 shuffle_2_65806_0.data

[...]

This output shows frequent reads by Java that exceed 10 milliseconds. 

Similar to fileslower(8), this is instrumenting close to the application, and latency seen here 
is likely suffered by the application.

This works by using kprobes to trace the kernel functions in the file system’s struct 
file_operations, which is its interface to VFS. From Linux fs/xfs/xfs_file.c:

const struct file_operations xfs_file_operations = {

        .llseek         = xfs_file_llseek,

        .read_iter      = xfs_file_read_iter,

        .write_iter     = xfs_file_write_iter,

        .splice_read    = generic_file_splice_read,

        .splice_write   = iter_file_splice_write,

        .unlocked_ioctl = xfs_file_ioctl,

#ifdef CONFIG_COMPAT

        .compat_ioctl   = xfs_file_compat_ioctl,

#endif

        .mmap           = xfs_file_mmap,

        .mmap_supported_flags = MAP_SYNC,

        .open           = xfs_file_open,

        .release        = xfs_file_release,

        .fsync          = xfs_file_fsync,

33 Origin: I created this on 11-Feb-2016, inspired by my zfsslower.d tool from the 2011 DTrace book [Gregg 11].
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        .get_unmapped_area = thp_get_unmapped_area,

        .fallocate      = xfs_file_fallocate,

        .remap_file_range = xfs_file_remap_range,

};

The xfs_file_read_iter() function is traced for reads, and xfs_file_write_iter() for writes, and 
so on. These functions may change from kernel version to version, and so this tool will need 
maintenance. The overhead of this tool is relative to the rate of the operations, plus the rate of 
events printed that exceeded the threshold. The rate of operations for busy workloads can be 
high enough that the overhead is noticeable, even when there are no operations slower than the 
threshold so that no output is printed.

Command line usage:

xfsslower [options] [min_ms]

Options include:

 ■ -p PID: Measure this process only

The min_ms argument is the minimum time in milliseconds. If 0 is provided, then all traced 
operations are printed out. This output may be thousands of lines per second, depending on their 
rate, and unless you have a good reason to see them all, it is likely undesirable. A default of 10 
milliseconds is used if no argument is provided.

The next tool shows a bpftrace program instrumenting the same functions for latency histograms, 
rather than per-event output.

8.3.22 xfsdist

xfsdist(8)34 is a BCC and bpftrace tool to instrument the XFS file system and show the distribution 
of latencies as histograms for common operations: reads, writes, opens, and fsync. The following 
shows xfsdist(8) from BCC, running on a 36-CPU production Hadoop instance for 10 seconds:

# xfsdist 10 1

Tracing XFS operation latency... Hit Ctrl-C to end.

23:55:23:

operation = 'read'

     usecs               : count     distribution

         0 -> 1          : 5492     |*****************************           |

         2 -> 3          : 4384     |***********************                 |

         4 -> 7          : 3387     |******************                      |

         8 -> 15         : 1675     |*********                               |

        16 -> 31         : 7429     |****************************************|

34 Origin: I created this for BCC on 12-Feb-2016 and bpftrace on 8-Sep-2018. The tool is inspired by my 2012 zfsdist.d 

DTrace tool.
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        32 -> 63         : 574      |***                                     |

        64 -> 127        : 407      |**                                      |

       128 -> 255        : 163      |                                        |

       256 -> 511        : 253      |*                                       |

       512 -> 1023       : 98       |                                        |

      1024 -> 2047       : 89       |                                        |

      2048 -> 4095       : 39       |                                        |

      4096 -> 8191       : 37       |                                        |

      8192 -> 16383      : 27       |                                        |

     16384 -> 32767      : 11       |                                        |

     32768 -> 65535      : 21       |                                        |

     65536 -> 131071     : 10       |                                        |

operation = 'write'

     usecs               : count     distribution

         0 -> 1          : 414      |                                        |

         2 -> 3          : 1327     |                                        |

         4 -> 7          : 3367     |**                                      |

         8 -> 15         : 22415    |*************                           |

        16 -> 31         : 65348    |****************************************|

        32 -> 63         : 5955     |***                                     |

        64 -> 127        : 1409     |                                        |

       128 -> 255        : 28       |                                        |

operation = 'open'

     usecs               : count     distribution

         0 -> 1          : 7557     |****************************************|

         2 -> 3          : 263      |*                                       |

         4 -> 7          : 4        |                                        |

         8 -> 15         : 6        |                                        |

        16 -> 31         : 2        |                                        |

This output shows separate histograms for reads, writes, and opens, with counts indicating 
that the workload is currently write-heavy. The read histogram shows a bi-modal distribution, 
with many taking less than seven microseconds, and another mode at 16 to 31 microseconds. 
The speed of both these modes suggested they were served from the page cache. This difference 
between them may be caused by the size of the data read, or different types of reads that take 
different code paths. The slowest reads reached the 65- to 131-millisecond bucket: these may be 
from storage devices, and also involve queueing.

The write histogram showed that most writes were in the 16- to 31-microsecond range: also fast, 
and likely using write-back buffering.

BCC

Command line usage:

xfsdist [options] [interval [count]]
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Options include:

 ■ -m: Print output in milliseconds (default is microseconds)

 ■ -p PID: Measure this process only

The interval and count arguments allow these histograms to be studied over time.

bpftrace

The following is the code for the bpftrace version, which summarizes its core functionality. This 
version does not support options.

#!/usr/local/bin/bpftrace

BEGIN

{

        printf("Tracing XFS operation latency... Hit Ctrl-C to end.\n");

}

kprobe:xfs_file_read_iter,

kprobe:xfs_file_write_iter,

kprobe:xfs_file_open,

kprobe:xfs_file_fsync

{

        @start[tid] = nsecs;

        @name[tid] = func;

}

kretprobe:xfs_file_read_iter,

kretprobe:xfs_file_write_iter,

kretprobe:xfs_file_open,

kretprobe:xfs_file_fsync

/@start[tid]/

{

        @us[@name[tid]] = hist((nsecs - @start[tid]) / 1000);

        delete(@start[tid]);

        delete(@name[tid]);

}

END

{

        clear(@start);

        clear(@name);

}

This makes use of the functions from the XFS struct file_operations. Not all file systems have such 
a simple mapping, as discussed in the next section about ext4.
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8.3.23 ext4dist

There is a ext4dist(8)35 tool in BCC that works like xfsdist(8), but for the ext4 file system instead. 
See the xfsdist(8) section for output and usage.

There is one difference, and it is an example of the difficulty of using kprobes. Here is the 
ext4_file_operations struct from Linux 4.8:

const struct file_operations ext4_file_operations = {

        .llseek         = ext4_llseek,

        .read_iter      = generic_file_read_iter,

        .write_iter     = ext4_file_write_iter,

        .unlocked_ioctl = ext4_ioctl,

[...]

The read function highlighted in bold is generic_file_read_iter(), and not an ext4 specific one. 
This is a problem: if you trace this generic one, you are also tracing operations from other file 
system types, and the output will be polluted.

The workaround used was to trace generic_file_read_iter() and examine its arguments to 
determine if it came from ext4 or not. The BPF code examined the struct kiocb *icb argument in 
this way, returning from the tracing function if the file system operations were not for ext4:

    // ext4 filter on file->f_op == ext4_file_operations

    struct file *fp = iocb->ki_filp;

    if ((u64)fp->f_op != EXT4_FILE_OPERATIONS)

        return 0;

The EXT4_FILE_OPERATIONS was replaced with the actual address of the ext4_file_operations 
struct, found by reading /proc/kallsyms during program startup. It’s something of a hack, but it 
works. It comes with the performance cost of tracing all generic_file_read_iter() calls, affecting 
other file systems that use it, as well as the additional test in the BPF program.

Then came Linux 4.10, which changed the functions used. Now we can examine a real kernel 
change and its affect on kprobes, instead of hypothetically warning about the possibility. The 
file_operations struct became:

const struct file_operations ext4_file_operations = {

        .llseek         = ext4_llseek,

        .read_iter      = ext4_file_read_iter,

        .write_iter     = ext4_file_write_iter,

        .unlocked_ioctl = ext4_ioctl,

[...]

Compare this to the earlier version. Now there is an ext4_file_read_iter() function that you can 
trace directly, so you no longer need to tease apart ext4 calls from the generic function.

35 Origin: I created this on 12-Feb-2016, inspired by my 2012 zfsdist.d DTrace tool, and the bpftrace version for this 

book on 2-Feb-2019.
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bpftrace

To celebrate this change, I developed ext4dist(8) for Linux 4.10 and later (until it changes again). 
Example output:

# ext4dist.bt

Attaching 9 probes...

Tracing ext4 operation latency... Hit Ctrl-C to end.

^C

@us[ext4_sync_file]: 

[1K, 2K)               2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[2K, 4K)               1 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |

[4K, 8K)               0 |                                                    |

[8K, 16K)              1 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |

@us[ext4_file_write_iter]: 

[1]                   14 |@@@@@@                                              |

[2, 4)                28 |@@@@@@@@@@@@                                        |

[4, 8)                72 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                    |

[8, 16)              114 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16, 32)              26 |@@@@@@@@@@@                                         |

[32, 64)              61 |@@@@@@@@@@@@@@@@@@@@@@@@@@@                         |

[64, 128)              5 |@@                                                  |

[128, 256)             0 |                                                    |

[256, 512)             0 |                                                    |

[512, 1K)              1 |                                                    |

@us[ext4_file_read_iter]: 

[0]                    1 |                                                    |

[1]                    1 |                                                    |

[2, 4)               768 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[4, 8)               385 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |

[8, 16)              112 |@@@@@@@                                             |

[16, 32)              18 |@                                                   |

[32, 64)               5 |                                                    |

[64, 128)              0 |                                                    |

[128, 256)           124 |@@@@@@@@                                            |

[256, 512)            70 |@@@@                                                |

[512, 1K)              3 |                                                    |

@us[ext4_file_open]: 

[0]                 1105 |@@@@@@@@@@                                          |

[1]                  221 |@@                                                  |
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[2, 4)              5377 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[4, 8)               359 |@@@                                                 |

[8, 16)               42 |                                                    |

[16, 32)               5 |                                                    |

[32, 64)               1 |                                                    |

The histograms are in microseconds, and this output all shows sub-millisecond latencies.

Source:

#!/usr/local/bin/bpftrace

BEGIN

{

        printf("Tracing ext4 operation latency... Hit Ctrl-C to end.\n");

}

kprobe:ext4_file_read_iter,

kprobe:ext4_file_write_iter,

kprobe:ext4_file_open,

kprobe:ext4_sync_file

{

        @start[tid] = nsecs;

        @name[tid] = func;

}

kretprobe:ext4_file_read_iter,

kretprobe:ext4_file_write_iter,

kretprobe:ext4_file_open,

kretprobe:ext4_sync_file

/@start[tid]/

{

        @us[@name[tid]] = hist((nsecs - @start[tid]) / 1000);

        delete(@start[tid]);

        delete(@name[tid]);

}

END

{

        clear(@start);

        clear(@name);

}

The map was named "@us" to decorate the output with the units (microseconds).
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8.3.24 icstat

icstat(8)36 traces inode cache references and misses and prints statistics every second. For example:

# icstat.bt

Attaching 3 probes...

Tracing icache lookups... Hit Ctrl-C to end.

      REFS     MISSES  HIT%

         0          0    0%

     21647          0  100%

     38925      35250    8%

     33781      33780    0%

       815        806    1%

         0          0    0%

         0          0    0%

[...]

This output shows an initial second of hits, followed by a few seconds of mostly misses. The work-
load was a find /var -ls, to walk inodes and print their details.

The source to icstat(8) is:

#!/usr/local/bin/bpftrace

BEGIN

{

        printf("Tracing icache lookups... Hit Ctrl-C to end.\n");

        printf("%10s %10s %5s\n", "REFS", "MISSES", "HIT%");

}

kretprobe:find_inode_fast

{

        @refs++;

        if (retval == 0) {

                @misses++;

        }

}

interval:s:1

{

        $hits = @refs - @misses;

        $percent = @refs > 0 ? 100 * $hits / @refs : 0;

        printf("%10d %10d %4d%%\n", @refs, @misses, $percent);

36 Origin: I created it for this book on 2-Feb-2019. My first inode cache stat tool was inodestat7 on 11-Mar-2004, and 

I’m sure there were earlier inode stat tools (from memory, the SE Toolkit).
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        clear(@refs);

        clear(@misses);

}

END

{

        clear(@refs);

        clear(@misses);

}

As with dcstat(8), for the percent calculation a division by zero is avoided by checking whether 
@refs is zero.

8.3.25 bufgrow

bufgrow(8)37 is a bpftrace tool that provides some insight into operation of the buffer cache. 
This shows page cache growth for block pages only (the buffer cache, used for block I/O buffers), 
showing which processes grew the cache by how many Kbytes. For example:

# bufgrow.bt

Attaching 1 probe...

^C

@kb[dd]: 101856

While tracing, "dd" processes increased the buffer cache by around 100 Mbytes. This was a 
synthetic test involving a dd(1) from a block device, during which the buffer cache did grow by 
100 Mbytes:

# free -wm

          total      used      free    shared   buffers     cache   available

Mem:      70336       471     69328        26         2       534       68928

Swap:         0         0         0

[...]

# free -wm

          total      used      free    shared   buffers     cache   available

Mem:      70336       473     69153        26       102       607       68839

Swap:         0         0         0

The source to bufgrow(8) is:

#!/usr/local/bin/bpftrace

#include <linux/fs.h>

37 Origin: I created it for this book on 3-Feb-2019.
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kprobe:add_to_page_cache_lru

{

        $as = (struct address_space *)arg1;

        $mode = $as->host->i_mode;

        // match block mode, uapi/linux/stat.h:

        if ($mode & 0x6000) {

                @kb[comm] = sum(4);        // page size

        }

}

This works by using kprobes to instrument the add_to_page_cache_lru() function, and filters 
on the block type. Since the block type requires a struct cast and dereference, it is tested in an 
if-statement rather than the probe filter. This is a frequent function, so running this tool can cost 
noticeable overhead for busy workloads.

8.3.26 readahead

readahead(8)38 traces file system automatic read-ahead (not the readahead(2) syscall) and shows 
whether the read-ahead pages were used during tracing, and the time between reading the page 
and its use. For example:

# readahead.bt

Attaching 5 probes...

^C

Readahead unused pages: 128

Readahead used page age (ms):

@age_ms: 

[1]                 2455 |@@@@@@@@@@@@@@@                                     |

[2, 4)              8424 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[4, 8)              4417 |@@@@@@@@@@@@@@@@@@@@@@@@@@@                         |

[8, 16)             7680 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@     |

[16, 32)            4352 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |

[32, 64)               0 |                                                    |

[64, 128)              0 |                                                    |

[128, 256)           384 |@@                                                  |

This shows that during tracing there were 128 pages read ahead but unused (that’s not many). The 
histogram shows thousands of pages were read and used, mostly within 32 milliseconds. If that 
time was in the many seconds, it could be a sign that read-ahead is loading too aggressively, and 
should be tuned.

This tool was created to help analyze read-ahead behavior on Netflix production instances that 
were using solid state drives, where read ahead is far less useful than it is for rotational disks, and 

38 Origin: I created it for this book on 3-Feb-2019. I’ve talked about writing this tool for years, and now I’ve finally 

gotten around to it.
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can negatively affect performance. This particular production issue is also described in the 
biosnoop(8) section in Chapter 9, as biosnoop(8) had previously been used for this analysis.

The source to readahead(8) is:

#!/usr/local/bin/bpftrace

kprobe:__do_page_cache_readahead    { @in_readahead[tid] = 1; }

kretprobe:__do_page_cache_readahead { @in_readahead[tid] = 0; }

kretprobe:__page_cache_alloc

/@in_readahead[tid]/

{

        @birth[retval] = nsecs;

        @rapages++;

}

kprobe:mark_page_accessed

/@birth[arg0]/

{

        @age_ms = hist((nsecs - @birth[arg0]) / 1000000);

        delete(@birth[arg0]);

        @rapages--;

}

END

{

        printf("\nReadahead unused pages: %d\n", @rapages);

        printf("\nReadahead used page age (ms):\n");

        print(@age_ms); clear(@age_ms);

        clear(@birth); clear(@in_readahead); clear(@rapages);

}

This works by using kprobes to instrument various kernel functions. It sets a per-thread flag during 
__do_page_cache_readahead(), which is checked during page allocation to know whether the page 
was for read-ahead. If so, a timestamp is saved for the page, keyed on the page struct address. This 
is read later on page access, if set, for the time histogram. The count of unused pages is an entropy 
count of read-ahead page allocations minus their use, for the duration of the program.

If the kernel implementation changes, this tool will need to be updated to match. Also, tracing 
page functions and storing extra metadata per page will likely add up to significant overhead, as 
these page functions are frequent. The overhead of this tool may reach 30% or higher on very 
busy systems. It is intended for short-term analysis.

At the end of Chapter 9, a bpftrace one-liner is shown that can count the ratio of read vs 
read-ahead block I/O.
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8.3.27 Other Tools

Other BPF tools worth mentioning:

 ■ ext4slower(8), ext4dist(8): ext4 versions of xfsslower(8) and xfsdist(8), in BCC

 ■ btrfsslower(8), btrfsdist(8): btrfs versions of xfsslower(8) and xfsdist(8), in BCC

 ■ zfsslower(8), zfsdist(8): zfs versions of xfsslower(8) and xfsdist(8), in BCC

 ■ nfsslower(8), nfsdist(8): NFS versions of xfsslower(8) and xfsdist(8), in BCC, for NFSv3 and 
NFSv4

8.4 BPF One-Liners

These sections show BCC and bpftrace one-liners. Where possible, the same one-liner is imple-
mented using both BCC and bpftrace.

8.4.1 BCC

Trace files opened via open(2) with process name:

opensnoop

Trace files created via creat(2) with process name:

trace 't:syscalls:sys_enter_creat "%s", args->pathname'

Count newstat(2) calls by filename:

argdist -C 't:syscalls:sys_enter_newstat():char*:args->filename'

Count read syscalls by syscall type:

funccount 't:syscalls:sys_enter_*read*'

Count write syscalls by syscall type:

funccount 't:syscalls:sys_enter_*write*'

Show the distribution of read() syscall request sizes:

argdist -H 't:syscalls:sys_enter_read():int:args->count'

Show the distribution of read() syscall read bytes (and errors):

argdist -H 't:syscalls:sys_exit_read():int:args->ret'

Count read() syscall errors by error code:

argdist -C 't:syscalls:sys_exit_read():int:args->ret:args->ret<0'

Count VFS calls:

funccount 'vfs_*'
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Count ext4 tracepoints:

funccount 't:ext4:*'

Count xfs tracepoints:

funccount 't:xfs:*'

Count ext4 file reads by process name and stack trace:

stackcount ext4_file_read_iter

Count ext4 file reads by process name and user-level stack only:

stackcount -U ext4_file_read_iter

Trace ZFS spa_sync() times:

trace -T 'spa_sync "ZFS spa_sync()"'

Count FS reads to storage devices via read_pages, with stacks and process names:

stackcount -P read_pages

Count ext4 reads to storage devices, with stacks and process names:

stackcount -P ext4_readpages

8.4.2 bpftrace

Trace files opened via open(2) with process name:

bpftrace -e 't:syscalls:sys_enter_open { printf("%s %s\n", comm,

    str(args->filename)); }'

Trace files created via creat(2) with process name:

bpftrace -e 't:syscalls:sys_enter_creat { printf("%s %s\n", comm,
    str(args->pathname)); }'

Count newstat(2) calls by filename:

bpftrace -e 't:syscalls:sys_enter_newstat { @[str(args->filename)] = count(); }'

Count read syscalls by syscall type:

bpftrace -e 'tracepoint:syscalls:sys_enter_*read* { @[probe] = count(); }'

Count write syscalls by syscall type:

bpftrace -e 'tracepoint:syscalls:sys_enter_*write* { @[probe] = count(); }'

Show the distribution of read() syscall request sizes:

bpftrace -e 'tracepoint:syscalls:sys_enter_read { @ = hist(args->count); }'

Show the distribution of read() syscall read bytes (and errors):

bpftrace -e 'tracepoint:syscalls:sys_exit_read { @ = hist(args->ret); }'
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Count read() syscall errors by error code:

bpftrace -e 't:syscalls:sys_exit_read /args->ret < 0/ { @[- args->ret] = count(); }'

Count VFS calls:

bpftrace -e 'kprobe:vfs_* { @[probe] = count(); }'

Count ext4 tracepoints:

bpftrace -e 'tracepoint:ext4:* { @[probe] = count(); }'

Count xfs tracepoints:

bpftrace -e 'tracepoint:xfs:* { @[probe] = count(); }'

Count ext4 file reads by process name:

bpftrace -e 'kprobe:ext4_file_read_iter { @[comm] = count(); }'

Count ext4 file reads by process name and user-level stack:

bpftrace -e 'kprobe:ext4_file_read_iter { @[ustack, comm] = count(); }'

Trace ZFS spa_sync() times:

bpftrace -e 'kprobe:spa_sync { time("%H:%M:%S ZFS spa_sinc()\n"); }'

Count dcache references by process name and PID:

bpftrace -e 'kprobe:lookup_fast { @[comm, pid] = count(); }'

Count FS reads to storage devices via read_pages, with kernel stacks:

bpftrace -e 'kprobe:read_pages { @[kstack] = count(); }'

Count ext4 reads to storage devices via read_pages, with kernel stacks:

bpftrace -e 'kprobe:ext4_readpages { @[kstack] = count(); }'

8.4.3 BPF One-Liners Examples

Including some sample output, as I did previously for each tool, is also useful for illustrating one-
liners. These are some selected one-liners with example output.

Counting Read Syscalls by Syscall Type

# funccount -d 10 't:syscalls:sys_enter_*read*'

Tracing 9 functions for "t:syscalls:sys_enter_*read*"... Hit Ctrl-C to end.

FUNC                                    COUNT

syscalls:sys_enter_pread64                  3

syscalls:sys_enter_readlinkat              34

syscalls:sys_enter_readlink               294

syscalls:sys_enter_read               9863782

Detaching...
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This example uses -d 10 to run for 10 seconds. This one-liner, and similar ones using "*write*" 
and "*open*", are useful for determining which syscall variants are in use, so that they can then 
be studied. This output is from a 36-CPU production server, which is almost always using read(2), 
with nearly 10 million calls in the 10 seconds of tracing.

Showing the Distribution of read() Syscall Read Bytes (and Errors)

# bpftrace -e 'tracepoint:syscalls:sys_exit_read { @ = hist(args->ret); }'

Attaching 1 probe...

^C

@: 

(..., 0)             279 |                                                    |

[0]                 2899 |@@@@@@                                              |

[1]                15609 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                   |

[2, 4)                73 |                                                    |

[4, 8)               179 |                                                    |

[8, 16)              374 |                                                    |

[16, 32)            2184 |@@@@                                                |

[32, 64)            1421 |@@@                                                 |

[64, 128)           2758 |@@@@@                                               |

[128, 256)          3899 |@@@@@@@@                                            |

[256, 512)          8913 |@@@@@@@@@@@@@@@@@@@                                 |

[512, 1K)          16498 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                 |

[1K, 2K)           16170 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                 |

[2K, 4K)           19885 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@         |

[4K, 8K)           23926 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[8K, 16K)           9974 |@@@@@@@@@@@@@@@@@@@@@                               |

[16K, 32K)          7569 |@@@@@@@@@@@@@@@@                                    |

[32K, 64K)          1909 |@@@@                                                |

[64K, 128K)          551 |@                                                   |

[128K, 256K)         149 |                                                    |

[256K, 512K)           1 |                                                    |

This output shows a large mode of reads between 512 bytes and 8 Kbytes. It also shows that 15,609 
reads returned one byte only, which could be a target for performance optimizations. These can 
be investigated further by fetching the stack for these one-byte reads like this:

bpftrace -e 'tracepoint:syscalls:sys_exit_read /args->ret == 1/ { @[ustack] = 

    count(); }'

There were also 2,899 reads of zero bytes, which may be normal based on the target of the read, 
and if there are no further bytes to read. The 279 events with a negative return value are error 
codes, which can also be investigated separately. 
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Counting XFS Tracepoints

# funccount -d 10 't:xfs:*'

Tracing 496 functions for "t:xfs:*"... Hit Ctrl-C to end.

FUNC                                    COUNT

xfs:xfs_buf_delwri_queued                   1

xfs:xfs_irele                               1

xfs:xfs_inactive_symlink                    2

xfs:xfs_dir2_block_addname                  4

xfs:xfs_buf_trylock_fail                    5

[...]

xfs:xfs_trans_read_buf                   9548

xfs:xfs_trans_log_buf                   11800

xfs:xfs_buf_read                        13320

xfs:xfs_buf_find                        13322

xfs:xfs_buf_get                         13322

xfs:xfs_buf_trylock                     15740

xfs:xfs_buf_unlock                      15836

xfs:xfs_buf_rele                        20959

xfs:xfs_perag_get                       21048

xfs:xfs_perag_put                       26230

xfs:xfs_file_buffered_read              43283

xfs:xfs_getattr                         80541

xfs:xfs_write_extent                   121930

xfs:xfs_update_time                    137315

xfs:xfs_log_reserve                    140053

xfs:xfs_log_reserve_exit               140066

xfs:xfs_log_ungrant_sub                140094

xfs:xfs_log_ungrant_exit               140107

xfs:xfs_log_ungrant_enter              140195

xfs:xfs_log_done_nonperm               140264

xfs:xfs_iomap_found                    188507

xfs:xfs_file_buffered_write            188759

xfs:xfs_writepage                      476196

xfs:xfs_releasepage                    479235

xfs:xfs_ilock                          581785

xfs:xfs_iunlock                        589775

Detaching...

XFS has so many tracepoints that this output example was truncated to save space. These provide 
many ways to investigate XFS internals as needed, and get to the bottom of problems.



ptg30854589

3398.4 BPF One-Liners

Counting ext4 Reads to Storage Devices, with Stacks and Process Names

# stackcount -P ext4_readpages

Tracing 1 functions for "ext4_readpages"... Hit Ctrl-C to end.

^C

  ext4_readpages

  read_pages

  __do_page_cache_readahead

  filemap_fault

  ext4_filemap_fault

  __do_fault

  __handle_mm_fault

  handle_mm_fault

  __do_page_fault

  async_page_fault

  __clear_user

  load_elf_binary

  search_binary_handler

  __do_execve_file.isra.36

  __x64_sys_execve

  do_syscall_64

  entry_SYSCALL_64_after_hwframe

  [unknown]

    head [28475]

    1

  ext4_readpages

  read_pages

  __do_page_cache_readahead

  ondemand_readahead

  generic_file_read_iter

  __vfs_read

  vfs_read

  kernel_read

  prepare_binprm

  __do_execve_file.isra.36

  __x64_sys_execve

  do_syscall_64

  entry_SYSCALL_64_after_hwframe

  [unknown]

    bash [28475]

    1

Detaching...
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This output has only two events, but it was the two I was hoping to capture for an example: the 
first shows a page fault and how it leads to calling ext4_readpages() and reading from disk (it’s 
actually from an execve(2) call loading its binary program); the second shows a normal read(2) 
that reaches ext4_readpages() via readahead functions. They are examples of an address space 
operations read, and a file operations read. The output also shows how the kernel stack trace can 
provide more information about an event. These stacks are from Linux 4.18, and may change 
between Linux kernel versions.

8.5 Optional Exercises

If not specified, these can be completed using either bpftrace or BCC:

 1. Rewrite filelife(8) to use the syscall tracepoints for creat(2) and unlink(2). 

 2. What are the pros and cons of switching filelife(8) to these tracepoints?

 3. Develop a version of vfsstat(8) that prints separate rows for your local file system and TCP. 
(See vfssize(8) and fsrwstat(8).) Mock output:

# vfsstatx 

TIME          FS   READ/s  WRITE/s CREATE/s   OPEN/s  FSYNC/s

02:41:23:   ext4  1715013    38717        0     5379        0

02:41:23:    TCP     1431     1311        0        5        0

02:41:24:   ext4   947879    30903        0    10547        0

02:41:24:    TCP     1231      982        0        4        0

[...]

 4. Develop a tool to show the ratio of logical file system I/O (via VFS or the file system 
interface) vs physical I/O (via block tracepoints).

 5. Develop a tool to analyze file descriptor leaks: those that were allocated during tracing 
but not freed. One possible solution may be to trace the kernel functions __alloc_fd() 
and __close_fd().

 6. (Advanced) Develop a tool to show file system I/O broken down by mountpoint.

 7. (Advanced, unsolved) Develop a tool to show the time between accesses in the page cache 
as a distribution. What are the challenges with this tool?

8.6 Summary

This chapter summarizes BPF tools for file system analysis, instrumenting: system calls, VFS calls, 
file system calls, and file system tracepoints; the operation of write-back and read-ahead; and the 
page cache, the dentry cache, the inode cache, and the buffer cache. I included tools that show 
histograms of file system operation latency to identify multi-modal distributions and outliers, to 
help solve application performance issues.
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Disk I/O

Disk I/O is a common source of performance issues because I/O latency to a heavily loaded disk 
can reach tens of milliseconds or more—orders of magnitude slower than the nanosecond or 
microsecond speed of CPU and memory operations. Analysis with BPF tools can help find ways to 
tune or eliminate this disk I/O, leading to some of the largest application performance wins.

The term disk I/O refers to any storage I/O type: rotational magnetic media, flash-based storage, 
and network storage. These can all be exposed in Linux in the same way, as storage devices, and 
analyzed using the same tools.

Between an application and a storage device is usually a file system. File systems employ caching, 
read ahead, buffering, and asynchronous I/O to avoid blocking applications on slow disk I/O. 
I therefore suggest that you begin your analysis at the file system, covered in Chapter 8. 

Tracing tools have already become a staple for disk I/O analysis: I wrote the first popular disk I/O 
tracing tools, iosnoop(8) in 2004 and iotop(8) in 2005, which are now shipped with different OSes. 
I also developed the BPF versions, called biosnoop(8) and biotop(8), finally adding the long-missing 
“b” for block device I/O. These and other disk I/O analysis tools are covered in this chapter.

Learning Objectives:

 ■ Understand the I/O stack and the role of Linux I/O schedulers

 ■ Learn a strategy for successful analysis of disk I/O performance

 ■ Identify issues of disk I/O latency outliers

 ■ Analyze multi-modal disk I/O distributions

 ■ Identify which code paths are issuing disk I/O, and their latency

 ■ Analyze I/O scheduler latency

 ■ Use bpftrace one-liners to explore disk I/O in custom ways

This chapter begins with the necessary background for disk I/O analysis, summarizing the I/O 
stack. I explore the questions that BPF can answer, and provide an overall strategy to follow. I then 
focus on tools, starting with traditional disk tools and then BPF tools, including a list of BPF 
one-liners. This chapter ends with optional exercises.
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9.1 Background

This section covers disk fundamentals, BPF capabilities, and a suggested strategy for disk analysis.

9.1.1 Disk Fundamentals

Block I/O Stack

The main components of the Linux block I/O stack are shown in Figure 9-1.

Figure 9-1 Linux block I/O stack

The term block I/O refers to device access in blocks, traditionally 512-byte sectors. The block device 
interface originated from Unix. Linux has enhanced block I/O with the addition of schedulers 
for improving I/O performance, volume managers for grouping multiple devices, and a device 
mapper for creating virtual devices.

Internals
Later BPF tools will refer to some kernel types used by the I/O stack. To introduce them here: I/O 
is passed through the stack as type struct request (from include/linux/blkdev.h) and, for lower 
levels, as struct bio (from include/linux/blk_types.h).
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rwbs
For tracing observability, the kernel provides a way to describe the type of each I/O using a character 
string named rwbs. This is defined in the kernel blk_fill_rwbs() function and uses the characters:

 ■ R: Read

 ■ W: Write

 ■ M: Metadata

 ■ S: Synchronous

 ■ A: Read-ahead

 ■ F: Flush or force unit access

 ■ D: Discard

 ■ E: Erase

 ■ N: None

The characters can be combined. For example, "WM" is for writes of metadata.

I/O Schedulers

I/O is queued and scheduled in the block layer, either by classic schedulers (only present in Linux 
versions older than 5.0) or by the newer multi-queue schedulers. The classic schedulers are:

 ■ Noop: No scheduling (a no-operation)

 ■ Deadline: Enforce a latency deadline, useful for real-time systems

 ■ CFQ: The completely fair queueing scheduler, which allocates I/O time slices to processes, 
similar to CPU scheduling

A problem with the classic schedulers was their use of a single request queue, protected by a single 
lock, which became a performance bottleneck at high I/O rates. The multi-queue driver (blk-mq, 
added in Linux 3.13) solves this by using separate submission queues for each CPU, and multiple 
dispatch queues for the devices. This delivers better performance and lower latency for I/O versus 
classic schedulers, as requests can be processed in parallel and on the same CPU as the I/O was 
initiated. This was necessary to support flash memory-based and other device types capable of 
handling millions of IOPS [90].

Multi-queue schedulers available include:

 ■ None: No queueing

 ■ BFQ: The budget fair queueing scheduler, similar to CFQ, but  allocates bandwidth as well 
as I/O time

 ■ mq-deadline: A blk-mq version of deadline

 ■ Kyber: A scheduler that adjusts read and write dispatch queue lengths based on 
performance, so that target read or write latencies can be met
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The classic schedulers and the legacy I/O stack were removed in Linux 5.0. All schedulers are now 
multi-queue.

Disk I/O Performance

Figure 9-2 shows a disk I/O with operating system terminology.

Figure 9-2 Disk I/O

From the operating system, wait time is the time spent in the block layer scheduler queues and 
device dispatcher queues. Service time is the time from device issue to completion. This may 
include time spent waiting on an on-device queue. Request time is the overall time from when an 
I/O was inserted into the OS queues to its completion. The request time matters the most, as that 
is the time that applications must wait if I/O is synchronous.

A metric not included in this diagram is disk utilization. It may seem ideal for capacity plan-
ning: when a disk approaches 100% utilization, you may assume there is a performance problem. 
However, utilization is calculated by the OS as the time that disk was doing something, and does 
not account for virtual disks that may be backed by multiple devices, or on-disk queues. This can 
make the disk utilization metric misleading in some situations, including when a disk at 90% 
may be able to accept much more than an extra 10% of workload. Utilization is still useful as a 
clue, and is a readily available metric. However, saturation metrics, such as time spent waiting, are 
better measures of disk performance problems.

9.1.2 BPF Capabilities

Traditional performance tools provide some insight for storage I/O, including IOPS rates, average 
latency and queue lengths, and I/O by process. These traditional tools are summarized in the next 
section.
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BPF tracing tools can provide additional insight for disk activity, answering:

 ■ What are the disk I/O requests? What type, how many, and what I/O size?

 ■ What were the request times? Queued times?

 ■ Were there latency outliers?

 ■ Is the latency distribution multi-modal?

 ■ Were there any disk errors?

 ■ What SCSI commands were sent?

 ■ Were there any timeouts?

To answer these, trace I/O throughout the block I/O stack.

Event Sources

Table 9-1 lists the event sources for instrumenting disk I/O.

Table 9-1 Event Sources for Instrumenting Disk I/O

Event Type Event Source

Block interface and block layer I/O block tracepoints, kprobes

I/O scheduler events kprobes

SCSI I/O scsi tracepoints, kprobes

Device driver I/O kprobes

These provide visibility from the block I/O interface down to the device driver.

As an example event, here are the arguments to block:block_rq_issue, which sends a block I/O to 
a device:

# bpftrace -lv tracepoint:block:block_rq_issue

tracepoint:block:block_rq_issue

    dev_t dev;

    sector_t sector;

    unsigned int nr_sector;

    unsigned int bytes;

    char rwbs[8];

    char comm[16];

    __data_loc char[] cmd;

Questions such as “what are the I/O sizes for requests?” can be answered via a one-liner using this 
tracepoint:

bpftrace -e 'tracepoint:block:block_rq_issue { @bytes = hist(args->bytes); }'

Combinations of tracepoints allow the time between events to be measured.
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9.1.3 Strategy

If you are new to disk I/O analysis, here is a suggested overall strategy that you can follow. The next 
sections explain these tools in more detail.

 1. For application performance issues, begin with file system analysis, covered in Chapter 8.

 2. Check basic disk metrics: request times, IOPS, and utilization (e.g., iostat(1)). Look for high 
utilization (which is a clue) and higher-than-normal request times (latency) and IOPS.

a. If you are unfamiliar with what IOPS rates or latencies are normal, use a 
microbenchmark tool such as fio(1) on an idle system with some known workloads and 
run iostat(1) to examine them.

 3. Trace block I/O latency distributions and check for multi-modal distributions and latency 
outliers (e.g., using BCC biolatency(8)).

 4. Trace individual block I/O and look for patterns such as reads queueing behind writes 
(you can use BCC biosnoop(8)).

 5. Use other tools and one-liners from this chapter.

To explain that first step some more: if you begin with disk I/O tools, you may quickly identify 
cases of high latency, but the question then becomes: how much does this matter? I/O may be 
asynchronous to the application. If so, that’s interesting to analyze, but for different reasons: 
understanding contention with other synchronous I/O, and device capacity planning.

9.2 Traditional Tools

This section covers iostat(1) for disk activity summaries, perf(1) for block I/O tracing, blktrace(8), 
and the SCSI log.

9.2.1 iostat

iostat(1) summarizes per-disk I/O statistics, providing metrics for IOPS, throughput, I/O request 
times, and utilization. It can be executed by any user, and is typically the first command used to 
investigate disk I/O issues at the command line. The statistics it sources are maintained by the 
kernel by default, so the overhead of this tool is considered negligible.

iostat(1) provides many options for customizing the output. A useful combination is -dxz 1, to 
show disk utilization only (-d), extended columns (-x), skipping devices with zero metrics (-z), 
and per-second output (1). The output is so wide that I’ll show a left portion and then the right 
portion; this is from a production issue I helped debug:

# iostat -dxz 1

Linux 4.4.0-1072-aws (...)      12/18/2018      _x86_64_        (16 CPU)

 

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s \ ...

xvda              0.00     0.29    0.21    0.17     6.29     3.09 / ...

xvdb              0.00     0.08   44.39    9.98  5507.39  1110.55 \ ...
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                                                                  / ...

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s \ ...

xvdb              0.00     0.00  745.00    0.00 91656.00     0.00 / ...

                                                                  \ ...

Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s / ...

xvdb              0.00     0.00  739.00    0.00 92152.00     0.00 \ ...

These columns summarize the workload applied, and are useful for workload characterization. 
The first two provide insight into disk merges: this is where a new I/O is found to be reading or writing 
to a disk location adjacent (front or back) to another queued I/O, so they are merged for efficiency.

The columns are:

 ■ rrqm/s: Read requests queued and merged per second

 ■ wrqm/s: Write requests queued and merged per second

 ■ r/s: Read requests completed per second (after merges)

 ■ w/s: Write requests completed per second (after merges)

 ■ rkB/s: Kbytes read from the disk device per second

 ■ wkB/s: Kbytes written to the disk device per second

The first group of output (showing both xvda and xvdb devices) is the summary since boot, and 
can be used for comparison with the subsequent one-second summaries. This output shows that 
xvdb normally has a read throughput of 5,507 Kbytes/sec, but the current one-second summaries 
show over 90,000 read Kbytes/sec. The system has a heavier-than-normal read workload.

Some math can be applied to these columns to figure out the average read and write size. Dividing 
the rkB/s column by the r/s column shows the average read size is about 124 Kbytes. A newer version 
of iostat(1) includes average sizes as the rareq-sz (read average request size) and wareq-sz columns.

The right columns show:

... \ avgrq-sz avgqu-sz   await r_await w_await  svctm  %util

... /    49.32     0.00   12.74    6.96   19.87   3.96   0.15

... \   243.43     2.28   41.96   41.75   42.88   1.52   8.25

... /

... \ avgrq-sz avgqu-sz   await r_await w_await  svctm  %util

... /   246.06    25.32   33.84   33.84    0.00   1.35 100.40

... \

... / avgrq-sz avgqu-sz   await r_await w_await  svctm  %util

... \   249.40    24.75   33.49   33.49    0.00   1.35 100.00

These show the resulting performance by the device. The columns are:

 ■ avgrq-sz: Average request size in sectors (512 bytes). 

 ■ avgqu-sz: Average number of requests both waiting in the driver request queue and active 
on the device. 
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 ■ await: Average I/O request time (aka response time), including time waiting in the driver 
request queue and the I/O response time of the device (ms). 

 ■ r_await: Same as await, but for reads only (ms). 

 ■ w_await: Same as await, but for writes only (ms). 

 ■ svctm: Average (inferred) I/O response time for the disk device (ms). 

 ■ %util: Percentage of time device was busy processing I/O requests (utilization).

The most important metric for delivered performance is await. If the application and file system 
use a technique to mitigate write latency (e.g., write through), then w_await may not matter as 
much, and you can focus on r_await instead.

For resource usage and capacity planning, %util is important, but keep in mind that it is only a 
measure of busy-ness (non-idle time), and may mean little for virtual devices backed by multiple 
disks. Those devices may be better understood by the load applied: IOPS (r/s + w/s) and through-
put (rkB/s + wkB/s).

This example output shows the disk hitting 100% utilization, and an average read I/O time of 
33 milliseconds. For the workload applied and the disk device, this turned out to be expected 
performance. The real issue was that the files being read had become so large they could no longer 
be cached in the page cache, and were read from disk instead.

9.2.2 perf

perf(1) was introduced in Chapter 6 for PMC analysis and timed stack sampling. Its tracing capa-
bilities can also be used for disk analysis, especially using the block tracepoints.

For example, tracing the queuing of requests (block_rq_insert), their issue to a storage device 
(block_rq_issue), and their completions (block_rq_complete):

# perf record -e block:block_rq_insert,block:block_rq_issue,block:block_rq_complete -a

^C[ perf record: Woken up 7 times to write data ]

[ perf record: Captured and wrote 6.415 MB perf.data (20434 samples) ]

# perf script

    kworker/u16:3 25003 [004] 543348.164811:   block:block_rq_insert: 259,0 RM 4096 () 

2564656 + 8 [kworker/u16:3]

    kworker/4:1H    533 [004] 543348.164815:   block:block_rq_issue: 259,0 RM 4096 () 

2564656 + 8 [kworker/4:1H]

         swapper      0 [004] 543348.164887:   block:block_rq_complete: 259,0 RM () 

2564656 + 8 [0]

   kworker/u17:0 23867  [005] 543348.164960:   block:block_rq_complete: 259,0 R () 

3190760 + 256 [0]

              dd 25337  [001] 543348.165046:   block:block_rq_insert: 259,0 R 131072 () 

3191272 + 256 [dd]

              dd 25337  [001] 543348.165050:   block:block_rq_issue: 259,0 R 131072 () 

3191272 + 256 [dd]
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              dd 25337  [001] 543348.165111:   block:block_rq_complete: 259,0 R () 

3191272 + 256 [0]

[...]

The output contains many details, beginning with the process that was on-CPU when the event 
occurred, which may or may not be the process responsible for the event. Other details include 
a timestamp, disk major and minor numbers, a string encoding the type of I/O (rwbs, described 
earlier), and other details about the I/O.

I have in the past built tools that post-process these events for calculating latency histograms, and 
visualizing access patterns.1 However, for busy systems this means dumping all block events to 
user space for post-processing. BPF can do this processing in the kernel more efficiently, and then 
emit only the desired output. See the later biosnoop(8) tool as an example.

9.2.3 blktrace

blktrace(8) is a specialized utility for tracing block I/O events. Using its btrace(8) front-end to trace 
all events:

# btrace /dev/nvme2n1

259,0    2        1     0.000000000   430  Q  WS 2163864 + 8 [jbd2/nvme2n1-8]

259,0    2        2     0.000009556   430  G  WS 2163864 + 8 [jbd2/nvme2n1-8]

259,0    2        3     0.000011109   430  P   N [jbd2/nvme2n1-8]

259,0    2        4     0.000013256   430  Q  WS 2163872 + 8 [jbd2/nvme2n1-8]

259,0    2        5     0.000015740   430  M  WS 2163872 + 8 [jbd2/nvme2n1-8]

[...]

259,0    2       15     0.000026963   430  I  WS 2163864 + 48 [jbd2/nvme2n1-8]

259,0    2       16     0.000046155   430  D  WS 2163864 + 48 [jbd2/nvme2n1-8]

259,0    2       17     0.000699822   430  Q  WS 2163912 + 8 [jbd2/nvme2n1-8]

259,0    2       18     0.000701539   430  G  WS 2163912 + 8 [jbd2/nvme2n1-8]

259,0    2       19     0.000702820   430  I  WS 2163912 + 8 [jbd2/nvme2n1-8]

259,0    2       20     0.000704649   430  D  WS 2163912 + 8 [jbd2/nvme2n1-8]

259,0   11        1     0.000664811     0  C  WS 2163864 + 48 [0]

259,0   11        2     0.001098435     0  C  WS 2163912 + 8 [0]

[...]

Multiple event lines are printed for each I/O. The columns are:

 1. Device major, minor number

 2. CPU ID

 3. Sequence number

 4. Action time, in seconds

1 See iolatency(8) in perf-tools [78]: this uses Ftrace to access the same per-event tracepoint data from the trace buf-

fer, which avoids the overhead of creating and writing a perf.data file.
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 5. Process ID

 6. Action identifier (see blkparse(1)): Q == queued, G == get request, P == plug, M == merge, 
D == issued, C == completed, etc.

 7. RWBS description (see the “rwbs” section earlier in this chapter): W == write, 
S == synchronous, etc.

 8. Address + size [device]

The output can be post-processed and visualized using Chris Mason’s seekwatcher [91].

As with perf(1) per-event dumping, the overhead of blktrace(8) can be a problem for busy disk I/O 
workloads. In-kernel summaries using BPF can greatly reduce this overhead.

9.2.4 SCSI Logging

Linux also has a built-in facility for SCSI event logging. It can be enabled via sysctl(8) or /proc. For 
example, both of these commands set the logging to the maximum for all event types (warning: 
depending on your disk workload, this may flood your system log):

# sysctl -w dev.scsi.logging_level=0x1b6db6db

# echo 0x1b6db6db > /proc/sys/dev/scsi/logging_level

The format of the number is a bitfield that sets the logging level from 1 to 7 for 10 different 
event types. It is defined in drivers/scsi/scsi_logging.h. The sg3-utils package provides a 
scsi_logging_level(8) tool for setting these. For example:

scsi_logging_level -s --all 3

Example events:

# dmesg

[...]

[542136.259412] sd 0:0:0:0: tag#0 Send: scmd 0x0000000001fb89dc

[542136.259422] sd 0:0:0:0: tag#0 CDB: Test Unit Ready 00 00 00 00 00 00

[542136.261103] sd 0:0:0:0: tag#0 Done: SUCCESS Result: hostbyte=DID_OK 

driverbyte=DRIVER_OK

[542136.261110] sd 0:0:0:0: tag#0 CDB: Test Unit Ready 00 00 00 00 00 00

[542136.261115] sd 0:0:0:0: tag#0 Sense Key : Not Ready [current] 

[542136.261121] sd 0:0:0:0: tag#0 Add. Sense: Medium not present

[542136.261127] sd 0:0:0:0: tag#0 0 sectors total, 0 bytes done.

[...]

This can be used to help debug errors and timeouts. While timestamps are provided (the first 
column), using them to calculate I/O latency is difficult without unique identifying details.

BPF tracing can be used to produce custom SCSI-level and other I/O stack-level logs, with more 
I/O details including latency calculated in the kernel. 
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9.3 BPF Tools

This section covers the BPF tools you can use for disk performance analysis and troubleshooting. 
They are shown in Figure 9-3.

Figure 9-3 BPF tools for disk analysis

These tools are either from the BCC and bpftrace repositories covered in Chapters 4 and 5, or were 
created for this book. Some tools appear in both BCC and bpftrace. Table 9-2 lists the origins of 
the tools covered in this section (BT is short for bpftrace).

Table 9-2 Disk-Related Tools

Tool Source Target Description

biolatency BCC/BT Block I/O Summarize block I/O latency as a histogram

biosnoop BCC/BT Block I/O Trace block I/O with PID and latency

biotop BCC Block I/O Top for disks: summarize block I/O by process

bitesize BCC/BT Block I/O Show disk I/O size histogram by process

seeksize Book Block I/O Show requested I/O seek distances

biopattern Book Block I/O Identify random/sequential disk access patterns

biostacks Book Block I/O Show disk I/O with initialization stacks

bioerr Book Block I/O Trace disk errors

mdflush BCC/BT MD Trace md flush requests

iosched Book I/O sched Summarize I/O scheduler latency

scsilatency Book SCSI Show SCSI command latency distributions

scsiresult Book SCSI Show SCSI command result codes

nvmelatency Book NVME Summarize NVME driver command latency
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For the tools from BCC and bpftrace, see their repositories for full and updated lists of tool 
options and capabilities. A selection of the most important capabilities are summarized here. 
See Chapter 8 for file system tools.

9.3.1 biolatency

biolatency(8)2 is a BCC and bpftrace tool to show block I/O device latency as a histogram. The 
term device latency refers to the time from issuing a request to the device, to when it completes, 
including time spent queued in the operating system.

The following shows biolatency(8) from BCC, on a production Hadoop instance, tracing block 
I/O for 10 seconds:

# biolatency 10 1

Tracing block device I/O... Hit Ctrl-C to end.

 

     usecs               : count      distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 0        |                                        |

         4 -> 7          : 0        |                                        |

         8 -> 15         : 0        |                                        |

        16 -> 31         : 0        |                                        |

        32 -> 63         : 0        |                                        |

        64 -> 127        : 15       |                                        |

       128 -> 255        : 4475     |************                            |

       256 -> 511        : 14222    |****************************************|

       512 -> 1023       : 12303    |**********************************      |

      1024 -> 2047       : 5649     |***************                         |

      2048 -> 4095       : 995      |**                                      |

      4096 -> 8191       : 1980     |*****                                   |

      8192 -> 16383      : 3681     |**********                              |

     16384 -> 32767      : 1895     |*****                                   |

     32768 -> 65535      : 721      |**                                      |

     65536 -> 131071     : 394      |*                                       |

    131072 -> 262143     : 65       |                                        |

    262144 -> 524287     : 17       |                                        |

This output shows a bi-modal distribution, with one mode between 128 and 2047 microseconds 
and the other between about 4 and 32 milliseconds. Now that I know that the device latency is 
bi-modal, understanding why may lead to tuning that moves more I/O to the faster mode. For 
example, the slower I/O could be random I/O, or larger-size I/O (which can be determined using 

2 Origin: I created this as iolatency.d for the 2011 DTrace book [Gregg 11], following the same name as my other 

iosnoop and iotop tools. This led to confusion since “io” is ambiguous, so for BPF I’ve added the “b” to these tools 

to signify block I/O. I created biolatency for BCC on 20-Sep-2015 and bpftrace on 13-Sep-2018.
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other BPF tools). The slowest I/O in this output reached the 262- to 524-millisecond range: this 
sounds like deep queueing on the device.

biolatency(8) and the later biosnoop(8) tool have been used to solve many production issues. 
They can be especially useful for the analysis of multi-tenant drives in cloud environments, which 
can be noisy and break latency SLOs. When running on small cloud instances, Netflix’s Cloud 
Database team was able to use biolatency(8) and biosnoop(8) to isolate machines with unaccept-
ably bi-modal or latent drives, and evict them from both distributed caching tiers and distributed 
database tiers. Upon further analysis, the team decided to change their deployment strategy based 
on these findings, and now deploy clusters to fewer nodes, choosing those large enough to have 
dedicated drives. This small change effectively eliminated the latency outliers with no additional 
infrastructure cost.

The biolatency(8) tool currently works by tracing various block I/O kernel functions using kprobes. 
It was written before tracepoint support was available in BCC, so used kprobes instead. The overhead 
of this tool should be negligible on most systems where the disk IOPS rate is low (<1000).

Queued Time

BCC biolatency(8) has a -Q option to include the OS queued time:

# biolatency -Q 10 1

Tracing block device I/O... Hit Ctrl-C to end.

 

     usecs               : count      distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 0        |                                        |

         4 -> 7          : 0        |                                        |

         8 -> 15         : 0        |                                        |

        16 -> 31         : 0        |                                        |

        32 -> 63         : 0        |                                        |

        64 -> 127        : 1        |                                        |

       128 -> 255        : 2780     |**********                              |

       256 -> 511        : 10386    |****************************************|

       512 -> 1023       : 8399     |********************************        |

      1024 -> 2047       : 4154     |***************                         |

      2048 -> 4095       : 1074     |****                                    |

      4096 -> 8191       : 2078     |********                                |

      8192 -> 16383      : 7688     |*****************************           |

     16384 -> 32767      : 4111     |***************                         |

     32768 -> 65535      : 818      |***                                     |

     65536 -> 131071     : 220      |                                        |

    131072 -> 262143     : 103      |                                        |

    262144 -> 524287     : 48       |                                        |

    524288 -> 1048575    : 6        |                                        |
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The output is not much different: this time there’s some more I/O in the slower mode. iostat(1) 
confirms that the queue lengths are small (avgqu-sz < 1).

Disks

Systems can have mixed storage devices: disks for the OS, disks for storage pools, and drives for 
removable media. The -D option in biolatency(8) shows histograms for disks separately, helping 
you see how each type performs. For example:

# biolatency -D

Tracing block device I/O... Hit Ctrl-C to end.

^C

[...]

disk = 'sdb'

     usecs               : count      distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 0        |                                        |

         4 -> 7          : 0        |                                        |

         8 -> 15         : 0        |                                        |

        16 -> 31         : 0        |                                        |

        32 -> 63         : 0        |                                        |

        64 -> 127        : 0        |                                        |

       128 -> 255        : 1        |                                        |

       256 -> 511        : 25       |**                                      |

       512 -> 1023       : 43       |****                                    |

      1024 -> 2047       : 206      |*********************                   |

      2048 -> 4095       : 8        |                                        |

      4096 -> 8191       : 8        |                                        |

      8192 -> 16383      : 392      |****************************************|

 

disk = 'nvme0n1'

     usecs               : count      distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 0        |                                        |

         4 -> 7          : 0        |                                        |

         8 -> 15         : 12       |                                        |

        16 -> 31         : 72       |                                        |

        32 -> 63         : 5980     |****************************************|

        64 -> 127        : 1240     |********                                |

       128 -> 255        : 74       |                                        |

       256 -> 511        : 13       |                                        |

       512 -> 1023       : 4        |                                        |

      1024 -> 2047       : 23       |                                        |

      2048 -> 4095       : 10       |                                        |

      4096 -> 8191       : 63       |                                        |
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This output shows two very different disk devices: nvme0n1, a flash-memory based disk, with I/O 
latency often between 32 and 127 microseconds; and sdb, an external USB storage device, with a 
bimodal I/O latency distribution in the milliseconds.

Flags

BCC biolatency(8) also has a -F option to print each set of I/O flags differently. For example, with 
-m for millisecond histograms:

# biolatency -Fm

Tracing block device I/O... Hit Ctrl-C to end.

^C

 

[...]

 

flags = Read

     msecs               : count      distribution

         0 -> 1          : 180      |*************                           |

         2 -> 3          : 519      |****************************************|

         4 -> 7          : 60       |****                                    |

         8 -> 15         : 123      |*********                               |

        16 -> 31         : 68       |*****                                   |

        32 -> 63         : 0        |                                        |

        64 -> 127        : 2        |                                        |

       128 -> 255        : 12       |                                        |

       256 -> 511        : 0        |                                        |

       512 -> 1023       : 1        |                                        |

 

flags = Sync-Write

     msecs               : count      distribution

         0 -> 1          : 8        |***                                     |

         2 -> 3          : 26       |***********                             |

         4 -> 7          : 37       |***************                         |

         8 -> 15         : 65       |***************************             |

        16 -> 31         : 93       |****************************************|

        32 -> 63         : 20       |********                                |

        64 -> 127        : 6        |**                                      |

       128 -> 255        : 0        |                                        |

       256 -> 511        : 4        |*                                       |

       512 -> 1023       : 17       |*******                                 |

 

flags = Flush

     msecs               : count      distribution

         0 -> 1          : 2        |****************************************|
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flags = Metadata-Read

     msecs               : count      distribution

         0 -> 1          : 3        |****************************************|

         2 -> 3          : 2        |**************************              |

         4 -> 7          : 0        |                                        |

         8 -> 15         : 1        |*************                           |

        16 -> 31         : 1        |*************                           |

These flags may be handled differently by the storage device; separating them allows us to study 
them in isolation. The above output shows that synchronous writes are bi-modal, with a slower 
mode in the 512- to 1023-millisecond range.

These flags are also visible in the block tracepoints via the rwbs field and one-letter encodings: see 
the “rwbs” section, earlier in this chapter, for an explanation of this field.

BCC

Command line usage:

biolatency [options] [interval [count]]

Options include:

 ■ -m: Print output in milliseconds (default is microseconds)

 ■ -Q: Include OS queued time

 ■ -D: Show each disk separately

 ■ -F: Show each set of I/O flags separately

 ■ -T: Include a timestamp on the output

Using an interval of one will print per-second histograms. This information can be visualized as 
a latency heat map, with a full second as columns, latency ranges as rows, and a color saturation 
to show the number of I/O in that time range [Gregg 10]. See Chapter 17 for an example using 
Vector.

bpftrace

The following is the code for the bpftrace version, which summarizes its core functionality. This 
version does not support options.

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing block device I/O... Hit Ctrl-C to end.\n");

}

 

kprobe:blk_account_io_start
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{

        @start[arg0] = nsecs;

}

 

kprobe:blk_account_io_done

/@start[arg0]/

{

        @usecs = hist((nsecs - @start[arg0]) / 1000);

        delete(@start[arg0]);

}

 

END

{

        clear(@start);

}

This tool needs to store a timestamp at the start of each I/O to record its duration (latency). 
However, multiple I/O can be in flight concurrently. A single global timestamp variable would 
not work: a timestamp must be associated with each I/O. In many other BPF tools, this is solved 
by storing timestamps in a hash with the thread ID as a key. This does not work with disk I/O, 
since disk I/O can initiate on one thread and complete on another, in which case the thread ID 
changes. The solution used here is to take arg0 of these functions, which is the address of the 
struct request for the I/O, and use that memory address as the hash key. So long as the kernel does 
not change the memory address between issue and completion, it is suitable as the unique ID.

Tracepoints

The BCC and bpftrace versions of biolatency(8) should use the block tracepoints where possible, 
but there is a challenge: the struct request pointer is not currently available in the tracepoint argu-
ments, so another key must be used to uniquely identify the I/O. One approach is to use the device 
ID and sector number. The core of the program can be changed to the following (biolatency-tp.bt):

[...]

tracepoint:block:block_rq_issue

{

        @start[args->dev, args->sector] = nsecs;

}

 

tracepoint:block:block_rq_complete

/@start[args->dev, args->sector]/

{

        @usecs = hist((nsecs - @start[args->dev, args->sector]) / 1000);

        delete(@start[args->dev, args->sector]);

}

[...]
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This assumes that there is not multiple concurrent I/O to the same device and sector. This is 
measuring the device time, not including the OS queued time.

9.3.2 biosnoop

biosnoop(8)3 is a BCC and bpftrace tool that prints a one-line summary for each disk I/O. The 
following shows biosnoop(8) from BCC, running on a Hadoop production instance:

# biosnoop

TIME(s)     COMM           PID    DISK    T SECTOR     BYTES    LAT(ms)

0.000000    java           5136   xvdq    R 980043184  45056      0.35

0.000060    java           5136   xvdq    R 980043272  45056      0.40

0.000083    java           5136   xvdq    R 980043360  4096       0.42

[...]

0.143724    java           5136   xvdy    R 5153784    45056      1.08

0.143755    java           5136   xvdy    R 5153872    40960      1.10

0.185374    java           5136   xvdm    R 2007186664 45056      0.34

0.189267    java           5136   xvdy    R 979232832  45056     14.00

0.190330    java           5136   xvdy    R 979232920  45056     15.05

0.190376    java           5136   xvdy    R 979233008  45056     15.09

0.190403    java           5136   xvdy    R 979233096  45056     15.12

0.190409    java           5136   xvdy    R 979233184  45056     15.12

0.190441    java           5136   xvdy    R 979233272  36864     15.15

0.190176    java           5136   xvdm    R 2007186752 45056      5.13

0.190231    java           5136   xvdm    R 2007186840 45056      5.18

[...]

This output shows Java with PID 5136 doing reads to different disks. There were six reads with 
latency of around 15 milliseconds. If you look closely at the TIME(s) column, which shows the I/O 
completion time, these all finished within a fraction of a millisecond and were to the same disk 
(xvdy). You can conclude that these were queued together: the latency creeping up from 14.00 to 
15.15 milliseconds is another clue to queued I/O being completed in turn. The sector offsets are 
also contiguous: 45056 byte reads are 88 × 512-byte sectors.

3 Origin: While I was a sysadmin at the University of Newcastle, Australia, in 2000, a shared server was suffering 

slow disk performance, which was suspected to be caused by a researcher running a batch job. They refused to move 

their workload unless I could prove that they were causing the heavy disk I/O, but no tool could do this. A workaround 

concocted either by me or the senior admin, Doug Scott, was to SIGSTOP their process while watching iostat(1), then 

SIGCONT it a few seconds later: the dramatic drop in disk I/O proved that they were responsible. Wanting a less inva-

sive method, I saw the Sun TNF/prex tracing utility in Adrian Cockcroft’s Sun Performance and Tuning book [Cockcroft 

98], and on 3-Dec-2003 I created psio(1M), a utility to print disk I/O by process [185], which also had a mode to trace 

per-event disk I/O. DTrace was made available in beta in the same month, and I eventually rewrote my disk I/O tracer as 

iosnoop(1M) on 12-Mar-2004, initially before there was an io provider. I was quoted in The Register’s DTrace announce-

ment talking about this work [Vance 04]. I created the BCC version as biosnoop(8) on 16-Sep-2015, and the bpftrace 

version on 15-Nov-2017.
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As an example of production use: teams at Netflix that run stateful services routinely use bios-
noop(8) to isolate issues with read-ahead degrading the performance of I/O-intensive workloads. 
Linux tries to intelligently read ahead data into the OS page cache, but this can cause severe 
performance issues for data stores running on fast solid-state drives, especially with the default 
read ahead settings. After identifying aggressive read-ahead, these teams then perform targeted 
refactors by analyzing histograms of I/O size and latency organized by thread, and then improve 
performance by using an appropriate madvise option, direct I/O, or changing the default read-
ahead to smaller values such as 16 Kbytes. For histograms of I/O sizes, see vfssize(8) from Chapter 
8 and bitesize(8) from this chapter; also see the readahead(8) tool in Chapter 8, which was created 
more recently for the analysis of this issue.

The biostoop(8) columns are:

 ■ TIME(s): I/O completion time in seconds

 ■ COMM: Process name, if cached

 ■ PID: Process ID, if cached

 ■ DISK: Storage device name

 ■ T: Type: R == reads, W == writes

 ■ SECTOR: Address on disk in units of 512-byte sectors

 ■ BYTES: Size of the I/O

 ■ LAT(ms): Duration of the I/O from device issue to device completion

This works in the same way as biolatency(8): tracing kernel block I/O functions. A future version 
should switch to the block tracepoints. The overhead of this tool is a little higher than biola-
tency(8) as it is printing per-event output.

OS Queued Time

A -Q option to BCC biosnoop(8) can be used to show the time spent between the creation of the 
I/O and the issue to the device: this time is mostly spent on OS queues, but could also include 
memory allocation and lock acquisition. For example:

# biosnoop -Q

TIME(s)     COMM           PID    DISK    T SECTOR     BYTES  QUE(ms) LAT(ms)

19.925329   cksum          20405  sdb     R 249631     16384    17.17    1.63

19.933890   cksum          20405  sdb     R 249663     122880   17.81    8.51

19.942442   cksum          20405  sdb     R 249903     122880   26.35    8.51

19.944161   cksum          20405  sdb     R 250143     16384    34.91    1.66

19.952853   cksum          20405  sdb     R 250175     122880   15.53    8.59

[...]
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The queued time is shown in the QUE(ms) column. This example of high queue times for reads 
was from a USB flash drive using the CFQ I/O scheduler. Write I/O queues even more:

# biosnoop -Q

TIME(s)     COMM           PID    DISK    T SECTOR     BYTES  QUE(ms) LAT(ms)

[...]

2.338149    ?              0              W 0          8192      0.00    2.72

2.354710    ?              0              W 0          122880    0.00   16.17

2.371236    kworker/u16:1  18754  sdb     W 486703     122880 2070.06   16.51

2.387687    cp             20631  nvme0n1 R 73365192   262144    0.01    3.23

2.389213    kworker/u16:1  18754  sdb     W 486943     122880 2086.60   17.92

2.404042    kworker/u16:1  18754  sdb     W 487183     122880 2104.53   14.81

2.421539    kworker/u16:1  18754  sdb     W 487423     122880 2119.40   17.43

[...]

The queue time for writes exceeds two seconds. Note that earlier I/O lacked most of the column 
details: they were enqueued before tracing began, and so biosnoop(8) missed caching those 
details and only shows the device latency.

BCC

Command line usage:

biosnoop [options]

Options include -Q for OS queued time.

bpftrace

The following is the code for the bpftrace version, which traces the full duration of the I/O, 
including queued time:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("%-12s %-16s %-6s %7s\n", "TIME(ms)", "COMM", "PID", "LAT(ms)");

}

 

kprobe:blk_account_io_start

{

        @start[arg0] = nsecs;

        @iopid[arg0] = pid;

        @iocomm[arg0] = comm;

}
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kprobe:blk_account_io_done

/@start[arg0] != 0 && @iopid[arg0] != 0 && @iocomm[arg0] != ""/

{

        $now = nsecs;

        printf("%-12u %-16s %-6d %7d\n",

            elapsed / 1000000, @iocomm[arg0], @iopid[arg0],

            ($now - @start[arg0]) / 1000000);

 

        delete(@start[arg0]);

        delete(@iopid[arg0]);

        delete(@iocomm[arg0]);

}

 

END

{

        clear(@start);

        clear(@iopid);

        clear(@iocomm);

}

The blk_account_io_start() function often fires in process context and occurs when the I/O is 
queued. Later events, such as issuing the I/O to the device and I/O completion, may or may not 
happen in process context, so you cannot rely on the value of the pid and comm builtins at those 
later times. The solution is to store them in BPF maps during blk_account_io_start(), keyed by the 
request ID, so that they can be retrieved later.

As with biolatency(8), this tool can be rewritten to use the block tracepoints (see Section 9.5).

9.3.3 biotop

biotop(8)4 is a BCC tool that is top(1) for disks. The following shows it running on a production 
Hadoop instance, with -C to not clear the screen between updates:

# biotop -C

Tracing... Output every 1 secs. Hit Ctrl-C to end

06:09:47 loadavg: 28.40 29.00 28.96 44/3812 124008

 

PID    COMM             D MAJ MIN  DISK       I/O  Kbytes  AVGms

123693 kworker/u258:0   W 202 4096 xvdq      1979   86148   0.93

55024  kworker/u257:8   W 202 4608 xvds      1480   64068   0.73

123693 kworker/u258:0   W 202 5376 xvdv       143    5700   0.52

5381   java             R 202 176  xvdl        81    3456   3.01

43297  kworker/u257:0   W 202 80   xvdf        48    1996   0.56

4 Origin: I created the first iotop using DTrace on 15-Jul-2005, and wrote this BCC version 6-Feb-2016. These were 

inspired by top(1) by William LeFebvre.
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5383   java             R 202 112  xvdh        27    1152  16.05

5383   java             R 202 5632 xvdw        27    1152   3.45

5383   java             R 202 224  xvdo        27    1152   6.79

5383   java             R 202 96   xvdg        24    1024   0.52

5383   java             R 202 192  xvdm        24    1024  39.45

5383   java             R 202 5888 xvdx        24    1024   0.64

5383   java             R 202 5376 xvdv        24    1024   4.74

5383   java             R 202 4096 xvdq        24    1024   3.07

5383   java             R 202 48   xvdd        24    1024   0.62

5383   java             R 202 5120 xvdu        24    1024   4.20

5383   java             R 202 208  xvdn        24    1024   2.54

5383   java             R 202 80   xvdf        24    1024   0.66

5383   java             R 202 64   xvde        24    1024   8.08

5383   java             R 202 32   xvdc        24    1024   0.63

5383   java             R 202 160  xvdk        24    1024   1.42

[...]

This shows that a Java process is reading from many different disks. Top of the list are kworker 
threads initiating writes: this is background write flushing, and the real process that dirtied the 
pages is not known at this point (it can be identified using the file system tools from Chapter 8).

This works using the same events as biolatency(8), with similar overhead expectations.

Command line usage:

biotop [options] [interval [count]]

Options include:

 ■ -C: Don’t clear the screen

 ■ -r ROWS: Number of rows to print

The output is truncated to 20 rows by default, which can be tuned with -r.

9.3.4 bitesize

bitesize(8)5 is a BCC and bpftrace tool to show the size of disk I/O. The following shows the BCC 
version running on a production Hadoop instance:

# bitesize

Tracing... Hit Ctrl-C to end.

^C

[...]

 

5 Origin: I first created this as bitesize.d using DTrace on 31-Mar-2004, before the io provider was available. Allan 

McAleavy created the BCC version on 5-Feb-2016, and I created the bpftrace one on 7-Sep-2018.
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Process Name = kworker/u257:10

     Kbytes              : count     distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 0        |                                        |

         4 -> 7          : 17       |                                        |

         8 -> 15         : 12       |                                        |

        16 -> 31         : 79       |*                                       |

        32 -> 63         : 3140     |****************************************|

 

Process Name = java

     Kbytes              : count     distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 3        |                                        |

         4 -> 7          : 60       |                                        |

         8 -> 15         : 68       |                                        |

        16 -> 31         : 220      |**                                      |

        32 -> 63         : 3996     |****************************************|

This output shows that both the kworker thread and java are calling I/O mostly in the 32- to 
63-Kbyte range. Checking the I/O size can lead to optimizations:

 ■ Sequential workloads should try the largest possible I/O size for peak performance. 
Larger sizes sometimes encounter slightly worse performance; there may be a sweet spot 
(e.g., 128 Kbytes) based on memory allocators and device logic.

 ■ Random workloads should try to match the I/O size with the application record size. Larger 
I/O sizes pollute the page cache with data that isn’t needed; smaller I/O sizes result in more 
I/O overhead than needed.

This works by instrumenting the block:block_rq_issue tracepoint.

BCC

bitesize(8) currently does not support options.

bpftrace

The following is the code for the bpftrace version:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing block device I/O... Hit Ctrl-C to end.\n");

}
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tracepoint:block:block_rq_issue

{

        @[args->comm] = hist(args->bytes);

}

 

END

{

        printf("\nI/O size (bytes) histograms by process name:");

}

The tracepoint provides the process name as args->comm, and the size as args->bytes. This insert 
tracepoint fires when the request is inserted on the OS queue. Later tracepoints such as comple-
tion do not provide args->comm, nor can the comm builtin be used, as they fire asynchronously 
to the process (e.g., on device completion interrupt).

9.3.5 seeksize

seeksize(8)6 is a bpftrace tool to show how many sectors that processes are requesting the disks 
to seek. This is only a problem for rotational magnetic media,7 where the drive heads must 
physically move from one sector offset to another, causing latency. Example output:

# seeksize.bt

Attaching 3 probes...

Tracing block I/O requested seeks... Hit Ctrl-C to end.

^C

[...]

 

@sectors[tar]: 

[0]                 8220 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[1]                    0 |                                                    |

[2, 4)                 0 |                                                    |

[4, 8)                 0 |                                                    |

[8, 16)              882 |@@@@@                                               |

[16, 32)            1897 |@@@@@@@@@@@@                                        |

[32, 64)            1588 |@@@@@@@@@@                                          |

[64, 128)           1502 |@@@@@@@@@                                           |

[128, 256)          1105 |@@@@@@                                              |

[256, 512)           734 |@@@@                                                |

6 Origin: I first created it as seeksize.d using DTrace on 11-Sep-2004, as seek issues on rotational disks were 

common at the time. I created the bpftrace version it for a blog post on 18-Oct-2018 and revised it for this book on 

20-Mar-2019.

7 Almost. Flash drives have their flash-translation-layer logic, and I’ve noticed a tiny slowdown (less than 1%) when 

seeking across large ranges vs small: perhaps it’s busting the flash equivalent of a TLB.
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[512, 1K)            501 |@@@                                                 |

[1K, 2K)             302 |@                                                   |

[2K, 4K)             194 |@                                                   |

[4K, 8K)              82 |                                                    |

[8K, 16K)              0 |                                                    |

[16K, 32K)             0 |                                                    |

[32K, 64K)             6 |                                                    |

[64K, 128K)          191 |@                                                   |

[128K, 256K)           0 |                                                    |

[256K, 512K)           0 |                                                    |

[512K, 1M)             0 |                                                    |

[1M, 2M)               1 |                                                    |

[2M, 4M)             840 |@@@@@                                               |

[4M, 8M)             887 |@@@@@                                               |

[8M, 16M)            441 |@@                                                  |

[16M, 32M)           124 |                                                    |

[32M, 64M)           220 |@                                                   |

[64M, 128M)          207 |@                                                   |

[128M, 256M)         205 |@                                                   |

[256M, 512M)           3 |                                                    |

[512M, 1G)           286 |@                                                   |

 

@sectors[dd]: 

[0]                29908 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[1]                    0 |                                                    |

[...]

[32M, 64M)             0 |                                                    |

[64M, 128M)            1 |                                                    |

This output shows that processes named "dd" usually did not request any seeking: an offset of 0 was 
requested 29,908 times while tracing. This is expected, as I was running a dd(1) sequential workload. 
I also ran a tar(1) file system backup, which generated a mixed workload: some sequential, some 
random.

The source to seeksize(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing block I/O requested seeks... Hit Ctrl-C to end.\n");

}

 

tracepoint:block:block_rq_issue
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{

        if (@last[args->dev]) {

                // calculate requested seek distance

                $last = @last[args->dev];

                $dist = (args->sector - $last) > 0 ?

                    args->sector - $last : $last - args->sector;

 

                // store details

                @sectors[args->comm] = hist($dist);

        }

        // save last requested position of disk head

        @last[args->dev] = args->sector + args->nr_sector;

}

 

END

{

        clear(@last);

}

This works by looking at the requested sector offset for each device I/O and comparing it to a 
recorded previous location. If the script is changed to use the block_rq_completion tracepoint, 
it will show the actual seeks encountered by the disk. But instead it uses the block_rq_issue trace-
point to answer a different question: how random is the workload the application is requesting? 
This randomness may change after the I/O is processed by the Linux I/O scheduler and by the 
on-disk scheduler. I first wrote this to prove which applications were causing random workloads, 
so I chose to measure the workload on requests.

The following tool, biopattern(8), measures randomness on I/O completion instead.

9.3.6 biopattern

biopattern(8)8 is a bpftrace tool to identify the pattern of I/O: random or sequential. For example:

# biopattern.bt

Attaching 4 probes...

TIME      %RND  %SEQ    COUNT     KBYTES

00:05:54    83    16     2960      13312

00:05:55    82    17     3881      15524

00:05:56    78    21     3059      12232

00:05:57    73    26     2770      14204

00:05:58     0   100        1          0

8 Origin: I created the first version as iopattern using DTrace on 25-Jul-2005, based on a mockup that Ryan Matteson 

had sent me (which also had more columns). I created this bpftrace version for this book on 19-Mar-2019.
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00:05:59     0     0        0          0

00:06:00     0    99     1536     196360

00:06:01     0   100    13444    1720704

00:06:02     0    99    13864    1771876

00:06:03     0   100    13129    1680640

00:06:04     0    99    13532    1731484

[...]

This examples begins with a file system backup workload, which caused mostly random I/O. At 
6:00 I switched to a sequential disk read, which was 99 or 100% sequential, and delivered a much 
higher throughput (KBYTES).

The source to biopattern(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("%-8s %5s %5s %8s %10s\n", "TIME", "%RND", "%SEQ", "COUNT",

            "KBYTES");

}

 

tracepoint:block:block_rq_complete

{

        if (@lastsector[args->dev] == args->sector) {

                @sequential++;

        } else {

                @random++;

        }

        @bytes = @bytes + args->nr_sector * 512;

        @lastsector[args->dev] = args->sector + args->nr_sector;

}

 

interval:s:1

{

        $count = @random + @sequential;

        $div = $count;

        if ($div == 0) {

                $div = 1;

        }

        time("%H:%M:%S ");

        printf("%5d %5d %8d %10d\n", @random * 100 / $div,

            @sequential * 100 / $div, $count, @bytes / 1024);

        clear(@random); clear(@sequential); clear(@bytes);
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}

 

END

{

        clear(@lastsector);

        clear(@random); clear(@sequential); clear(@bytes);

}

This works by instrumenting block I/O completion and remembering the last sector (disk address) 
used for each device, so that it can be compared with the following I/O to see if it carried on from 
the previous address (sequential) or did not (random).9

This tool can be changed to instrument tracepoint:block:block_rq_insert, which will show the 
randomness of the workload applied (similar to seeksize(8)).

9.3.7 biostacks

biostacks(8)10 is a bpftrace tool that traces full I/O latency (from OS enqueue to device completion) 
with the I/O initialization stack trace. For example:

# biostacks.bt

Attaching 5 probes...

Tracing block I/O with init stacks. Hit Ctrl-C to end.

^C

[...]

 

@usecs[

    blk_account_io_start+1

    blk_mq_make_request+1069

    generic_make_request+292

    submit_bio+115

    swap_readpage+310

    read_swap_cache_async+64

    swapin_readahead+614

    do_swap_page+1086

    handle_pte_fault+725

    __handle_mm_fault+1144

    handle_mm_fault+177

    __do_page_fault+592

    do_page_fault+46

9 Prior to the tracing era, I would identify random/sequential workloads by interpreting iostat(1) output and looking for 

high service times with small I/O sizes (random) or low service times with high I/O sizes (sequential).

10 Origin: I created it for this book on 19-Mar-2019. I had constructed a similar tool live during an internal Facebook 

talk in 2018, and for the first time saw initialization stacks associated with I/O completion times.
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    page_fault+69

]: 

[16K, 32K)             1 |                                                    |

[32K, 64K)            32 |                                                    |

[64K, 128K)         3362 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[128K, 256K)          38 |                                                    |

[256K, 512K)           0 |                                                    |

[512K, 1M)             0 |                                                    |

[1M, 2M)               1 |                                                    |

[2M, 4M)               1 |                                                    |

[4M, 8M)               1 |                                                    |

 

@usecs[

    blk_account_io_start+1

    blk_mq_make_request+1069

    generic_make_request+292

    submit_bio+115

    submit_bh_wbc+384

    ll_rw_block+173

    __breadahead+68

    __ext4_get_inode_loc+914

    ext4_iget+146

    ext4_iget_normal+48

    ext4_lookup+240

    lookup_slow+171

    walk_component+451

    path_lookupat+132

    filename_lookup+182

    user_path_at_empty+54

    vfs_statx+118

    SYSC_newfstatat+53

    sys_newfstatat+14

    do_syscall_64+115

    entry_SYSCALL_64_after_hwframe+61

]: 

[8K, 16K)             18 |@@@@@@@@@@@                                         |

[16K, 32K)            20 |@@@@@@@@@@@@                                        |

[32K, 64K)            10 |@@@@@@                                              |

[64K, 128K)           56 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                 |

[128K, 256K)          81 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[256K, 512K)           7 |@@@@                                                |
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I have seen cases where there was mysterious disk I/O without any application causing it. The 
reason turned out to be background file system tasks. (In one case it was ZFS’s background scrub-
ber, which periodically verifies checksums.) biostacks(8) can identify the real reason for disk I/O 
by showing the kernel stack trace.

The above output has two interesting stacks. The first was triggered by a page fault that became a 
swap in: this is swapping.11 The second was a newfstatat() syscall that became a readahead.

The source to biostacks(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing block I/O with init stacks. Hit Ctrl-C to end.\n");

}

 

kprobe:blk_account_io_start

{

        @reqstack[arg0] = kstack;

        @reqts[arg0] = nsecs;

}

 

kprobe:blk_start_request,

kprobe:blk_mq_start_request

/@reqts[arg0]/

{

        @usecs[@reqstack[arg0]] = hist(nsecs - @reqts[arg0]);

        delete(@reqstack[arg0]);

        delete(@reqts[arg0]);

}

 

END

{

        clear(@reqstack); clear(@reqts);

}

This works by saving the kernel stack and a timestamp when the I/O was initiated and retriev-
ing that saved stack and timestamp when the I/O completed. These are saved in a map keyed by 
the struct request pointer, which is arg0 to the traced kernel functions. The kernel stack trace is 
recorded using the kstack builtin. You can change this to ustack to record the user-level stack trace 
or add them both.

11 Linux terminology, where this means switching pages with the swap device. Swapping for other kernels can mean 

moving entire processes.
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With the Linux 5.0 switch to multi-queue only, the blk_start_request() function was removed 
from the kernel. On that and later kernels, this tool prints a warning:

Warning: could not attach probe kprobe:blk_start_request, skipping.

This can be ignored, or that kprobe can be deleted from the tool. The tool could also be rewritten 
to use tracepoints. See the “Tracepoints” subsection of Section 9.3.1.

9.3.8 bioerr

bioerr(8)12 traces block I/O errors and prints details. For example, running bioerr(8) on my laptop:

# bioerr.bt

Attaching 2 probes...

Tracing block I/O errors. Hit Ctrl-C to end.

00:31:52 device: 0,0, sector: -1, bytes: 0, flags: N, error: -5

00:31:54 device: 0,0, sector: -1, bytes: 0, flags: N, error: -5

00:31:56 device: 0,0, sector: -1, bytes: 0, flags: N, error: -5

00:31:58 device: 0,0, sector: -1, bytes: 0, flags: N, error: -5

00:32:00 device: 0,0, sector: -1, bytes: 0, flags: N, error: -5

[...]

This output is far more interesting than I was expecting. (I wasn’t expecting any errors, but ran it 
just in case.) Every two seconds there is a zero-byte request to device 0,0, which seems bogus, and 
which returns with a -5 error (EIO).

The previous tool, biostacks(8), was created to investigate this kind of issue. In this case I 
don’t need to see the latency, and I only want to see stacks for the device 0,0 I/O. I can tweak 
biostacks(8) to do this, although it can also be done as a bpftrace one-liner (in this case, I’ll check 
that the stack trace is still meaningful by the time this tracepoint is hit; if it were not still mean-
ingful, I’d need to switch back to a kprobe of blk_account_io_start() to really catch the initializa-
tion of this I/O):

# bpftrace -e 't:block:block_rq_issue /args->dev == 0/ { @[kstack]++ }'

Attaching 1 probe...

^C

 

@[

    blk_peek_request+590

    scsi_request_fn+51

    __blk_run_queue+67

    blk_execute_rq_nowait+168

    blk_execute_rq+80

    scsi_execute+227

12 Origin: I created it for this book on 19-Mar-2019.
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    scsi_test_unit_ready+96

    sd_check_events+248

    disk_check_events+101

    disk_events_workfn+22

    process_one_work+478

    worker_thread+50

    kthread+289

    ret_from_fork+53

]: 3

This shows that device 0 I/O was created from scsi_test_unit_ready(). A little more digging into 
the parent functions shows that it was checking for USB removable media. As an experiment, 
I traced scsi_test_unit_ready() while inserting a USB flash drive, which changed its return value. 
This was my laptop detecting USB drives.

The source to bioerr(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing block I/O errors. Hit Ctrl-C to end.\n");

}

 

tracepoint:block:block_rq_complete

/args->error != 0/

{

        time("%H:%M:%S ");

        printf("device: %d,%d, sector: %d, bytes: %d, flags: %s, error: %d\n",

            args->dev >> 20, args->dev & ((1 << 20) - 1), args->sector,

            args->nr_sector * 512, args->rwbs, args->error);

}

The logic for mapping the device identifier (args->dev) to the major and minor numbers comes 
from the format file for this tracepoint:

# cat /sys/kernel/debug/tracing/events/block/block_rq_complete/format 

name: block_rq_complete

[...]

 

print fmt: "%d,%d %s (%s) %llu + %u [%d]", ((unsigned int) ((REC->dev) >> 20)), 
((unsigned int) ((REC->dev) & ((1U << 20) - 1))), REC->rwbs, __get_str(cmd), (unsigned 
long long)REC->sector, REC->nr_sector, REC->error
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While bioerr(8) is a handy tool, note that perf(1) can be used for similar functionality by filtering 
on error. The output includes the format string as defined by the /sys format file. For example:

# perf record -e block:block_rq_complete --filter 'error != 0'

# perf script

     ksoftirqd/2    22 [002] 2289450.691041: block:block_rq_complete: 0,0 N () 

18446744073709551615 + 0 [-5]

[...]

The BPF tool can be customized to include more information, going beyond the standard capa-
bilities of perf(1).

For example, the error returned, in this case -5 for EIO, has been mapped from a block error code. 
It may be interesting to see the original block error code, which can be traced from functions that 
handle it, for example:

# bpftrace -e 'kprobe:blk_status_to_errno /arg0/ { @[arg0]++ }'

Attaching 1 probe...

^C

 

@[10]: 2

It’s really block I/O status 10, which is BLK_STS_IOERR. These are defined in linux/blk_types.h:

#define BLK_STS_OK 0

#define BLK_STS_NOTSUPP         ((__force blk_status_t)1)

#define BLK_STS_TIMEOUT         ((__force blk_status_t)2)

#define BLK_STS_NOSPC           ((__force blk_status_t)3)

#define BLK_STS_TRANSPORT       ((__force blk_status_t)4)

#define BLK_STS_TARGET          ((__force blk_status_t)5)

#define BLK_STS_NEXUS           ((__force blk_status_t)6)

#define BLK_STS_MEDIUM          ((__force blk_status_t)7)

#define BLK_STS_PROTECTION      ((__force blk_status_t)8)

#define BLK_STS_RESOURCE        ((__force blk_status_t)9)

#define BLK_STS_IOERR           ((__force blk_status_t)10)

bioerr(8) could be enhanced to print these BLK_STS code names instead of the error numbers. 
These are actually mapped from SCSI result codes, which can be traced from the scsi events. I’ll 
demonstrate SCSI tracing in sections 9.3.11 and 9.3.12.
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9.3.9 mdflush

mdflush(8)13 is a BCC and bpftrace tool for tracing flush events from md, the multiple devices 
driver that is used on some systems to implement software RAID. For example, running the BCC 
version on a production server using md:

# mdflush

Tracing md flush requests... Hit Ctrl-C to end.

TIME     PID    COMM             DEVICE

23:43:37 333    kworker/0:1H     md0

23:43:37 4038   xfsaild/md0      md0

23:43:38 8751   filebeat         md0

23:43:43 5575   filebeat         md0

23:43:48 5824   filebeat         md0

23:43:53 5575   filebeat         md0

23:43:58 5824   filebeat         md0

[...]

md flush events are usually infrequent and cause bursts of disk writes, perturbing system perfor-
mance. Knowing exactly when they occurred can be useful for correlation with monitoring dash-
boards, to see if they align with latency spikes or other problems.

This output shows a process called filebeat doing md flushes every five seconds (I just discovered 
this). filebeat is a service that sends log files to Logstash or directly to Elasticsearch.

This works by tracing the md_flush_request() function using a kprobe. Since the event frequency 
is low, the overhead should be negligible.

BCC

mdflush(8) currently does not support any options.

bpftrace

The following is the code for the bpftrace version:

#!/usr/local/bin/bpftrace

 

#include <linux/genhd.h>

#include <linux/bio.h>

 

BEGIN

{

        printf("Tracing md flush events... Hit Ctrl-C to end.\n");

        printf("%-8s %-6s %-16s %s", "TIME", "PID", "COMM", "DEVICE");

13 Origin: I created it for BCC on 13-Feb-2015 and for bpftrace on 8-Sep-2018.
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}

 

kprobe:md_flush_request

{

        time("%H:%M:%S ");

        printf("%-6d %-16s %s\n", pid, comm,

            ((struct bio *)arg1)->bi_disk->disk_name);

}

The program digs out the disk name via the struct bio argument.

9.3.10 iosched

iosched(8)14 traces the time that requests were queued in the I/O scheduler, and groups this by 
scheduler name. For example:

# iosched.bt

Attaching 5 probes...

Tracing block I/O schedulers. Hit Ctrl-C to end.

^C

 

@usecs[cfq]: 

[2, 4)                 1 |                                                    |

[4, 8)                 3 |@                                                   |

[8, 16)               18 |@@@@@@@                                             |

[16, 32)               6 |@@                                                  |

[32, 64)               0 |                                                    |

[64, 128)              0 |                                                    |

[128, 256)             0 |                                                    |

[256, 512)             0 |                                                    |

[512, 1K)              6 |@@                                                  |

[1K, 2K)               8 |@@@                                                 |

[2K, 4K)               0 |                                                    |

[4K, 8K)               0 |                                                    |

[8K, 16K)             28 |@@@@@@@@@@@                                         |

[16K, 32K)           131 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[32K, 64K)            68 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |

14 Origin: I created it for this book on 20-Mar-2019.
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This shows the CFQ scheduler in use, with queueing times usually between eight and 
64 milliseconds.

The source to iosched(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/blkdev.h>

 

BEGIN

{

        printf("Tracing block I/O schedulers. Hit Ctrl-C to end.\n");

}

 

kprobe:__elv_add_request

{

        @start[arg1] = nsecs;

}

 

kprobe:blk_start_request,

kprobe:blk_mq_start_request

/@start[arg0]/

{

        $r = (struct request *)arg0;

        @usecs[$r->q->elevator->type->elevator_name] =

            hist((nsecs - @start[arg0]) / 1000);

        delete(@start[arg0]);

}

 

END

{

        clear(@start);

}

This works by recording a timestamp when requests were added to an I/O scheduler via an eleva-
tor function, __elv_add_request(), and then calculating the time queued when the I/O was issued. 
This focuses tracing I/O to only those that pass via an I/O scheduler, and also focuses on tracing 
just the queued time. The scheduler (elevator) name is fetched from the struct request.

With the Linux 5.0 switch to multi-queue only, the blk_start_request() function was removed 
from the kernel. On that and later kernels this tool will print a warning about skipping the blk_
start_request() kprobe, which can be ignored, or that kprobe can be removed from this program.
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9.3.11 scsilatency

scsilatency(8)15 is a tool to trace SCSI commands with latency distributions. For example:

# scsilatency.bt

Attaching 4 probes...

Tracing scsi latency. Hit Ctrl-C to end.

^C

 

@usecs[0, TEST_UNIT_READY]: 

[128K, 256K)           2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                  |

[256K, 512K)           2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                  |

[512K, 1M)             0 |                                                    |

[1M, 2M)               1 |@@@@@@@@@@@@@@@@@                                   |

[2M, 4M)               2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                  |

[4M, 8M)               3 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[8M, 16M)              1 |@@@@@@@@@@@@@@@@@                                   |

 

@usecs[42, WRITE_10]: 

[2K, 4K)               2 |@                                                   |

[4K, 8K)               0 |                                                    |

[8K, 16K)              2 |@                                                   |

[16K, 32K)            50 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       |

[32K, 64K)            57 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@usecs[40, READ_10]: 

[4K, 8K)              15 |@                                                   |

[8K, 16K)            676 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16K, 32K)           447 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                  |

[32K, 64K)             2 |                                                    |

[...]

This has a latency histogram for each SCSI command type, showing the opcode and command 
name (if available).

The source to scsilatency(8) is:

#!/usr/local/bin/bpftrace

 

#include <scsi/scsi_cmnd.h>

 

BEGIN

15 Origin: I created it for this book on 21-Mar-2019, inspired by similar tools I created for the 2011 DTrace book [Gregg 11].
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{

        printf("Tracing scsi latency. Hit Ctrl-C to end.\n");

        // SCSI opcodes from scsi/scsi_proto.h; add more mappings if desired:

        @opcode[0x00] = "TEST_UNIT_READY";

        @opcode[0x03] = "REQUEST_SENSE";

        @opcode[0x08] = "READ_6";

        @opcode[0x0a] = "WRITE_6";

        @opcode[0x0b] = "SEEK_6";

        @opcode[0x12] = "INQUIRY";

        @opcode[0x18] = "ERASE";

        @opcode[0x28] = "READ_10";

        @opcode[0x2a] = "WRITE_10";

        @opcode[0x2b] = "SEEK_10";

        @opcode[0x35] = "SYNCHRONIZE_CACHE";

}

 

kprobe:scsi_init_io

{

        @start[arg0] = nsecs;

}

 

kprobe:scsi_done,

kprobe:scsi_mq_done

/@start[arg0]/

{

        $cmnd = (struct scsi_cmnd *)arg0;

        $opcode = *$cmnd->req.cmd & 0xff;

        @usecs[$opcode, @opcode[$opcode]] = hist((nsecs - @start[arg0]) / 1000);

}

 

END

{

        clear(@start); clear(@opcode);

}

There are many possible SCSI commands; this tool only translates a handful into the opcode 
names. Since the opcode number is printed with the output, if a translation is missing it can still 
be determined by referring to scsi/scsi_proto.h, and this tool can be enhanced to include it.

There are scsi tracepoints, and one is used in the next tool, but these lack a unique identifier, 
which would be needed as a BPF map key to store a timestamp.

Due to the Linux 5.0 switch to multi-queue only, the scsi_done() function was removed, and so 
the kprobe:scsi_done can be removed.
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With the Linux 5.0 switch to multi-queue only, scsi_done() function was removed from the 
kernel. On that and later kernels this tool will print a warning about skipping the scsi_done() 
kprobe, which can be ignored, or that kprobe can be removed from this program.

9.3.12 scsiresult

scsiresult(8)16 summarizes SCSI command results: the host and status codes. For example:

# scsiresult.bt 

Attaching 3 probes...

Tracing scsi command results. Hit Ctrl-C to end.

^C

 

@[DID_BAD_TARGET, SAM_STAT_GOOD]: 1

@[DID_OK, SAM_STAT_CHECK_CONDITION]: 10

@[DID_OK, SAM_STAT_GOOD]: 2202

This shows 2202 results with the codes DID_OK and SAM_STAT_GOOD and one with DID_BAD_
TARGET and SAM_STAT_GOOD. These codes are defined in the kernel source, for example, from 
include/scsi/scsi.h:

#define DID_OK          0x00    /* NO error                                */

#define DID_NO_CONNECT  0x01    /* Couldn't connect before timeout period  */

#define DID_BUS_BUSY    0x02    /* BUS stayed busy through time out period */

#define DID_TIME_OUT    0x03    /* TIMED OUT for other reason              */

#define DID_BAD_TARGET  0x04    /* BAD target.                             */   

[...]

This tool can be used to identify anomalous results from SCSI devices.

The source to scsiresult(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing scsi command results. Hit Ctrl-C to end.\n");

 

        // host byte codes, from include/scsi/scsi.h:

        @host[0x00] = "DID_OK";

        @host[0x01] = "DID_NO_CONNECT";

        @host[0x02] = "DID_BUS_BUSY";

        @host[0x03] = "DID_TIME_OUT";

16 Origin: I created it for this book on 21-Mar-2019, inspired by similar tools I created for the 2011 DTrace book [Gregg 11].
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        @host[0x04] = "DID_BAD_TARGET";

        @host[0x05] = "DID_ABORT";

        @host[0x06] = "DID_PARITY";

        @host[0x07] = "DID_ERROR";

        @host[0x08] = "DID_RESET";

        @host[0x09] = "DID_BAD_INTR";

        @host[0x0a] = "DID_PASSTHROUGH";

        @host[0x0b] = "DID_SOFT_ERROR";

        @host[0x0c] = "DID_IMM_RETRY";

        @host[0x0d] = "DID_REQUEUE";

        @host[0x0e] = "DID_TRANSPORT_DISRUPTED";

        @host[0x0f] = "DID_TRANSPORT_FAILFAST";

        @host[0x10] = "DID_TARGET_FAILURE";

        @host[0x11] = "DID_NEXUS_FAILURE";

        @host[0x12] = "DID_ALLOC_FAILURE";

        @host[0x13] = "DID_MEDIUM_ERROR";

 

        // status byte codes, from include/scsi/scsi_proto.h:

        @status[0x00] = "SAM_STAT_GOOD";

        @status[0x02] = "SAM_STAT_CHECK_CONDITION";

        @status[0x04] = "SAM_STAT_CONDITION_MET";

        @status[0x08] = "SAM_STAT_BUSY";

        @status[0x10] = "SAM_STAT_INTERMEDIATE";

        @status[0x14] = "SAM_STAT_INTERMEDIATE_CONDITION_MET";

        @status[0x18] = "SAM_STAT_RESERVATION_CONFLICT";

        @status[0x22] = "SAM_STAT_COMMAND_TERMINATED";

        @status[0x28] = "SAM_STAT_TASK_SET_FULL";

        @status[0x30] = "SAM_STAT_ACA_ACTIVE";

        @status[0x40] = "SAM_STAT_TASK_ABORTED";

}

 

tracepoint:scsi:scsi_dispatch_cmd_done

{

        @[@host[(args->result >> 16) & 0xff], @status[args->result & 0xff]] =

            count();

}

 

END

{

        clear(@status);

        clear(@host);

}
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This works by tracing the scsi:scsi_dispatch_cmd_done tracepoint and fetching the host and 
status bytes from the result, and then mapping them to kernel names. The kernel has similar 
lookup tables in include/trace/events/scsi.h for the tracepoint format string.

The result also has driver and message bytes, not shown by this tool. It is of the format:

driver_byte << 24 | host_byte << 16 | msg_byte << 8 | status_byte

This tool can be enhanced to add these bytes and other details to the map as additional keys. 
Other details are readily available in that tracepoint:

# bpftrace -lv t:scsi:scsi_dispatch_cmd_done

tracepoint:scsi:scsi_dispatch_cmd_done

    unsigned int host_no;

    unsigned int channel;

    unsigned int id;

    unsigned int lun;

    int result;

    unsigned int opcode;

    unsigned int cmd_len;

    unsigned int data_sglen;

    unsigned int prot_sglen;

    unsigned char prot_op;

    __data_loc unsigned char[] cmnd;

Even more details are available via kprobes of scsi functions, although without the interface 
stability.

9.3.13 nvmelatency

nvmelatency(8)17 traces the nvme storage driver and shows command latencies by disk and nvme 
command opcode. This can be useful for isolating device latency from the latency measured 
higher in the stack at the block I/O layer. For example:

# nvmelatency.bt

Attaching 4 probes...

Tracing nvme command latency. Hit Ctrl-C to end.

^C

 

@usecs[nvme0n1, nvme_cmd_flush]: 

[8, 16)                2 |@@@@@@@@@                                           |

[16, 32)               7 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                   |

[32, 64)               6 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@                        |

17 Origin: I created it for this book on 21-Mar-2019, inspired by similar storage driver tools that I created for the 2011 

DTrace book [Gregg 11]. 
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[64, 128)             11 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[128, 256)             0 |                                                    |

[256, 512)             0 |                                                    |

[512, 1K)              3 |@@@@@@@@@@@@@@                                      |

[1K, 2K)               8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@               |

[2K, 4K)               1 |@@@@                                                |

[4K, 8K)               4 |@@@@@@@@@@@@@@@@@@                                  |

 

@usecs[nvme0n1, nvme_cmd_write]: 

[8, 16)                3 |@@@@                                                |

[16, 32)              37 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[32, 64)              20 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@                        |

[64, 128)              6 |@@@@@@@@                                            |

[128, 256)             0 |                                                    |

[256, 512)             0 |                                                    |

[512, 1K)              0 |                                                    |

[1K, 2K)               0 |                                                    |

[2K, 4K)               0 |                                                    |

[4K, 8K)               7 |@@@@@@@@@                                           |

 

@usecs[nvme0n1, nvme_cmd_read]: 

[32, 64)            7653 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[64, 128)            568 |@@@                                                 |

[128, 256)            45 |                                                    |

[256, 512)             4 |                                                    |

[512, 1K)              0 |                                                    |

[1K, 2K)               0 |                                                    |

[2K, 4K)               0 |                                                    |

[4K, 8K)               1 |                                                    |

This output showed that only one disk was in use, nvme0n1, and the latency distributions for 
three nvme command types.

Tracepoints for nvme were recently added to Linux, but I wrote this tool on a system that did 
not have them, to show what can be accomplished with kprobes and storage drivers. I began by 
frequency counting which nvme functions were in use during different I/O workloads:

# bpftrace -e 'kprobe:nvme* { @[func] = count(); }'

Attaching 184 probes...

^C

 

@[nvme_pci_complete_rq]: 5998

@[nvme_free_iod]: 6047

@[nvme_setup_cmd]: 6048
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@[nvme_queue_rq]: 6071

@[nvme_complete_rq]: 6171

@[nvme_irq]: 6304

@[nvme_process_cq]: 12327

Browsing the source for these functions showed that latency could be traced as the time from 
nvme_setup_cmd() to nvme_complete_rq().

The existence of tracepoints can aid in tool development, even if you are on a system that lacks 
them. By inspecting how the nvme tracepoints worked [187], I was able to develop this tool more 
quickly, because the tracepoint source showed how to correctly interpret nvme opcodes. 

The source to nvmelatency(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/blkdev.h>

#include <linux/nvme.h>

 

BEGIN

{

        printf("Tracing nvme command latency. Hit Ctrl-C to end.\n");

        // from linux/nvme.h:

        @ioopcode[0x00] = "nvme_cmd_flush";

        @ioopcode[0x01] = "nvme_cmd_write";

        @ioopcode[0x02] = "nvme_cmd_read";

        @ioopcode[0x04] = "nvme_cmd_write_uncor";

        @ioopcode[0x05] = "nvme_cmd_compare";

        @ioopcode[0x08] = "nvme_cmd_write_zeroes";

        @ioopcode[0x09] = "nvme_cmd_dsm";

        @ioopcode[0x0d] = "nvme_cmd_resv_register";

        @ioopcode[0x0e] = "nvme_cmd_resv_report";

        @ioopcode[0x11] = "nvme_cmd_resv_acquire";

        @ioopcode[0x15] = "nvme_cmd_resv_release";

}

 

kprobe:nvme_setup_cmd

{

        $req = (struct request *)arg1;

        if ($req->rq_disk) {

                @start[arg1] = nsecs;

                @cmd[arg1] = arg2;

        } else {

                @admin_commands = count();
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        }

}

 

kprobe:nvme_complete_rq

/@start[arg0]/

{

        $req = (struct request *)arg0;

        $cmd = (struct nvme_command *)@cmd[arg0];

        $disk = $req->rq_disk;

        $opcode = $cmd->common.opcode & 0xff;

        @usecs[$disk->disk_name, @ioopcode[$opcode]] =

            hist((nsecs - @start[arg0]) / 1000);

        delete(@start[tid]); delete(@cmd[tid]);

}

 

END

{

        clear(@ioopcode); clear(@start); clear(@cmd);

}

If a request is created without a disk, it is an admin command. The script can be enhanced to 
decode and time the admin commands (see nvme_admin_opcode in include/linux/nvme.h). To 
keep this tool short, I simply counted admin commands so that if any are present they will be 
noted in the output.

9.4 BPF One-Liners

These sections show BCC and bpftrace one-liners. Where possible, the same one-liner is imple-
mented using both BCC and bpftrace.

9.4.1 BCC

Count block I/O tracepoints:

funccount t:block:*

Summarize block I/O size as a histogram:

argdist -H 't:block:block_rq_issue():u32:args->bytes'

Count block I/O request user stack traces:

stackcount -U t:block:block_rq_issue

Count block I/O type flags:

argdist -C 't:block:block_rq_issue():char*:args->rwbs'
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Trace block I/O errors with device and I/O type:

trace 't:block:block_rq_complete (args->error) "dev %d type %s error %d", args->dev, 

args->rwbs, args->error'

Count SCSI opcodes:

argdist -C 't:scsi:scsi_dispatch_cmd_start():u32:args->opcode'

Count SCSI result codes:

argdist -C 't:scsi:scsi_dispatch_cmd_done():u32:args->result'

Count nvme driver functions:

funccount 'nvme*'

9.4.2 bpftrace

Count block I/O tracepoints:

bpftrace -e 'tracepoint:block:* { @[probe] = count(); }'

Summarize block I/O size as a histogram:

bpftrace -e 't:block:block_rq_issue { @bytes = hist(args->bytes); }'

Count block I/O request user stack traces:

bpftrace -e 't:block:block_rq_issue { @[ustack] = count(); }'

Count block I/O type flags:

bpftrace -e 't:block:block_rq_issue { @[args->rwbs] = count(); }'

Show total bytes by I/O type:

bpftrace -e 't:block:block_rq_issue { @[args->rwbs] = sum(args->bytes); }'

Trace block I/O errors with device and I/O type:

bpftrace -e 't:block:block_rq_complete /args->error/ {

    printf("dev %d type %s error %d\n", args->dev, args->rwbs, args->error); }'

Summarize block I/O plug time as a histogram:

bpftrace -e 'k:blk_start_plug { @ts[arg0] = nsecs; }

    k:blk_flush_plug_list /@ts[arg0]/ { @plug_ns = hist(nsecs - @ts[arg0]); 

    delete(@ts[arg0]); }'

Count SCSI opcodes:

bpftrace -e 't:scsi:scsi_dispatch_cmd_start { @opcode[args->opcode] = count(); }'
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Count SCSI result codes (all four bytes):

bpftrace -e 't:scsi:scsi_dispatch_cmd_done { @result[args->result] = count(); }'

Show CPU distribution of blk_mq requests:

bpftrace -e 'k:blk_mq_start_request { @swqueues = lhist(cpu, 0, 100, 1); }'

Count scsi driver functions:

bpftrace -e 'kprobe:scsi* { @[func] = count(); }'

Count nvme driver functions:

bpftrace -e 'kprobe:nvme* { @[func] = count(); }'

9.4.3 BPF One-Liners Examples

Including some sample output, as was done for each tool, is also useful for illustrating one-liners.

Counting Block I/O Type Flags

# bpftrace -e 't:block:block_rq_issue { @[args->rwbs] = count(); }'

Attaching 1 probe...

^C

 

@[N]: 2

@[WFS]: 9

@[FF]: 12

@[N]: 13

@[WSM]: 23

@[WM]: 64

@[WS]: 86

@[R]: 201

@[R]: 285

@[W]: 459

@[RM]: 1112

@[RA]: 2128

@[R]: 3635

@[W]: 4578

This frequency counts the rwbs field that encodes the I/O type. While tracing, where were 
3635 reads ("R") and 2128 read-ahead I/O ("RA"). The “rwbs” section at the start of this chapter 
describes this rwbs field.
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This one-liner can answer workload characterization questions such as:

 ■ What is the ratio of read versus read-ahead block I/O?

 ■ What is the ratio of write versus synchronous write block I/O?

By changing count() to be sum(args->bytes), this one-liner will sum the bytes by I/O type.

9.5 Optional Exercises

If not specified, these can be completed using either bpftrace or BCC:

 1. Modify biolatency(8) to print a linear histogram instead, for the range 0 to 100 milliseconds 
and a step size of one millisecond.

 2. Modify biolatency(8) to print the linear histogram summary every one second.

 3. Develop a tool to show disk I/O completions by CPU, to check how these interrupts are 
balanced. It could be displayed as a linear histogram.

 4. Develop a tool similar to biosnoop(8) to print per-event block I/O, with only the following 
fields, in CSV format: completion_time,direction,latency_ms. The direction is read or write.

 5. Save two minutes of (4) and use plotting software to visualize it as a scatter plot, coloring 
reads red and writes blue.

 6. Save two minutes of the output of (2) and use plotting software to display it as a latency 
heat map. (You can also develop some plotting software: e.g., use awk(1) to turn the count 
column into rows of a HTML table, with the background color scaled to the value.) 

 7. Rewrite biosnoop(8) to use block tracepoints.

 8. Modify seeksize(8) to show the actual seek distances encountered by the storage devices:  
measured on completions.

 9. Write a tool to show disk I/O timeouts. One solution could be to use the block tracepoints 
and BLK_STS_TIMEOUT (see bioerr(8)).

 10. (Advanced, unsolved) Develop a tool that shows the lengths of block I/O merging as a 
histogram.

9.6 Summary

This chapter shows how BPF can trace at all layers of the storage I/O stack. The tools traced the 
block I/O layer, the I/O scheduler, SCSI, and nvme as an example driver.
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Chapter 10
Networking

Networking is playing an ever-increasing role in the performance analysis of systems, with the rise 
of distributed cloud computing models increasing network traffic within a datacenter or cloud envi-
ronment, and online applications increasing external network traffic. The need for efficient network 
analysis tools is also on the rise, as servers scale to processing millions of packets per second. Extended 
BPF began as a technology for packet processing, so it has been designed and built to operate at these 
rates. The Cilium project for container networking and security policies, and Facebook’s Katran 
scalable network load balancer, are further examples of BPF’s ability to handle high packet rates in 
production environments, including for distributed denial of service attack (DDoS) mitigation.1

Network I/O is processed by many different layers and protocols, including the application, proto-
col libraries, syscalls, TCP or UDP, IP, and device drivers for the network interface. These can all 
be traced with the BPF tools shown in this chapter, providing insight on the requested workloads 
and latencies encountered.

Learning Objectives:

 ■ Gain a high-level view of the networking stack and scalability approaches, including 
receive and transmit scaling, TCP buff ers, and queueing disciplines

 ■ Learn a strategy for successful analysis of network performance

 ■ Characterize socket, TCP, and UDP workloads to identify issues

 ■ Measure diff erent latency metrics: connection latency, fi rst byte latency, connection duration

 ■ Learn an effi  cient way to trace and analyze TCP retransmits

 ■ Investigate inter-network-stack latency

 ■ Quantify time spent in software and hardware networking queues

 ■ Use bpftrace one-liners to explore networking in custom ways

This chapter begins with the necessary background for networking analysis, summarizing the 
network stack and scalability approaches. I explore questions that BPF can answer, and provide an 
overall strategy to follow. I then focus on tools, starting with traditional tools and then BPF tools, 
including a list of BPF one-liners. This chapter ends with optional exercises.

1 Both of these are also open source [93] [94].
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10.1 Background

This section covers networking fundamentals, BPF capabilities, a suggested strategy for network-
ing analysis, and common tracing mistakes.

10.1.1 Networking Fundamentals

A basic knowledge of IP and TCP, including the TCP three-way handshake, acknowledgment 
packets, and active/passive connection terminology, is assumed for this chapter.

Network Stack

The Linux network stack is pictured in Figure 10-1, which shows how data commonly moves from 
an application to a network interface card (NIC).

Figure 10-1 Linux network stack
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Major components include:

 ■ Sockets: Endpoints for sending or receiving data. These also include the send and receive 
buffers used by TCP.

 ■ TCP (Transmission Control Protocol): A widely used transport protocol for transferring 
data in an ordered and reliable way, with error checking.

 ■ UDP (User Datagram Protocol): A simple transport protocol for sending messages without 
the overhead or guarantees of TCP.

 ■ IP (Internet Protocol): A network protocol for delivering packets between hosts on a 
network. Main versions are IPv4 and IPv6.

 ■ ICMP (Internet Control Message Protocol): An IP-level protocol to support IP, relaying 
messages about routes and errors.

 ■ Queueing discipline: An optional layer for traffic classification (tc), scheduling, 
manipulation, filtering, and shaping [95]2.

 ■ Device drivers: Drivers that may include their own driver queues (NIC RX-ring and TX-ring).

 ■ NIC (network interface card): A device that contains the physical network ports. These 
can also be virtual devices, such as tunnels, veths (virtual Ethernet devices), and loopback.

Figure 10-1 shows the path most commonly taken, but other paths may be used to improve the 
performance of certain workloads. These different paths include kernel bypass and the new 
BPF-based XDP.

Kernel Bypass
Applications can bypass the kernel network stack using technologies such as the Data Plane 
Development Kit (DPDK) for achieving higher packet rates and performance. This involves an appli-
cation implementing its own network protocols in user-space, and making writes to the network 
driver via a DPDK library and a kernel user space I/O (UIO) or virtual function I/O (VFIO) driver. 
The expense of copying packet data can be avoided by directly accessing memory on the NIC.

Because the kernel network stack is bypassed, instrumentation using traditional tools and metrics 
is not available, making performance analysis more difficult.

XDP
The eXpress Data Path (XDP) technology provides another path for network packets: a program-
mable fast path that uses extended BPF, and which integrates into the existing kernel stack rather 
than bypassing it [Høiland-Jørgensen 18]. Because it accesses the raw network Ethernet frame as 
early as possible via a BPF hook inside the NIC driver, it can make early decisions about forward-
ing or dropping  without the overhead of TCP/IP stack processing. When needed, it can also fall 
back to regular network stack processing. Use cases include faster DDoS mitigation, and software-
defined routing.

2 This reference is for “Queueing in the Linux Network Stack” by Dan Siemon, published by Linux Journal in 2013, an 

excellent explanation of these queues. Coincidentally, about 90 minutes after writing this section, I found myself on an 

iovisor concall with Dan Siemon and was able to thank him directly.
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Internals
An understanding of some kernel internals will help you understand later BPF tools. The essen-
tials are: packets are passed through the kernel using an sk_buff struct (socket buffer). Sockets 
are defined by a sock struct embedded at the start of protocol variants such as tcp_sock. Network 
protocols are attached to sockets using a struct proto, such that there is a tcp_prot, udp_prot, etc; 
this struct defines callback functions for operating the protocol, including for connect, sendmsg, 
and recvmsg.

Receive and Transmit Scaling

Without a CPU load-balancing strategy for network packets, a NIC may only interrupt one CPU, 
which can drive it to 100% utilization in interrupt and network stack processing, becoming a 
bottleneck. Various policies are available for interrupt mitigation and distributing NIC inter-
rupts and packet processing across multiple CPUs, improving scalability and performance. These 
include the new API (NAPI) interface, Receive Side Scaling (RSS),3 Receive Packet Steering (RPS), 
Receive Flow Steering (RFS), Accelerated RFS, and Transmit Packet Steering (XPS). These are docu-
mented in the Linux source [96].

Socket Accept Scaling

A commonly used model to handle high rates of passive TCP connections uses a thread to process 
the accept(2) calls and then pass the connection to a pool of worker threads. To scale this further, 
a SO_REUSEPORT setsockopt(3) option was added in Linux 3.9 that allows a pool of processes or 
threads to bind to the same socket address, where they all can call accept(2). It is then up to the 
kernel to balance the new connections across the pool of bound threads. A BPF program can be 
supplied to steer this balancing via the SO_ATTACH_REUSEPORT_EBPF option: this was added for 
UDP in Linux 4.5, and TCP in Linux 4.6.

TCP Backlogs

Passive TCP connections are initiated by the kernel receiving a TCP SYN packet. The kernel must 
track state for this potential connection until the handshake is completed, a situation that in the 
past was abused by attackers using SYN floods to exhaust kernel memory. Linux uses two queues 
to prevent this: a SYN backlog with minimal metadata that can better survive SYN floods, and 
then a listen backlog for completed connections for the application to consume. This is pictured 
in Figure 10-2.

Packets can be dropped from the SYN backlog in the case of flooding, or the listen backlog if the 
application cannot accept connections quickly enough. A legitimate remote host will respond 
with a timer-based retransmit.

In addition to the two-queue model, the TCP listen path was also made lockless to improve 
scalability for SYN flood attacks [98].4 

3 RSS is processed purely by NIC hardware. Some NICs support offloading of BPF networking programs (e.g., 

Netronome), allowing RSS to become BPF programmable [97].

4 The developer, Eric Dumazet, was able to reach six million SYN packets per second on his system after fixing a final 

false-sharing issue [99].
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Figure 10-2 TCP SYN backlogs

TCP Retransmits

TCP detects and retransmits lost packets using one of two techniques:

 ■ Timer-based retransmits: These occur when a time has passed and a packet 
acknowledgment has not yet been received. This time is the TCP retransmit timeout, 
calculated dynamically based on the connection round trip time (RTT). On Linux, 
this will be at least 200 ms (TCP_RTO_MIN) for the first retransmit, and subsequent 
retransmits will be much slower, following an exponential backoff algorithm that doubles 
the timeout.

 ■ Fast retransmits: When duplicate ACKs arrive, TCP can assume that a packet was dropped 
and retransmit it immediately.

Timer-based retransmits in particular cause performance issues, injecting latencies of 200 ms and 
higher into network connections. Congestion control algorithms may also throttle throughput in 
the presence of retransmits.

Retransmits can require a sequence of packets to be resent, beginning from the lost packet, 
even if later packets were received correctly. Selective acknowledgments (SACK) is a TCP option 
commonly used to avoid this: it allows later packets to be acknowledged so that they do not need 
to be resent, improving performance.

TCP Send and Receive Buffers

TCP data throughput is improved by using socket send and receive buffer accounting. Linux 
dynamically sizes the buffers based on connection activity, and allows tuning of their minimum, 
default, and maximum sizes. Larger sizes improve performance at the cost of more memory per 
connection. They are shown in Figure 10-3.



ptg30854589

394 Chapter 10  Networking

Figure 10-3 TCP send and receive buffers

Network devices and networks accept packet sizes up to a maximum segment size (MSS) that may 
be as small as 1500 bytes. To avoid the network stack overheads of sending many small packets, 
TCP uses generic segmentation offload (GSO) to send packets up to 64 Kbytes in size (“super 
packets”), which are split into MSS-sized segments just before delivery to the network device. If 
the NIC and driver support TCP segmentation offload (TSO), GSO leaves splitting to the device, 
further improving network stack throughput. There is also a generic receive offload (GRO) 
complement to GSO [100]. GRO and GSO are implemented in kernel software, and TSO is imple-
mented by NIC hardware.

TCP Congestion Controls

Linux supports different TCP congestion control algorithms, including Cubic (the default), Reno, 
Tahoe, DCTCP, and BBR. These algorithms modify send and receive windows based on detected 
congestion to keep network connections running optimally.

Queueing Discipline

This optional layer manages traffic classification (tc), scheduling, manipulation, filtering, and 
shaping of network packets. Linux provides numerous queueing discipline algorithms, which can 
be configured using the tc(8) command. As each has a man page, the man(1) command can be 
used to list them:

# man -k tc-

tc-actions (8)       - independently defined actions in tc

tc-basic (8)         - basic traffic control filter

tc-bfifo (8)         - Packet limited First In, First Out queue

tc-bpf (8)           - BPF programmable classifier and actions for ingress/egress 

queueing disciplines

tc-cbq (8)           - Class Based Queueing

tc-cbq-details (8)   - Class Based Queueing

tc-cbs (8)           - Credit Based Shaper (CBS) Qdisc

tc-cgroup (8)        - control group based traffic control filter

tc-choke (8)         - choose and keep scheduler

tc-codel (8)         - Controlled-Delay Active Queue Management algorithm

tc-connmark (8)      - netfilter connmark retriever action

tc-csum (8)          - checksum update action
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tc-drr (8)           - deficit round robin scheduler

tc-ematch (8)        - extended matches for use with "basic" or "flow" filters

tc-flow (8)          - flow based traffic control filter

tc-flower (8)        - flow based traffic control filter

tc-fq (8)            - Fair Queue traffic policing

tc-fq_codel (8)      - Fair Queuing (FQ) with Controlled Delay (CoDel)

[...] 

BPF can enhance the capabilities of this layer with the programs of type 
BPF_PROG_TYPE_SCHED_CLS and BPF_PROG_TYPE_SCHED_ACT.

Other Performance Optimizations

There are other algorithms in use throughout the network stack to improve performance, 
including:

 ■ Nagle: This reduces small network packets by delaying their transmission, allowing more to 
arrive and coalesce.

 ■ Byte Queue Limits (BQL): These automatically size the driver queues large enough to 
avoid starvation, but also small enough to reduce the maximum latency of queued packets. 
It works by pausing the addition of packets to the driver queue when necessary, and was 
added in Linux 3.3 [95].

 ■ Pacing: This controls when to send packets, spreading out transmissions (pacing) to avoid 
bursts that may hurt performance.

 ■ TCP Small Queues (TSQ): This controls (reduces) how much is queued by the network 
stack to avoid problems including bufferbloat [101].

 ■ Early Departure Time (EDT): This uses a timing wheel to order packets sent to the 
NIC, instead of a queue. Timestamps are set on every packet based on policy and rate 
configuration. This was added in Linux 4.20, and has BQL- and TSQ-like capabilities 
[Jacobson 18].

These algorithms often work in combination to improve performance. A TCP sent packet can be 
processed by any of the congestion controls, TSO, TSQ, Pacing, and queueing disciplines, before it 
ever arrives at the NIC [Cheng 16].

Latency Measurements

Various networking latency measurements can be made to provide insight into performance, 
helping to determine whether bottlenecks are in the sending or receiving applications, or the 
network itself. These include [Gregg 13b]:

 ■ Name resolution latency: The time for a host to be resolved to an IP address, usually by 
DNS resolution—a common source of performance issues.

 ■ Ping latency: The time from an ICMP echo request to a response. This measures the 
network and kernel stack handling of the packet on each host.
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 ■ TCP connection latency: The time from when a SYN is sent to when the SYN,ACK is 
received. Since no applications are involved, this measures the network and kernel stack 
latency on each host, similar to ping latency, with some additional kernel processing for 
the TCP session. TCP Fast Open (TFO) is a technology to eliminate connection latency for 
subsequent connections by providing cryptographic cookie with the SYN to authenticate 
the client immediately, allowing the server to respond with data without waiting for the 
three-way handshake to complete.

 ■ TCP first byte latency: Also known as the time-to-first-byte latency (TTFB), this measures 
the time from when a connection is established to when the first data byte is received by 
the client. This includes CPU scheduling and application think time for the host, making 
it a more a measure of application performance and current load than TCP connection 
latency.

 ■ Round trip time (RTT): The time for a network packet to make a round trip between 
endpoints. The kernel may use such measurements with congestion control algorithms.

 ■ Connection lifespan: The duration of a network connection from initialization to 
close. Some protocols like HTTP can use a keep-alive strategy, leaving connections open 
and idle for future requests, to avoid the overheads and latency of repeated connection 
establishment.

Using these in combination can help locate the source of latency, by process of elimination. They 
should also be used in combination with other metrics to understand network health, including 
event rates and throughput.

Further Reading

This summarized selected topics as background for network analysis tools. The implementation 
of the Linux network stack is described in the kernel source under Documentation/networking 
[102], and network performance is covered in more depth in Chapter 10 of Systems Performance 
[Gregg 13a].

10.1.2 BPF Capabilities

Traditional network performance tools operate on kernel statistics and network packet captures. 
BPF tracing tools can provide more insight, answering:

 ■ What socket I/O is occurring, and why? What are the user-level stacks?

 ■ Which new TCP sessions are created, and by which processes?

 ■ Are there socket, TCP, or IP-level errors occurring?

 ■ What are the TCP window sizes? Any zero-size transmits?

 ■ What is the I/O size at different stack layers? To the devices?

 ■ Which packets are dropped by the network stack, and why?

 ■ What are the TCP connection latency, first byte latency, and lifespans?
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 ■ What is the kernel inter-network-stack latency?

 ■ How long do packets spend on the qdisc queues? Network driver queues?

 ■ What higher-level protocols are in use?

These can be answered with BPF by instrumenting tracepoints when available, and then using 
kprobes and uprobes when details beyond tracepoint coverage are needed.

Event Sources

Table 10-1 lists networking targets and the sources that can instrument them.

Table 10-1 Network Events and Sources

Network Event Event Source

Application protocols uprobes

Sockets syscalls tracepoints

TCP tcp tracepoints, kprobes

UDP kprobes

IP and ICMP kprobes

Packets skb tracepoints, kprobes

QDiscs and driver queues qdisc and net tracepoints, kprobes

XDP xdp tracepoints

Network device drivers kprobes

In many cases, kprobes must be used due to a lack of tracepoints. One reason that there are so few 
tracepoints is the historical (pre-BPF) lack of demand. Now that BPF is driving demand, the first 
TCP tracepoints were added in the 4.15 and 4.16 kernels. By Linux 5.2, the TCP tracepoints are:

# bpftrace -l 'tracepoint:tcp:*'

tracepoint:tcp:tcp_retransmit_skb

tracepoint:tcp:tcp_send_reset

tracepoint:tcp:tcp_receive_reset

tracepoint:tcp:tcp_destroy_sock

tracepoint:tcp:tcp_rcv_space_adjust

tracepoint:tcp:tcp_retransmit_synack

tracepoint:tcp:tcp_probe

More network protocol tracepoints may be added in future kernels. It may seem obvious to add 
send and receive tracepoints for the different protocols, but that involves modifying critical 
latency-sensitive code paths, and care must be taken to understand the not-enabled overheads 
that such additions would introduce.
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Overhead

Network events can be frequent, exceeding several million packets per second on some servers 
and workloads. Fortunately, BPF originated as an efficient per-packet filter, and adds only a tiny 
amount of overhead to each event. Nevertheless, when multiplied by millions or 10 millions of 
events per second, that can add up to become a noticeable or even significant overhead.

Fortunately, many observability needs can be met without per-packet tracing, by instead tracing 
events that have a much lower frequency and therefore lower overhead. TCP retransmits, for 
example, can be traced via the tcp_retransmit_skb() kernel function alone, without needing to 
trace each packet. I did this for a recent production issue, where the server packet rate was over 
100,000/second, and the retransmit rate was 1000/second. Whatever the overhead was for packet 
tracing, my choice of event to trace reduced it one hundred fold.

For times when it is necessary to trace each packet, raw tracepoints (introduced in Chapter 2) are a 
more efficient option than tracepoints and kprobes. 

A common technique for network performance analysis involves collecting per-packet captures 
(tcpdump(8), libpcap, etc.), which not only adds overhead to each packet but also additional CPU, 
memory, and storage overheads when writing these packets to the file system, then additional 
overheads when reading them again for post-processing. In comparison, BPF per-packet tracing is 
already a large efficiency improvement. Because it emits summaries calculated in kernel memory 
only, without the use of capture files. 

10.1.3 Strategy

If you are new to network performance analysis, here is a suggested overall strategy you can follow. 
The next sections explain these tools in more detail.

This strategy begins by using workload characterization to spot inefficiencies (steps 1 and 2), then 
checks interface limits (step 3) and different sources of latency (steps 4, 5, and 6). At this point, it 
may be worth trying experimental analysis (step 7)—bearing in mind, however, that it can interfere 
with production workloads—followed by more advanced and custom analysis (steps 8, 9, and 10).

 1. Use counter-based tools to understand basic network statistics: packet rates and throughput 
and, if TCP is in use, TCP connection rates and TCP retransmit rates (e.g., using ss(8), 
nstat(8), netstat(1) and sar(1)).

 2. Trace which new TCP connections are created, and their duration, to characterize the 
workload and look for inefficiencies (e.g., using BCC tcplife(8)). For example, you might 
find frequent connections to read a resource from a remote service that can be cached 
locally.

 3. Check whether network interface throughput limits have been hit (e.g., using sar(1) or 
nicstat(1)’s interface utilization percent).

 4. Trace TCP retransmits and other unusual TCP events (e.g., BCC tcpretrans(8), tcpdrop(8), 
and the skb:kfree_skb tracepoint).

 5. Measure host name resolution (DNS) latency, as this is a common source of performance 
issues (e.g., BCC gethostlatency(8)).
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 6. Measure networking latency from different points: connection latency, first byte latency, 
inter-stack latency, etc.

a. Note that network latency measurements can vary significantly with load due to 
bufferbloat in the network (an issue of excessive queueing latency). If possible, it can 
be useful to measure these latencies during load, and also for an idle network, for 
comparison.

 7. Use load-generation tools to explore network throughput limits between hosts, and to 
examine network events against a known workload (e.g., using iperf(1) and netperf(1)).

 8. Browse and execute the BPF tools listed in the BPF tools section of this book.

 9. Use high-frequency CPU profiling of kernel stack traces to quantify CPU time spent in 
protocol and driver processing.

 10. Use tracepoints and kprobes to explore network stack internals.

10.1.4 Common Tracing Mistakes

Some common mistakes when developing BPF tools for network analysis:

 ■ Events may not happen in application context. Packets may be received when the idle thread 
is on-CPU, and TCP sessions may be initialized and change state at this time. Examining the 
on-CPU PID and process name for these events will not show the application endpoint for 
the connection. You need to choose different events that are in application context, or cache 
application context by an identifier (e.g., struct sock) that can be fetched later.

 ■ There may be fast paths and slow paths. You may write a program that seems to work, but 
is only tracing one of these paths. Use known workloads and ensure that packet and byte 
counts match.

 ■ In TCP there are full sockets and non-full sockets: the latter are request sockets before the 
three-way handshake has completed, or when the socket is in the TCP TIME_WAIT state. 
Some socket struct fields may not be valid for non-full sockets.

10.2 Traditional Tools

Traditional performance tools can display kernel statistics for packet rates, various events, and 
throughput and show the state of open sockets. Many such statistics are commonly collected and 
graphed by monitoring tools. Another type of tool captures packets for analysis, allowing each 
packet header and contents to be studied.

Apart from solving issues, traditional tools can also provide clues to direct your further use of 
BPF tools. They have been categorized in Table 10.2 based on their source and measurement type, 
kernel statistics or packet captures.
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Table 10-2 Traditional Tools

Tool Type Description

ss Kernel statistics Socket statistics

ip Kernel statistics IP statistics

nstat Kernel statistics Network stack statistics

netstat Kernel statistics Multi-tool for showing network stack statistics and state

sar Kernel statistics Multi-tool for showing networking and other statistics

nicstat Kernel statistics Network interface statistics

ethtool Driver statistics Network interface driver statistics

tcpdump Packet capture Capture packets for analysis

The following sections summarize key functionality of these observability tools. Refer to their 
man pages and other resources, including Systems Performance [Gregg 13a], for more usage and 
explanations.

Note that there are also tools that perform experiments for network analysis. These include micro 
benchmarks such as iperf(1) and netperf(1), ICMP tools including ping(1), and network route 
discovery tools including traceroute(1) and pathchar. There is also the Flent GUI for automat-
ing network tests [103]. And there are tools for static analysis: checking the configuration of the 
system and hardware, without necessarily having any workload applied [Elling 00]. These experi-
mental and static tools are covered elsewhere (e.g., [Gregg 13a]).

The ss(8), ip(8), and nstat(8) tools are covered first, as these are from the iproute2 package that is 
maintained by the network kernel engineers. Tools from this package are most likely to support 
the latest Linux kernel features.

10.2.1 ss

ss(8) is a socket statistics tool that summarizes open sockets. The default output provides high-
level information about sockets, for example:

# ss

Netid State     Recv-Q  Send-Q    Local Address:Port      Peer Address:Port 

[...]

tcp   ESTAB     0       0         100.85.142.69:65264    100.82.166.11:6001                               

tcp   ESTAB     0       0         100.85.142.69:6028     100.82.16.200:6101 

[...]
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This output is a snapshot of the current state. The first column shows the protocol used by the 
sockets: these are TCP. Since this output lists all established connections with IP address informa-
tion, it can be used to characterize the current workload, and answer questions including how 
many client connections are open, how many concurrent connections there are to a dependency 
service, etc.

Much more information is available using options. For example, showing TCP sockets only (-t), 
with TCP internal info (-i), extended socket info (-e), process info (-p), and memory usage (-m):

# ss -tiepm

State     Recv-Q  Send-Q    Local Address:Port      Peer Address:Port              

                                                                                        

ESTAB     0        0       100.85.142.69:65264    100.82.166.11:6001   

 users:(("java",pid=4195,fd=10865)) uid:33 ino:2009918 sk:78 <->

         skmem:(r0,rb12582912,t0,tb12582912,f266240,w0,o0,bl0,d0) ts sack bbr ws

cale:9,9 rto:204 rtt:0.159/0.009 ato:40 mss:1448 pmtu:1500 rcvmss:1448 advmss:14

48 cwnd:152 bytes_acked:347681 bytes_received:1798733 segs_out:582 segs_in:1397 

data_segs_out:294 data_segs_in:1318 bbr:(bw:328.6Mbps,mrtt:0.149,pacing_gain:2.8

8672,cwnd_gain:2.88672) send 11074.0Mbps lastsnd:1696 lastrcv:1660 lastack:1660 

pacing_rate 2422.4Mbps delivery_rate 328.6Mbps app_limited busy:16ms rcv_rtt:39.

822 rcv_space:84867 rcv_ssthresh:3609062 minrtt:0.139

[...]

This output includes many details. Highlighted in bold are the endpoint addresses and the follow-
ing details:

 ■ "java",pid=4195: Process name "java", PID 4195

 ■ fd=10865: File descriptor 10865 (for PID 4195)

 ■ rto:204: TCP retransmission timeout: 204 milliseconds

 ■ rtt:0.159/0.009: Average round-trip time is 0.159 milliseconds, with 0.009 milliseconds 
mean deviation

 ■ mss:1448: Maximum segment size: 1448 bytes

 ■ cwnd:152: Congestion window size: 152 × MSS

 ■ bytes_acked:347681: 340 Kbytes successfully transmitted

 ■ bytes_received:1798733: 1.72 Mbytes received

 ■ bbr:...: BBR congestion control statistics

 ■ pacing_rate 2422.4Mbps: Pacing rate of 2422.4 Mbps

This tool uses the netlink interface, which uses sockets of family AF_NETLINK to fetch informa-
tion from the kernel.
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10.2.2 ip

ip(8) is a tool for managing routing, network devices, interfaces, and tunnels. For observability, it 
can be used to print statistics on various objects: link, address, route, etc. For example, printing 
extra statistics (-s) on interfaces (link):

# ip -s link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT 

group default qlen 1000

    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

    RX: bytes  packets  errors  dropped overrun mcast   

    26550075   273178   0       0       0       0       

    TX: bytes  packets  errors  dropped carrier collsns 

    26550075   273178   0       0       0       0       

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT 

group default qlen 1000

    link/ether 12:c0:0a:b0:21:b8 brd ff:ff:ff:ff:ff:ff

    RX: bytes  packets  errors  dropped overrun mcast   

    512473039143 568704184 0       0       0       0       

    TX: bytes  packets  errors  dropped carrier collsns 

    573510263433 668110321 0       0       0       0     

Various error types can be checked from this output: for receive (RX): receive errors, drops, and 
overruns; for transmit (TX): transmit errors, drops, carrier errors, and collisions. Such errors can 
be a source of performance issues and, depending on the error, may be caused by faulty network 
hardware.

Printing the route object shows the routing table:

# ip route

default via 100.85.128.1 dev eth0 

default via 100.85.128.1 dev eth0 proto dhcp src 100.85.142.69 metric 100 

100.85.128.0/18 dev eth0 proto kernel scope link src 100.85.142.69 

100.85.128.1 dev eth0 proto dhcp scope link src 100.85.142.69 metric 100 

Misconfigured routes can also be a source of performance problems. 

10.2.3 nstat

nstat(8) prints the various network metrics maintained by the kernel, with their  SNMP names:

# nstat -s

#kernel

IpInReceives                    462657733          0.0

IpInDelivers                    462657733          0.0

IpOutRequests                   497050986          0.0
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[...]

TcpActiveOpens                  362997             0.0

TcpPassiveOpens                 9663983            0.0

TcpAttemptFails                 12718              0.0

TcpEstabResets                  14591              0.0

TcpInSegs                       462181482          0.0

TcpOutSegs                      938958577          0.0

TcpRetransSegs                  129212             0.0

TcpOutRsts                      52362              0.0

[...]

The -s option was used to avoid resetting these counters, which is the default behavior of 
nstat(8). Resetting is useful, as you can then run nstat(8) a second time and see counts that 
spanned that interval, rather than totals since boot. If you had a network problem that could be 
reproduced with a command, then nstat(8) can be run before and after the command to show 
which counters changed.

nstat(8) also has a daemon mode (-d) to collect interval statistics, which when used are shown in 
the last column.

10.2.4 netstat

netstat(8) is a tool traditionally used for reporting different types of network statistics based on 
the options used. These options include:

 ■ (default): Lists open sockets

 ■ -a: Lists information for all sockets

 ■ -s: Network stack statistics

 ■ -i: Network interface statistics

 ■ -r: Lists the route table

For example, modifying the default output with -a to show all sockets, and -n to not resolve 
IP addresses (otherwise, this invocation can cause a heavy name resolution workload as a side 
effect), and -p to show process information:

# netstat -anp

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address     Foreign Address      State          PID/Program name    

tcp        0      0 192.168.122.1:53  0.0.0.0:*            LISTEN         8086/dnsmasq        

tcp         0       0 127.0.0.53:53          0.0.0.0:*            LISTEN        1112/systemd-resolv

tcp        0      0 0.0.0.0:22         0.0.0.0:*            LISTEN         1440/sshd 

[...]

tcp        0      0 10.1.64.90:36426  10.2.25.52:22        ESTABLISHED    24152/ssh           

[...]
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The -i option prints interface statistics. On a production cloud instance:

# netstat -i

Kernel Interface table

Iface   MTU     RX-OK RX-ERR RX-DRP RX-OVR     TX-OK TX-ERR TX-DRP TX-OVR Flg

eth0   1500 743442015      0      0 0      882573158      0      0      0 BMRU

lo    65536    427560      0      0 0         427560      0      0      0 LRU

The interface eth0 is the primary interface. The fields show receive (RX-) and transmit (TX-):

 ■ OK: Packets transferred successfully

 ■ ERR: Packet errors

 ■ DRP: Packet drops

 ■ OVR: Packet overruns

An additional -c (continuous) option prints this summary every second.

The -s option prints network stack statistics. For example, on a busy production system (output 
truncated):

# netstat -s

Ip:

    Forwarding: 2

    454143446 total packets received

    0 forwarded

    0 incoming packets discarded

    454143446 incoming packets delivered

    487760885 requests sent out

    42 outgoing packets dropped

    2260 fragments received ok

    13560 fragments created

Icmp:

[...]

Tcp:

    359286 active connection openings

    9463980 passive connection openings

    12527 failed connection attempts

    14323 connection resets received

    13545 connections established

    453673963 segments received

    922299281 segments sent out

    127247 segments retransmitted

    0 bad segments received

    51660 resets sent
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Udp:

[...]

TcpExt:

    21 resets received for embryonic SYN_RECV sockets

    12252 packets pruned from receive queue because of socket buffer overrun

    201219 TCP sockets finished time wait in fast timer

    11727438 delayed acks sent

    1445 delayed acks further delayed because of locked socket

    Quick ack mode was activated 17624 times

    169257582 packet headers predicted

    76058392 acknowledgments not containing data payload received

    111925821 predicted acknowledgments

    TCPSackRecovery: 1703

    Detected reordering 876 times using SACK

    Detected reordering 19 times using time stamp

    2 congestion windows fully recovered without slow start

[...]

This shows totals since boot. Much can be learned by studying this output: you can calcu-
late packet rates for different protocols, connection rates (TCP active and passive), error rates, 
throughput, and other events. Some of the metrics I look for first I’ve highlighted in bold.

This output has human-readable descriptions of the metrics; it is not supposed to be parsed by 
other software, such as monitoring agents. Those should read the metrics directly from 
/proc/net/snmp and /proc/net/netstat instead (or even nstat(8)).

10.2.5 sar

The system activity reporter, sar(1), can print various network statistics reports. sar(1) can be used 
live, or configured to record data periodically as a monitoring tool. The networking options to 
sar(1) are:

 ■ -n DEV: Network interface statistics

 ■ -n EDEV: Network interface errors

 ■ -n IP,IP6: IPv4 and IPv6 datagram statistics

 ■ -n EIP,EIP6: IPv4 and IPv6 error statistics

 ■ -n ICMP,ICMP6: ICMP IPv4 and IPv6 statistics

 ■ -n EICMP,EICMP6: ICMP IPv4 and IPv6 error statistics

 ■ -n TCP: TCP statistics

 ■ -n ETCP: TCP error statistics

 ■ -n SOCK,SOCK6: IPv4 and IPv6 socket usage
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As an example invocation, the following shows using four of these options on a production 
Hadoop instance, printed with an interval of one second:

# sar -n SOCK,TCP,ETCP,DEV 1

Linux 4.15.0-34-generic (...)       03/06/2019    _x86_64_      (36 CPU)

 

08:06:48 PM     IFACE   rxpck/s   txpck/s    rxkB/s    txkB/s   rxcmp/s   txcmp/s  

rxmcst/s   %ifutil

08:06:49 PM      eth0 121615.00 108725.00 168906.73 149731.09      0.00      0.00      

0.00     13.84

08:06:49 PM        lo    600.00    600.00  11879.12  11879.12      0.00      0.00      

0.00      0.00

 

08:06:48 PM    totsck    tcpsck    udpsck    rawsck   ip-frag    tcp-tw

08:06:49 PM      2133       108         5         0         0      7134

 

08:06:48 PM  active/s passive/s    iseg/s    oseg/s

08:06:49 PM     16.00    134.00  15230.00 109267.00

 

08:06:48 PM  atmptf/s  estres/s retrans/s isegerr/s   orsts/s

08:06:49 PM      0.00      8.00      1.00      0.00     14.00

[...]

This multi-line output repeats for each interval. It can be used to determine:

 ■ The number of open TCP sockets (tcpsck)

 ■ The current TCP connection rate (active/s + passive/s)

 ■ The TCP retransmit rate (retrans/s / oseg/s)

 ■ Interfaces packet rates and throughput (rxpck/s + txpck/s, rxkB/s + txkB/s)

This is a cloud instance where I expect network interface errors to be zero: on physical servers, 
include the EDEV group to check for such errors.

10.2.6 nicstat

This tool prints network interface statistics and is modeled on iostat(1).5 For example:

# nicstat 1

    Time      Int   rKB/s   wKB/s   rPk/s   wPk/s    rAvs    wAvs %Util    Sat

20:07:43     eth0  122190 81009.7 89435.8 61576.8  1399.0  1347.2  10.0    0.00

20:07:43       lo 13000.0 13000.0   646.7   646.7 20583.5 20583.5  0.00    0.00

5 Origin: I developed it for Solaris on 18-Jul-2004; Tim Cook developed the Linux version. 
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    Time      Int   rKB/s   wKB/s   rPk/s   wPk/s    rAvs    wAvs %Util    Sat

20:07:44     eth0  268115 42283.6  185199 40329.2  1482.5  1073.6  22.0    0.00

20:07:44       lo  1869.3  1869.3   400.3   400.3  4782.1  4782.1  0.00    0.00

    Time      Int   rKB/s   wKB/s   rPk/s   wPk/s    rAvs    wAvs %Util    Sat

20:07:45     eth0  146194 40685.3  102412 33270.4  1461.8  1252.2  12.0    0.00

20:07:45       lo  1721.1  1721.1   109.1   109.1 16149.1 16149.1  0.00    0.00

[...]

This includes a saturation statistic, which combines different errors that indicate the level of 
interface saturation. A -U option will print separate read and write utilization percents, to deter-
mine if one direction is hitting limits.

10.2.7 ethtool

ethtool(8) can be used to check the static configuration of the network interfaces with -i and -k 
options, and also print driver statistics with -S. For example:

# ethtool -S eth0

NIC statistics:

     tx_timeout: 0

     suspend: 0

     resume: 0

     wd_expired: 0

     interface_up: 1

     interface_down: 0

     admin_q_pause: 0

     queue_0_tx_cnt: 100219217

     queue_0_tx_bytes: 84830086234

     queue_0_tx_queue_stop: 0

     queue_0_tx_queue_wakeup: 0

     queue_0_tx_dma_mapping_err: 0

     queue_0_tx_linearize: 0

     queue_0_tx_linearize_failed: 0

     queue_0_tx_napi_comp: 112514572

     queue_0_tx_tx_poll: 112514649

     queue_0_tx_doorbells: 52759561

[...]

This fetches statistics from the kernel ethtool framework, which many network device drivers 
support. Device drivers can define their own ethtool metrics.
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The -i option shows driver details, and -k shows interface tunables. For example:

# ethtool -i eth0

driver: ena

version: 2.0.3K

[...]

# ethtool -k eth0

Features for eth0:

rx-checksumming: on

[...]

tcp-segmentation-offload: off

        tx-tcp-segmentation: off [fixed]

        tx-tcp-ecn-segmentation: off [fixed]

        tx-tcp-mangleid-segmentation: off [fixed]

        tx-tcp6-segmentation: off [fixed]

udp-fragmentation-offload: off

generic-segmentation-offload: on

generic-receive-offload: on

large-receive-offload: off [fixed]

rx-vlan-offload: off [fixed]

tx-vlan-offload: off [fixed]

ntuple-filters: off [fixed]

receive-hashing: on

highdma: on

[...]

This example is a cloud instance with the ena driver, and tcp-segmentation-offload is currently 
off. The -K option can be used to change these tunables.

10.2.8 tcpdump

Finally, tcpdump(8) can capture packets for study. This is termed “packet sniffing.” For example, 
sniffing interface en0 (-i) and writing (-w) to a dump file and then reading it (-r) without name 
resolution (-n)6:

# tcpdump -i en0 -w /tmp/out.tcpdump01

tcpdump: listening on en0, link-type EN10MB (Ethernet), capture size 262144 bytes

^C451 packets captured

477 packets received by filter

0 packets dropped by kernel

# tcpdump -nr /tmp/out.tcpdump01

reading from file /tmp/out.tcpdump01, link-type EN10MB (Ethernet)

6 It may cause additional network traffic for name resolution as an unwanted side effect of reading the file.
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13:39:48.917870 IP 10.0.0.65.54154 > 69.53.1.1.4433: UDP, length 1357

13:39:48.921398 IP 108.177.1.2.443 > 10.0.0.65.59496: Flags [P.], seq 

3108664869:3108664929, ack 2844371493, win 537, options [nop,nop,TS val 2521261

368 ecr 4065740083], length 60

13:39:48.921442 IP 10.0.0.65.59496 > 108.177.1.2.443: Flags [.], ack 60, win 505, 

options [nop,nop,TS val 4065741487 ecr 2521261368], length 0

13:39:48.921463 IP 108.177.1.2.443 > 10.0.0.65.59496: Flags [P.], seq 0:60, ack 1, 

win 537, options [nop,nop,TS val 2521261793 ecr 4065740083], length 60

[...]

tcpdump(8) output files can be read by other tools, including the Wireshark GUI [104]. Wireshark 
allows packet headers to be easily inspected, and TCP sessions to be “followed,” reassembling the 
transmit and receive bytes so that client/host interactions can be studied.

While packet capture has been optimized in the kernel and the libpcap library, at high rates it can 
still be expensive to perform, costing additional CPU overheads to collect, and CPU, memory, and 
disk resources to store, and then again to post-process. These overheads can be reduced somewhat 
by using a filter, so that only packets with certain header details are recorded. However, there are 
CPU overheads even for packets that are not collected.7 Since the filter expression must be applied 
to all packets, its processing must be efficient. This is the origin of Berkeley Packet Filter (BPF), 
which was created as a packet capture filter and later extended to become the technology I am 
using in this book for tracing tools. See Section 2.2 for an example of a tcpdump(8) filter program.

While packet capture tools may appear to show comprehensive details of networking, they 
only show details sent on the wire. They are blind to kernel state, including which processes are 
responsible for the packets, the stack traces, and kernel state of the sockets and TCP. Such details 
can be seen using BPF tracing tools.

10.2.9 /proc

Many of the prior statistic tools source metrics from /proc files, especially those in /proc/net. This 
directory can be explored at the command line:

$ ls /proc/net/

anycast6      if_inet6            ip_tables_names    ptype      sockstat6

arp           igmp                ip_tables_targets  raw        softnet_stat

bnep          igmp6               ipv6_route         raw6       stat/

connector     ip6_flowlabel       l2cap              rfcomm     tcp

dev           ip6_mr_cache        mcfilter           route      tcp6

dev_mcast     ip6_mr_vif          mcfilter6          rt6_stats  udp

dev_snmp6/    ip6_tables_matches  netfilter/         rt_acct    udp6

fib_trie      ip6_tables_names    netlink            rt_cache   udplite

fib_triestat  ip6_tables_targets  netstat            sco        udplite6

7 Every skb has to be cloned before it is handed to one of the packet handlers, and only later filtered (see 

dev_queue_xmit_nit()). BPF-based solutions can avoid the skb copy.
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hci           ip_mr_cache         packet             snmp       unix

icmp          ip_mr_vif           protocols          snmp6      wireless

icmp6         ip_tables_matches   psched             sockstat   xfrm_stat

$ cat /proc/net/snmp

Ip: Forwarding DefaultTTL InReceives InHdrErrors InAddrErrors ForwDatagrams 

InUnknownProtos InDiscards InDelivers OutRequests OutDiscards OutNoRoutes 

ReasmTimeout ReasmReqds ReasmOKs ReasmFails FragOKs FragFails FragCreates

Ip: 2 64 45794729 0 28 0 0 0 45777774 40659467 4 6429 0 0 0 0 0 0 0

[...]

The netstat(1) and sar(1) tools expose many of these metrics. As shown earlier, they include 
system-wide statistics for packet rates, TCP active and passive new connections, TCP retransmits, 
ICMP errors, and much more.

There are also /proc/interrupts and /proc/softirqs, which can show the distribution of network 
device interrupts across CPUs. For example, on a two-CPU system:

$ cat /proc/interrupts

           CPU0       CPU1       

[...]

 28:    1775400         80   PCI-MSI 81920-edge      ena-mgmnt@pci:0000:00:05.0

 29:        533    5501189   PCI-MSI 81921-edge      eth0-Tx-Rx-0

 30:    4526113        278   PCI-MSI 81922-edge      eth0-Tx-Rx-1

$ cat /proc/softirqs

                    CPU0       CPU1       

[...]

      NET_TX:     332966         34

      NET_RX:   10915058   11500522

[...]

This system has an eth0 interface that uses the ena driver. The above output shows eth0 is 
using a queue for each CPU, and receive softirqs are spread across both CPUs. (Transmits appear 
unbalanced, but the network stack often skips this softirq and transmits directly to the device.) 
mpstat(8) also has an -I option to print interrupt statistics.

The BPF tools that follow have been created to extend, rather than duplicate, network observ-
ability beyond these /proc and traditional tool metrics. There is a BPF sockstat(8) for system-wide 
socket metrics, since those particular metrics are not available in /proc. But there is not a similar 
tcpstat(8), udpstat(8), or ipstat(8) tool for system-wide metrics: while it is possible to write these in 
BPF, such tools only need to use the already-maintained metrics in /proc. It is not even necessary 
to write those tools: netstat(1) and sar(1) provide that observability.

The following BPF tools extend observability by breaking down statistics by process ID, process name, 
IP address, and ports, revealing stack traces that led to events, exposing kernel state, and by showing 
custom latency measurements. It might appear that these tools are comprehensive: they are not. 
They are designed to be used with /proc/net and the earlier traditional tools, to extend observability.
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10.3 BPF Tools

This section covers the BPF tools you can use for network performance analysis and troubleshoot-
ing. They are shown in Figure 10-4.

Figure 10-4 BPF tools for network analysis

bpftrace is shown in Figure 10-4 as observing device drivers. See Section 10.4.3 for examples. The 
other tools in this figure are from either the BCC or bpftrace repositories covered in Chapters 4 
and 5, or were created for this book. Some tools appear in both BCC and bpftrace. Table 10-3 lists 
the origins of these tools (BT is short for bpftrace).

Table 10-3 Network-Related Tools

Tool Source Target Description

sockstat Book Sockets High-level socket statistics

sofamily Book Sockets Count address families for new sockets, by process

soprotocol Book Sockets Count transport protocols for new sockets, 
by process

soconnect Book Sockets Trace socket IP-protocol connections with details

soaccept Book Sockets Trace socket IP-protocol accepts with details

socketio Book Sockets Summarize socket details with I/O counts

socksize Book Sockets Show socket I/O sizes as per-process histograms

sormem Book Sockets Show socket receive buffer usage and overflows

soconnlat Book Sockets Summarize IP socket connection latency 
with stacks

so1stbyte Book Sockets Summarize IP socket first byte latency

tcpconnect BCC/BT/book TCP Trace TCP active connections (connect())

tcpaccept BCC/BT/book TCP Trace TCP passive connections (accept())



ptg30854589

412 Chapter 10  Networking

Tool Source Target Description

tcplife BCC/book TCP Trace TCP session lifespans with connection details

tcptop BCC TCP Show TCP send/recv throughput by host

tcpretrans BCC/BT TCP Trace TCP retransmits with address and TCP state

tcpsynbl Book TCP Show TCP SYN backlog as a histogram

tcpwin Book TCP Trace TCP send congestion window parameters

tcpnagle Book TCP Trace TCP nagle usage and transmit delays

udpconnect Book UDP Trace new UDP connections from localhost

gethostlatency Book/BT DNS Trace DNS lookup latency via library calls

ipecn Book IP Trace IP inbound explicit congestion notification

superping Book ICMP Measure ICMP echo times from the network stack

qdisc-fq (...) Book qdiscs Show FQ qdisc queue latency

netsize Book net Show net device I/O sizes

nettxlat Book net Show net device transmission latency

skbdrop Book skbs Trace sk_buff drops with kernel stack traces

skblife Book skbs Lifespan of sk_buff as inter-stack latency

ieee80211scan Book WiFi Trace IEEE 802.11 WiFi scanning

For the tools from BCC and bpftrace, see their repositories for full and updated lists of tool 
options and capabilities. A selection of the most important capabilities is summarized here.

10.3.1 sockstat

sockstat(8)8 prints socket statistics along with counts for socket-related system calls each second. 
For example, on a production edge server:

# sockstat.bt 

Attaching 10 probes...

Tracing sock statistics. Output every 1 second.

01:11:41

@[tracepoint:syscalls:sys_enter_bind]: 1

@[tracepoint:syscalls:sys_enter_socket]: 67

@[tracepoint:syscalls:sys_enter_connect]: 67

@[tracepoint:syscalls:sys_enter_accept4]: 89

@[kprobe:sock_sendmsg]: 5280

@[kprobe:sock_recvmsg]: 10547

 

01:11:42

[...]

8 Origin: I created it for this book on 14-Apr-2019.
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A time is printed each second (e.g., "21:22:56"), followed by counts for various socket events. This 
example shows 10,547 sock_recvmsg() and 5280 sock_sendmsg() events per second, and fewer 
than one hundred accept4(2)s and connect(2)s. 

The role of this tool is to provide high-level socket statistics for workload characterization, and 
starting points for further analysis. The output includes the probe name so that you can investi-
gate further; for example, if you see a higher-than-expected rate of kprobe:sock_sendmsg events, 
the process name can be fetched using this bpftrace one-liner9:

# bpftrace -e 'kprobe:sock_sendmsg { @[comm] = count(); }'

Attaching 1 probe...

^C

 

@[sshd]: 1

@[redis-server]: 3

@[snmpd]: 6

@[systemd-resolve]: 28

@[java]: 17377

The user-level stack trace can also be inspected by adding ustack to the map key.

The sockstat(8) tool works by tracing key socket-related syscalls using tracepoints, and the 
sock_recvmsg() and sock_sendmsg() kernel functions using kprobes. The overhead of the kprobes 
is likely to be the most noticeable, and may become measurable on high network-throughput 
systems.

The source to sockstat(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing sock statistics. Output every 1 second.\n");

}

 

tracepoint:syscalls:sys_enter_accept*,

tracepoint:syscalls:sys_enter_connect,

tracepoint:syscalls:sys_enter_bind,

tracepoint:syscalls:sys_enter_socket*,

kprobe:sock_recvmsg,

kprobe:sock_sendmsg

{

        @[probe] = count();

}

9 Note for this and subsequent tools: applications can override their comm string by writing to /proc/self/comm.
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interval:s:1

{

        time();

        print(@);

        clear(@);

}

The use of these kprobes is a shortcut. These could be traced using syscall tracepoints instead. The 
recvfrom(2), recvmsg(2), sendto(2), and sendmsg(2) syscalls, and other variants, can be traced 
by adding more tracepoints to the code. It becomes more complex with the read(2) and write(2) 
family of syscalls, where the file descriptor must be processed to determine the file type, to match 
on socket reads and writes only.

10.3.2 sofamily

sofamily(8)10 traces new socket connections via the accept(2) and connect(2) system calls and 
summarizes the process name and address family. This is useful for workload characterization: 
quantifying the load applied and looking for any unexpected socket usage that needs further 
investigation. For example, on a production edge server:

# sofamily.bt

Attaching 7 probes...

Tracing socket connect/accepts. Ctrl-C to end.

^C

 

@accept[sshd, 2, AF_INET]: 2

@accept[java, 2, AF_INET]: 420

 

@connect[sshd, 2, AF_INET]: 2

@connect[sshd, 10, AF_INET6]: 2

@connect[(systemd), 1, AF_UNIX]: 12

@connect[sshd, 1, AF_UNIX]: 34

@connect[java, 2, AF_INET]: 215

This output shows 420 AF_INET (IPv4) accepts and 215 connection attempts by Java while tracing, 
which is expected for this server. The output shows a map for socket accepts (@accept) and 
connects (@connect), with the keys process name, address family number, and the address family 
name for that number if known.

The address family number mappings (e.g., AF_INET == 2) is specific to Linux and is defined in 
the include/linux/socket.h header. (The table is included on the following pages.) Other kernels 
use their own number mappings.

10 Origin: I created this tool for this book on 10-Apr-2019.
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Since the traced calls occur at a relatively low rate (compared to packet events), the overhead of 
this tool is expected to be negligible.

The source to sofamily(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/socket.h>

 

BEGIN

{

        printf("Tracing socket connect/accepts. Ctrl-C to end.\n");

        // from linux/socket.h:

        @fam2str[AF_UNSPEC] = "AF_UNSPEC";

        @fam2str[AF_UNIX] = "AF_UNIX";

        @fam2str[AF_INET] = "AF_INET";

        @fam2str[AF_INET6] = "AF_INET6";

}

 

tracepoint:syscalls:sys_enter_connect

{

        @connect[comm, args->uservaddr->sa_family,

            @fam2str[args->uservaddr->sa_family]] = count();

}

 

tracepoint:syscalls:sys_enter_accept,

tracepoint:syscalls:sys_enter_accept4

{

        @sockaddr[tid] = args->upeer_sockaddr;

}

 

tracepoint:syscalls:sys_exit_accept,

tracepoint:syscalls:sys_exit_accept4

/@sockaddr[tid]/

{

        if (args->ret > 0) {

                $sa = (struct sockaddr *)@sockaddr[tid];

                @accept[comm, $sa->sa_family, @fam2str[$sa->sa_family]] =

                    count();

        }

        delete(@sockaddr[tid]);

}

 

END



ptg30854589

416 Chapter 10  Networking

{

        clear(@sockaddr); clear(@fam2str);

}

The address family is read from the sa_family member of struct sockaddr. This is a number of type 
sa_family_t, which resolves to unsigned short. This tool includes the number on the output and 
also maps some common address families to string names to aid readability, based on this table 
from linux/socket.h:

/* Supported address families. */

#define AF_UNSPEC       0

#define AF_UNIX         1       /* Unix domain sockets          */

#define AF_LOCAL        1       /* POSIX name for AF_UNIX       */

#define AF_INET         2       /* Internet IP Protocol         */

#define AF_AX25         3       /* Amateur Radio AX.25          */

#define AF_IPX          4       /* Novell IPX                   */

#define AF_APPLETALK    5       /* AppleTalk DDP                */

#define AF_NETROM       6       /* Amateur Radio NET/ROM        */

#define AF_BRIDGE       7       /* Multiprotocol bridge         */

#define AF_ATMPVC       8       /* ATM PVCs                     */

#define AF_X25          9       /* Reserved for X.25 project    */

#define AF_INET6        10      /* IP version 6                 */

[..]

This header is included when running this bpftrace program, so that this line:

@fam2str[AF_INET] = "AF_INET";

becomes:

@fam2str[2] = "AF_INET";

mapping the number two to the string "AF_INET".

For the connect(2) syscall, all details are read on the syscall entry. The accept(2) syscalls are traced 
differently: the sockaddr pointer is saved in a hash and then retrieved on the exit of those syscalls 
to read the address family. This is because the sockaddr is populated during the syscall, so must be 
read at the end. The accept(2) return value is also checked (was it successful or not?); otherwise, 
the contents of the sockaddr struct would not be valid. This script could be enhanced to do a 
similar check for connect(2), so that the output counts are given only for successful new connec-
tions. The soconnect(8) tool shows the different return results for these connect(2) syscalls.

10.3.3 soprotocol

soprotocol(8)11 traces new socket connections and summarizes the process name and transport 
protocol. This is another workload characterization tool, for the transport protocol. For example, 
on a production edge server:

11 Origin: I created this tool for this book on 13-Apr-2019.
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# soprotocol.bt

Attaching 4 probes...

Tracing socket connect/accepts. Ctrl-C to end.

^C

 

@accept[java, 6, IPPROTO_TCP, TCP]: 1171

 

@connect[setuidgid, 0, IPPROTO, UNIX]: 2

@connect[ldconfig, 0, IPPROTO, UNIX]: 2

@connect[systemd-resolve, 17, IPPROTO_UDP, UDP]: 79

@connect[java, 17, IPPROTO_UDP, UDP]: 80

@connect[java, 6, IPPROTO_TCP, TCP]: 559

This output shows 559 TCP accepts and 1171 TCP connects by Java while tracing. The output 
shows a map for socket accepts (@accept) and connects (@connect), with the keys: process name, 
protocol number, protocol name for that number if known, and protocol module name.

Since these calls happen at a relatively low rate (compared to packet events), the overhead of this 
tool is expected to be negligible.

The source to soprotocol(8) is:

#!/usr/local/bin/bpftrace

 

#include <net/sock.h>

 

BEGIN

{

        printf("Tracing socket connect/accepts. Ctrl-C to end.\n");

        // from include/uapi/linux/in.h:

        @prot2str[IPPROTO_IP] = "IPPROTO_IP";

        @prot2str[IPPROTO_ICMP] = "IPPROTO_ICMP";

        @prot2str[IPPROTO_TCP] = "IPPROTO_TCP";

        @prot2str[IPPROTO_UDP] = "IPPROTO_UDP";

}

 

kprobe:security_socket_accept,

kprobe:security_socket_connect

{

        $sock = (struct socket *)arg0;

        $protocol = $sock->sk->sk_protocol & 0xff;

        @connect[comm, $protocol, @prot2str[$protocol],

            $sock->sk->__sk_common.skc_prot->name] = count();

}
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END

{

        clear(@prot2str);

}

This provides a short lookup table to translate protocol numbers into strings, and four common 
protocols. These are from the in.h header:

#if __UAPI_DEF_IN_IPPROTO

/* Standard well-defined IP protocols.  */

enum {

  IPPROTO_IP = 0,               /* Dummy protocol for TCP               */

#define IPPROTO_IP              IPPROTO_IP

  IPPROTO_ICMP = 1,             /* Internet Control Message Protocol    */

#define IPPROTO_ICMP            IPPROTO_ICMP

  IPPROTO_IGMP = 2,             /* Internet Group Management Protocol   */

#define IPPROTO_IGMP            IPPROTO_IGMP

  IPPROTO_IPIP = 4,             /* IPIP tunnels (older KA9Q tunnels use 94) */

#define IPPROTO_IPIP            IPPROTO_IPIP

  IPPROTO_TCP = 6,              /* Transmission Control Protocol        */

#define IPPROTO_TCP             IPPROTO_TCP

[...]

The bpftrace @prot2str table can be extended if needed.

The protocol module name, seen in the previous output as "TCP," "UDP," etc., is available as a 
string from the struct sock: __sk_common.skc_prot->name. This is convenient, and I’ve used this 
in other tools to print the transport protocol. Here is an an example from net/ipv4/tcp_ipv4.c:

struct proto tcp_prot = {

        .name                   = "TCP",

        .owner                  = THIS_MODULE,

        .close                  = tcp_close,

        .pre_connect            = tcp_v4_pre_connect,

[...]

The presence of this name field (.name = "TCP") is a Linux kernel implementation detail. While 
convenient, it is possible that this .name member could change or vanish in future kernels. The 
transport protocol number, however, should always be present—which is why I included it in this 
tool as well.

The syscall tracepoints for accept(2) and connect(2) do not provide an easy path for fetching the 
protocol, and currently there are not any other tracepoints for these events. Without them, 
I have switched to using kprobes and chosen the LSM security_socket_* functions, which provide 
a struct sock as the first argument, and are a relatively stable interface.
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10.3.4 soconnect

soconnect(8)12 shows IP protocol socket connect requests. For example:

# soconnect.bt 

Attaching 4 probes...

PID    PROCESS        FAM ADDRESS          PORT   LAT(us) RESULT

11448  ssh            2   127.0.0.1        22          43 Success

11449  ssh            2   10.168.188.1     22       45134 Success

11451  curl           2   100.66.96.2      53           6 Success

11451  curl           10  2406:da00:ff00::36d0:a866  80         3 Network unreachable

11451  curl           2   52.43.200.64     80           7 Success

11451  curl           2   52.39.122.191    80           3 Success

11451  curl           2   52.24.119.28     80          19 In progress

[...]

This shows two ssh(1) connections to port 22, followed by a curl(1) process that begins with a port 
53 connection (DNS) and then an attempted IPv6 connection to port 80 that resulted in “network 
unreachable,” followed by successful IPv4 connections. The columns are:

 ■ PID: Process ID calling connect(2)

 ■ PROCESS: Process name calling connect(2)

 ■ FAM: Address family number (see the description in sofamily(8) earlier)

 ■ ADDRESS: IP address

 ■ PORT: Remote port

 ■ LAT(us): Latency (duration) of the connect(2) syscall only (see note below)

 ■ RESULT: Syscall error status

Note that IPv6 addresses can be so long that they cause the columns to overflow13 (as seen in this 
example).

This works by instrumenting the connect(2) syscall tracepoints. One benefit is that these occur 
in process context, so you can reliably know who made the syscall. Compare this to the later 
tcpconnect(8) tool, which traces deeper in TCP and may or may not identify the process respon-
sible. These connect(8) syscalls are also relatively low in frequency compared to packets and other 
events, and the overhead should be negligible.

The reported latency is for the connect() syscall only. For some applications, including the ssh(1) 
processes seen in the earlier output, this spans the network latency to establish a connection to 

12 Origin: I created this for the 2011 DTrace book [Gregg 11] and created this bpftrace version on 9-Apr-2019.

13 You might wonder why I don’t just make the columns wider. If I did, it would cause wrapping for every line of output 

in this example, rather than just one. I try to keep the default output of all tools to less than 80 characters wide, so 

that it fits without problems in books, slides, emails, ticketing systems, and chat rooms. Some tools in BCC have a wide 

mode available, just to fit IPv6 neatly. 



ptg30854589

420 Chapter 10  Networking

the remote host. Other applications may create non-blocking sockets (SOCK_NONBLOCK), and 
the connect() syscall may return early before the connection is completed. This can be seen in the 
example output as the final curl(1) connection that results in an "In progress" result. To measure 
the full connection latency for these non-blocking calls requires instrumenting more events; an 
example is the later soconnlat(8) tool.

The source to soconnect(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/in.h>

#include <linux/in6.h>

 

BEGIN

{

        printf("%-6s %-16s FAM %-16s %-5s %8s %s\n", "PID", "PROCESS",

            "ADDRESS", "PORT", "LAT(us)", "RESULT");

        // connect(2) has more details:

        @err2str[0] = "Success";

        @err2str[EPERM] = "Permission denied";

        @err2str[EINTR] = "Interrupted";

        @err2str[EBADF] = "Invalid sockfd";

        @err2str[EAGAIN] = "Routing cache insuff.";

        @err2str[EACCES] = "Perm. denied (EACCES)";

        @err2str[EFAULT] = "Sock struct addr invalid";

        @err2str[ENOTSOCK] = "FD not a socket";

        @err2str[EPROTOTYPE] = "Socket protocol error";

        @err2str[EAFNOSUPPORT] = "Address family invalid";

        @err2str[EADDRINUSE] = "Local addr in use";

        @err2str[EADDRNOTAVAIL] = "No port available";

        @err2str[ENETUNREACH] = "Network unreachable";

        @err2str[EISCONN] = "Already connected";

        @err2str[ETIMEDOUT] = "Timeout";

        @err2str[ECONNREFUSED] = "Connect refused";

        @err2str[EALREADY] = "Not yet completed";

        @err2str[EINPROGRESS] = "In progress";

}

 

tracepoint:syscalls:sys_enter_connect

/args->uservaddr->sa_family == AF_INET ||

    args->uservaddr->sa_family == AF_INET6/
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{

        @sockaddr[tid] = args->uservaddr;

        @start[tid] = nsecs;

}

 

tracepoint:syscalls:sys_exit_connect

/@start[tid]/

{

        $dur_us = (nsecs - @start[tid]) / 1000;

        printf("%-6d %-16s %-3d ", pid, comm, @sockaddr[tid]->sa_family);

 

        if (@sockaddr[tid]->sa_family == AF_INET) {

                $s = (struct sockaddr_in *)@sockaddr[tid];

                $port = ($s->sin_port >> 8) | (($s->sin_port << 8) & 0xff00);

                printf("%-16s %-5d %8d %s\n",

                    ntop(AF_INET, $s->sin_addr.s_addr),

                    $port, $dur_us, @err2str[- args->ret]);

        } else {

                $s6 = (struct sockaddr_in6 *)@sockaddr[tid];

                $port = ($s6->sin6_port >> 8) | (($s6->sin6_port << 8) & 0xff00);

                printf("%-16s %-5d %8d %s\n",

                    ntop(AF_INET6, $s6->sin6_addr.in6_u.u6_addr8),

                    $port, $dur_us, @err2str[- args->ret]);

        }

 

        delete(@sockaddr[tid]);

        delete(@start[tid]);

}

 

END

{

        clear(@start); clear(@err2str); clear(@sockaddr);

}

This records the struct sockaddr pointer when the syscall begins from args->uservaddr, along with 
a timestamp, so that these details can be fetched on the syscall exit. The sockaddr struct contains 
the connection details, but it must first be recast to the IPv4 sockaddr_in or the IPv6 sockaddr_in6 
based on the sin_family member. A table of error codes that map to descriptions for connect(2) is 
used, based on the descriptions in the connect(2) man page.

The port number is flipped from network to host order using bitwise operations.

http://>sin6_addr.in6_u.u6_addr8


ptg30854589

422 Chapter 10  Networking

10.3.5 soaccept

soaccept(8)14 shows IP protocol socket accepts. For example:

# soaccept.bt 

Attaching 6 probes...

PID    PROCESS          FAM ADDRESS          PORT  RESULT

4225   java             2   100.85.215.60    65062 Success

4225   java             2   100.85.54.16     11742 Success

4225   java             2   100.82.213.228   18500 Success

4225   java             2   100.85.209.40    20150 Success

4225   java             2   100.82.21.89     27278 Success

4225   java             2   100.85.192.93    32490 Success

[...]

This shows many accepts by Java from different address. The port shown is the remote ephemeral 
port. See the later tcpaccept(8) tool for showing both endpoint ports. The columns are:

 ■ PID: Process ID calling connect(2)

 ■ COMM: Process name calling connect(2)

 ■ FAM: Address family number (see the description in Section 10.3.2)

 ■ ADDRESS: IP address

 ■ PORT: Remote port

 ■ RESULT: Syscall error status

This works by instrumenting the accept(2) syscall tracepoint. As with soconnect(8), this occurs 
in process context, so you can reliably identify who is making these accept(8) calls. These are 
also relatively low frequency compared to packets and other events, and the overhead should be 
negligible.

The source to soaccept(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/in.h>

#include <linux/in6.h>

 

BEGIN

{

        printf("%-6s %-16s FAM %-16s %-5s %s\n", "PID", "PROCESS",

            "ADDRESS", "PORT", "RESULT");

        // accept(2) has more details:

14 Origin: I created this for the 2011 DTrace book [Gregg 11] and created this bpftrace version on 13-Apr-2019.



ptg30854589

42310.3 BPF Tools

        @err2str[0] = "Success";

        @err2str[EPERM] = "Permission denied";

        @err2str[EINTR] = "Interrupted";

        @err2str[EBADF] = "Invalid sockfd";

        @err2str[EAGAIN] = "None to accept";

        @err2str[ENOMEM] = "Out of memory";

        @err2str[EFAULT] = "Sock struct addr invalid";

        @err2str[EINVAL] = "Args invalid";

        @err2str[ENFILE] = "System FD limit";

        @err2str[EMFILE] = "Process FD limit";

        @err2str[EPROTO] = "Protocol error";

        @err2str[ENOTSOCK] = "FD not a socket";

        @err2str[EOPNOTSUPP] = "Not SOCK_STREAM";

        @err2str[ECONNABORTED] = "Aborted";

        @err2str[ENOBUFS] = "Memory (ENOBUFS)";

}

 

tracepoint:syscalls:sys_enter_accept,

tracepoint:syscalls:sys_enter_accept4

{

        @sockaddr[tid] = args->upeer_sockaddr;

}

 

tracepoint:syscalls:sys_exit_accept,

tracepoint:syscalls:sys_exit_accept4

/@sockaddr[tid]/

{

        $sa = (struct sockaddr *)@sockaddr[tid];

        if ($sa->sa_family == AF_INET || $sa->sa_family == AF_INET6) {

                printf("%-6d %-16s %-3d ", pid, comm, $sa->sa_family);

                $error = args->ret > 0 ? 0 : - args->ret;

 

                if ($sa->sa_family == AF_INET) {

                        $s = (struct sockaddr_in *)@sockaddr[tid];

                        $port = ($s->sin_port >> 8) |

                            (($s->sin_port << 8) & 0xff00);

                        printf("%-16s %-5d %s\n",

                            ntop(AF_INET, $s->sin_addr.s_addr),

                            $port, @err2str[$error]);

                } else {

                        $s6 = (struct sockaddr_in6 *)@sockaddr[tid];

                        $port = ($s6->sin6_port >> 8) |

                            (($s6->sin6_port << 8) & 0xff00);
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                        printf("%-16s %-5d %s\n",

                            ntop(AF_INET6, $s6->sin6_addr.in6_u.u6_addr8),

                            $port, @err2str[$error]);

                }

        }

 

        delete(@sockaddr[tid]);

}

 

END

{

        clear(@err2str); clear(@sockaddr);

}

This is similar to soconnect(8), processing and recasting the sockaddr on the return of the syscall. 
The error code descriptions have been changed, based on the descriptions in the accept(2) man 
page.

10.3.6 socketio

socketio(8)15 shows socket I/O counts by process, direction, protocol, and port. Example output:

# socketio.bt

Attaching 4 probes...

^C

@io[sshd, 13348, write, TCP, 49076]: 1

@io[redis-server, 2583, write, TCP, 41154]: 5

@io[redis-server, 2583, read, TCP, 41154]: 5

@io[snmpd, 1242, read, NETLINK, 0]: 6

@io[snmpd, 1242, write, NETLINK, 0]: 6

@io[systemd-resolve, 1016, read, UDP, 53]: 52

@io[systemd-resolve, 1016, read, UDP, 0]: 52

@io[java, 3929, read, TCP, 6001]: 1367

@io[java, 3929, write, TCP, 8980]: 24979

@io[java, 3929, read, TCP, 8980]: 44462

The final line in the output shows that Java PID 3929 performed 44,462 socket reads from TCP 
port 8980 while tracing. The five fields in each map key are process name, process ID, direction, 
protocol, and port.

15 Origin: I first created it as socketio.d for the 2011 DTrace book [Gregg 11], and I created the bpftrace version for 

this book on 11-Apr-2019.

http://>sin6_addr.in6_u.u6_addr8
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This works by tracing the sock_recvmsg() and sock_sendmsg() kernel functions. To explain why I 
chose these functions, consider the socket_file_ops struct in net/socket.c:

/*

 *      Socket files have a set of 'special' operations as well as the generic file 

ones. These don't appear

 *      in the operation structures but are done directly via the socketcall() 

multiplexor.

 */

 

static const struct file_operations socket_file_ops = {

        .owner =        THIS_MODULE,

        .llseek =       no_llseek,

        .read_iter =    sock_read_iter,

        .write_iter =   sock_write_iter,

[...]

This code defines the socket read and write functions as sock_read_iter() and sock_write_iter(), 
and I tried tracing them first. But testing with a variety of workloads showed that tracing those 
particular functions was missing some events. The block comment in the code excerpt explains 
why: There are additional special operations that don’t appear in the operation struct, and these 
can also perform I/O on sockets. These include sock_recvmsg() and sock_sendmsg(), called 
directly via syscalls or other code paths, including sock_read_iter() and sock_write_iter(). This 
makes them a common point for tracing socket I/O.

For systems with busy network I/O, these socket functions may be called very frequently, causing 
the overhead to become measurable.

The source to socketio(8) is:

#!/usr/local/bin/bpftrace

 

#include <net/sock.h>

 

kprobe:sock_recvmsg

{

        $sock = (struct socket *)arg0;

        $dport = $sock->sk->__sk_common.skc_dport;

        $dport = ($dport >> 8) | (($dport << 8) & 0xff00);

        @io[comm, pid, "read", $sock->sk->__sk_common.skc_prot->name, $dport] =

            count();

}

 

kprobe:sock_sendmsg

{
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        $sock = (struct socket *)arg0;

        $dport = $sock->sk->__sk_common.skc_dport;

        $dport = ($dport >> 8) | (($dport << 8) & 0xff00);

        @io[comm, pid, "write", $sock->sk->__sk_common.skc_prot->name, $dport] =

            count();

}

The destination port is big endian, and is converted to little endian (for this x86 processor) by the 
tool before inclusion in the @io map.16 This script could be modified to show the bytes transferred 
instead of the I/O counts; for an example, see the code in the following tool, socksize(8).

socketio(8) is based on kprobes, which instruments kernel implementation details that may 
change, breaking the tool. With much more effort, it would be possible to rewrite this tool using 
syscall tracepoints instead. It will be necessary to trace sendto(2), sendmsg(2), sendmmsg(2), 
recvfrom(2), recvmsg(2), and recvmmsg(2). For some socket types, such as UNIX domain sockets, 
the read(2) and write(2) family of syscalls must also be traced. It would be easier to instrument 
tracepoints for socket I/O instead, however, they do not yet exist.

10.3.7 socksize

socksize(8)17 shows socket I/O counts and total bytes by process and direction. Example output 
from a 48-CPU production edge server:

# socksize.bt

Attaching 2 probes...

^C

 

@read_bytes[sshd]: 

[32, 64)               1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@read_bytes[java]: 

[0]                  431 |@@@@@                                               |

[1]                    4 |                                                    |

[2, 4)                10 |                                                    |

[4, 8)               542 |@@@@@@                                              |

[8, 16)             3445 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@          |

[16, 32)            2635 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                    |

[32, 64)            3497 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@         |

[64, 128)            776 |@@@@@@@@@                                           |

[128, 256)           916 |@@@@@@@@@@@                                         |

[256, 512)          3123 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@              |

16 For this to work on big-endian processors, the tool should test for processor endianness and use a conversion only 

if necessary; for example, by use of #ifdef LITTLE_ENDIAN

17 Origin: I created it for this book on 12-Apr-2019, inspired by my disk I/O bitesize tool.
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[512, 1K)           4199 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[1K, 2K)            2972 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                |

[2K, 4K)            1863 |@@@@@@@@@@@@@@@@@@@@@@@                             |

[4K, 8K)            2501 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                      |

[8K, 16K)           1422 |@@@@@@@@@@@@@@@@@                                   |

[16K, 32K)           148 |@                                                   |

[32K, 64K)            29 |                                                    |

[64K, 128K)            6 |                                                    |

 

@write_bytes[sshd]: 

[32, 64)               1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@write_bytes[java]: 

[8, 16)               36 |                                                    |

[16, 32)               6 |                                                    |

[32, 64)            6131 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[64, 128)           1382 |@@@@@@@@@@@                                         |

[128, 256)            30 |                                                    |

[256, 512)            87 |                                                    |

[512, 1K)            169 |@                                                   |

[1K, 2K)             522 |@@@@                                                |

[2K, 4K)            3607 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                      |

[4K, 8K)            2673 |@@@@@@@@@@@@@@@@@@@@@@                              |

[8K, 16K)            394 |@@@                                                 |

[16K, 32K)           815 |@@@@@@                                              |

[32K, 64K)           175 |@                                                   |

[64K, 128K)            1 |                                                    |

[128K, 256K)           1 |                                                    |

The main application is Java, and both reads and writes show a bimodal distribution of socket 
I/O sizes. There could be different reasons causing these modes: different code paths or message 
contents. The tool can be modified to include stack traces and application context to answer this.

socksize(8) works by tracing the sock_recvmsg() and sock_sendmsg() kernel functions, as does 
socketio(8). The source to socksize(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/fs.h>

#include <net/sock.h>

 

kprobe:sock_recvmsg,

kprobe:sock_sendmsg

{
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        @socket[tid] = arg0;

}

 

kretprobe:sock_recvmsg

{

        if (retval < 0x7fffffff) {

                @read_bytes[comm] = hist(retval);

        }

        delete(@socket[tid]);

}

 

kretprobe:sock_sendmsg

{

        if (retval < 0x7fffffff) {

                @write_bytes[comm] = hist(retval);

        }

        delete(@socket[tid]);

}

 

END

{

        clear(@socket);

}

The return value of these functions contains either the bytes transferred or a negative error code. 
To filter the error codes, an if (retval >= 0) test would seem appropriate; however, retval is not 
type-aware: it is a 64-bit unsigned integer, whereas the sock_recvmsg() and sock_sendmsg() func-
tions return a 32-bit signed integer. The solution should be to cast retval to its correct type using 
(int)retval, but int casts are not yet available in bpftrace, so the 0x7fffffff test is a workaround.18

More keys can be added if desired, such as the PID, port number, and user stack trace. The maps 
can also be changed from hist() to stats() to provide a different type of summary:

# socksize.bt 

Attaching 2 probes...

^C

 

@read_bytes[sshd]: count 1, average 36, total 36

@read_bytes[java]: count 19874, average 1584, total 31486578

 

@write_bytes[sshd]: count 1, average 36, total 36

@write_bytes[java]: count 11061, average 3741, total 41379939

18 bpftrace int casts have been prototyped by Bas Smit, and should be merged soon. See bpftrace PR #772.
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This shows the number of I/O ("count"), the average size in bytes ("average"), and the total 
throughput in bytes ("total"). During tracing, Java wrote 41 Mbytes.

10.3.8 sormem

sormem(8)19 traces the size of the socket receive queue, showing how full it is compared to the 
tunable limit, as histograms. If the receive queue exceeds the limit, packets are dropped, causing 
performance issues. For example, running this tool on a production edge server:

# sormem.bt 

Attaching 4 probes...

Tracing socket receive buffer size. Hit Ctrl-C to end.

^C

 

@rmem_alloc: 

[0]                72870 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                   |

[1]                    0 |                                                    |

[2, 4)                 0 |                                                    |

[4, 8)                 0 |                                                    |

[8, 16)                0 |                                                    |

[16, 32)               0 |                                                    |

[32, 64)               0 |                                                    |

[64, 128)              0 |                                                    |

[128, 256)             0 |                                                    |

[256, 512)             0 |                                                    |

[512, 1K)         113831 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[1K, 2K)             113 |                                                    |

[2K, 4K)             105 |                                                    |

[4K, 8K)           99221 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       |

[8K, 16K)          26726 |@@@@@@@@@@@@                                        |

[16K, 32K)         58028 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |

[32K, 64K)         31336 |@@@@@@@@@@@@@@                                      |

[64K, 128K)        15039 |@@@@@@                                              |

[128K, 256K)        6692 |@@@                                                 |

[256K, 512K)         697 |                                                    |

[512K, 1M)            91 |                                                    |

[1M, 2M)              45 |                                                    |

[2M, 4M)              80 |                                                    |

 

@rmem_limit: 

[64K, 128K)        14447 |@                                                   |

[128K, 256K)         262 |                                                    |

19 Origin: I created it for this book on 14-Apr-2019.
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[256K, 512K)           0 |                                                    |

[512K, 1M)             0 |                                                    |

[1M, 2M)               0 |                                                    |

[2M, 4M)               0 |                                                    |

[4M, 8M)               0 |                                                    |

[8M, 16M)         410158 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16M, 32M)             7 |                                                    |

@rmem_alloc shows how much memory has been allocated for the receive buffer. @rmem_limit 
is the limit size of the receive buffer, tunable using sysctl(8). This example shows that the limit 
is often in the eight- to 16-Mbyte range, whereas the memory actually allocated is much lower, 
often between 512 bytes and 256 Kbytes.

Here is a synthetic example to help explain this; an iperf(1) throughput test is performed with 
this sysctl(1) tcp_rmem setting (be careful when tuning this as larger sizes can introduce latency 
due to skb collapse and coalescing [105]):

# sysctl -w net.ipv4.tcp_rmem='4096 32768 10485760'

# sormem.bt 

Attaching 4 probes...

Tracing socket receive buffer size. Hit Ctrl-C to end.

[...]

 

@rmem_limit: 

[64K, 128K)           17 |                                                    |

[128K, 256K)       26319 |@@@@                                                |

[256K, 512K)          31 |                                                    |

[512K, 1M)             0 |                                                    |

[1M, 2M)              26 |                                                    |

[2M, 4M)               0 |                                                    |

[4M, 8M)               8 |                                                    |

[8M, 16M)         320047 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

And again with a reduction in the max rmem setting:

# sysctl -w net.ipv4.tcp_rmem='4096 32768 100000'

# sormem.bt 

Attaching 4 probes...

Tracing socket receive buffer size. Hit Ctrl-C to end.

[...]

 

@rmem_limit: 

[64K, 128K)       656221 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[128K, 256K)       34058 |@@                                                  |

[256K, 512K)          92 |                                                    |
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The rmem_limit has now dropped to the 64- to 128-Kbyte range, matching the configured limit 
of 100 Kbytes. Note that net.ipv4.tcp_moderate_rcvbuf is enabled, which helps tune the receive 
buffer to reach this limit sooner. 

This works by tracing the kernel sock_rcvmsg() function using kprobes, which might cause 
measurable overhead for busy workloads.

The source to sormem(8) is:

#!/usr/local/bin/bpftrace

 

#include <net/sock.h>

 

BEGIN

{

        printf("Tracing socket receive buffer size. Hit Ctrl-C to end.\n");

}

 

kprobe:sock_recvmsg

{

        $sock = ((struct socket *)arg0)->sk;

        @rmem_alloc = hist($sock->sk_backlog.rmem_alloc.counter);

        @rmem_limit = hist($sock->sk_rcvbuf & 0xffffffff);

}

 

tracepoint:sock:sock_rcvqueue_full

{

        printf("%s rmem_alloc %d > rcvbuf %d, skb size %d\n", probe,

            args->rmem_alloc, args->sk_rcvbuf, args->truesize);

}

 

tracepoint:sock:sock_exceed_buf_limit

{

        printf("%s rmem_alloc %d, allocated %d\n", probe,

            args->rmem_alloc, args->allocated);

}

There are two sock tracepoints that fire when buffer limits are exceeded, also traced in this tool.20 
If they happen, per-event lines are printed with details. (In the prior outputs, these events did 
not occur.)

20 The tracepoint:sock:sock_exceed_buf_limit tracepoint was extended in newer kernels (by 5.0) with extra arguments: 

you can now filter on receive events only by adding the filter /args->kind == SK_MEM_RECV/.
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10.3.9 soconnlat

soconnlat(8)21 shows socket connection latency as a histogram, with user-level stack traces. 
This provides a different view of socket usage: rather than identifying connections by their 
IP addresses and ports, as soconnect(8) does, this helps you identify connections by their code 
paths. Example output:

# soconnlat.bt

Attaching 12 probes...

Tracing IP connect() latency with ustacks. Ctrl-C to end.

^C

 

@us[

    __GI___connect+108

    Java_java_net_PlainSocketImpl_socketConnect+368

    Ljava/net/PlainSocketImpl;::socketConnect+197

    Ljava/net/AbstractPlainSocketImpl;::doConnect+1156

    Ljava/net/AbstractPlainSocketImpl;::connect+476

    Interpreter+5955

    Ljava/net/Socket;::connect+1212

    Lnet/sf/freecol/common/networking/Connection;::<init>+324

    Interpreter+5955

    Lnet/sf/freecol/common/networking/ServerAPI;::connect+236

    Lnet/sf/freecol/client/control/ConnectController;::login+660

    Interpreter+3856

    Lnet/sf/freecol/client/control/ConnectController$$Lambda$258/1471835655;::run+92

    Lnet/sf/freecol/client/Worker;::run+628

    call_stub+138

    JavaCalls::call_helper(JavaValue*, methodHandle const&, JavaCallArguments*, Th...

    JavaCalls::call_virtual(JavaValue*, Handle, Klass*, Symbol*, Symbol*, Thread*)...

    thread_entry(JavaThread*, Thread*)+108

    JavaThread::thread_main_inner()+446

    Thread::call_run()+376

    thread_native_entry(Thread*)+238

    start_thread+208

    __clone+63

, FreeColClient:W]: 

[32, 64)               1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@us[

    __connect+71

, java]: 

21 Origin: I created it for this book on 12-Apr-2019, inspired by my disk I/O bitesize tool.
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[128, 256)            69 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                       |

[256, 512)            28 |@@@@@@@@@@@@                                        |

[512, 1K)            121 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[1K, 2K)              53 |@@@@@@@@@@@@@@@@@@@@@@                              |

This shows two stack traces: the first is from an open source Java game, and the code path shows 
why it was calling connect. There was only one occurrence of this codepath, with a connect 
latency of between 32 and 64 microseconds. The second stack shows over 200 connections, of 
between 128 microseconds and 2 milliseconds, from Java. This second stack trace is broken, 
however, showing only one frame "__connect+71" before abruptly ending. The reason is that this 
Java application is using the default libc library, which has been compiled without frame pointers. 
See Section 13.2.9 in Chapter 13 for ways to fix this.

This connection latency shows how long it took for the connection to be established across the 
network, which for TCP spans the three-way TCP handshake. It also includes remote host kernel 
latency to process an inbound SYN and respond: this usually happens very quickly in interrupt 
context, so the connection latency should be dominated by the network round trip times.

This tool works by tracing the connect(2), select(2), and poll(2) family of syscalls via their 
tracepoints. The overhead might become measurable on busy systems that frequently call select(2) 
and poll(2) syscalls.

The source to soconnlat(8) is:

#!/usr/local/bin/bpftrace

 

#include <asm-generic/errno.h>

#include <linux/in.h>

 

BEGIN

{

        printf("Tracing IP connect() latency with ustacks. Ctrl-C to end.\n");

}

 

tracepoint:syscalls:sys_enter_connect

/args->uservaddr->sa_family == AF_INET ||

    args->uservaddr->sa_family == AF_INET6/

{

        @conn_start[tid] = nsecs;

        @conn_stack[tid] = ustack();

}

 

tracepoint:syscalls:sys_exit_connect

/@conn_start[tid] && args->ret != - EINPROGRESS/

{
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        $dur_us = (nsecs - @conn_start[tid]) / 1000;

        @us[@conn_stack[tid], comm] = hist($dur_us);

        delete(@conn_start[tid]);

        delete(@conn_stack[tid]);

}

 

tracepoint:syscalls:sys_exit_poll*,

tracepoint:syscalls:sys_exit_epoll*,

tracepoint:syscalls:sys_exit_select*,

tracepoint:syscalls:sys_exit_pselect*

/@conn_start[tid] && args->ret > 0/

{

        $dur_us = (nsecs - @conn_start[tid]) / 1000;

        @us[@conn_stack[tid], comm] = hist($dur_us);

        delete(@conn_start[tid]);

        delete(@conn_stack[tid]);

}

 

END

{

        clear(@conn_start); clear(@conn_stack);

}

This solves the problem mentioned in the earlier description of the soconnect(8) tool. The 
connection latency is measured as the time for the connect(2) syscall to complete, unless it 
completes with an EINPROGRESS status, in which case the true connection completion occurs 
sometime later, when a poll(2) or select(2) syscall successfully finds an event for that file descrip-
tor. What this tool should do is record the enter arguments of each poll(2) or select(2) syscall, 
then examine them again on exit to ensure that the connect socket file descriptor is the one that 
had the event. Instead, this tool takes a giant shortcut by assuming that the first successful poll(2) 
or select(2) after a connect(2) that is EINPROGRESS on the same thread is related. It probably is, 
but bear in mind that the tool may have a margin of error if the application called connect(2) and 
then—on the same thread—received an event on a different file descriptor that it was also waiting 
on. You can enhance the tool or investigate your application’s use of those syscalls to see how 
plausible that scenario may be.

For example, counting how many file descriptors applications are waiting for via poll(2), on a 
production edge server:

# bpftrace -e 't:syscalls:sys_enter_poll { @[comm, args->nfds] = count(); }'

Attaching 1 probe...

^C

 

@[python3, 96]: 181

@[java, 1]: 10300
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During tracing, Java only calls poll(2) on one file descriptor, so the scenario I just described seems 
even less likely, unless it is calling poll(2) separately for different file descriptions. Similar tests can 
be performed for the other poll(2) and select(2) syscalls.

This output also caught python3 calling poll(2) on...96 file descriptors? By adding pid to the map 
key to identify which python3 process, and then examining its file descriptors in lsof(8), I found 
that it really does have 96 file descriptors open, by mistake, and is frequently polling them on 
production servers. I should be able to fix this and get some CPU cycles back.22

10.3.10 so1stbyte

so1stbyte(8)23 traces the time from issuing an IP socket connect(2) to the first read byte for that 
socket. While soconnlat(8) is a measure of network and kernel latency to establish a connection, 
so1stbyte(8) includes the time for the remote host application to be scheduled and produce data. 
This provides a view of how busy the remote host is and, if measured over time, may reveal times 
when the remote hosts are more heavily loaded, and have higher latency. For example:

# so1stbyte.bt

Attaching 21 probes...

Tracing IP socket first-read-byte latency. Ctrl-C to end.

^C

 

@us[java]: 

[256, 512)             4 |                                                    |

[512, 1K)              5 |@                                                   |

[1K, 2K)              34 |@@@@@@                                              |

[2K, 4K)             212 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@          |

[4K, 8K)             260 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[8K, 16K)             35 |@@@@@@@                                             |

[16K, 32K)             6 |@                                                   |

[32K, 64K)             1 |                                                    |

[64K, 128K)            0 |                                                    |

[128K, 256K)           4 |                                                    |

[256K, 512K)           3 |                                                    |

[512K, 1M)             1 |                                                    |

This output shows that the connections from this Java process usually received their first bytes in 
one to 16 milliseconds.

This works by using the syscall tracepoints to instrument the connect(2), read(2), and recv(2) 
family of syscalls. The overhead may be measurable while running, as these syscalls can be 
frequent on high-I/O systems.

22 Before getting too excited, I checked the server uptime, CPU count, and process CPU usage via ps(1) (the process is 

supposed to be idle), to calculate how much CPU resources are wasted by this: it came out to only 0.02%.

23 Origin: I first created so1stbyte.d for the 2011 DTrace book [Gregg 11]. I created this version on 16-Apr-2019.
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The source to so1stbyte(8) is:

#!/usr/local/bin/bpftrace

 

#include <asm-generic/errno.h>

#include <linux/in.h>

 

BEGIN

{

        printf("Tracing IP socket first-read-byte latency. Ctrl-C to end.\n");

}

 

tracepoint:syscalls:sys_enter_connect

/args->uservaddr->sa_family == AF_INET ||

    args->uservaddr->sa_family == AF_INET6/

{

        @connfd[tid] = args->fd;

        @connstart[pid, args->fd] = nsecs;

}

 

tracepoint:syscalls:sys_exit_connect

{

        if (args->ret != 0 && args->ret != - EINPROGRESS) {

                // connect() failure, delete flag if present

                delete(@connstart[pid, @connfd[tid]]);

        }

        delete(@connfd[tid]);

}

 

tracepoint:syscalls:sys_enter_close

/@connstart[pid, args->fd]/

{

        // never called read

        delete(@connstart[pid, @connfd[tid]]);

}

 

tracepoint:syscalls:sys_enter_read,

tracepoint:syscalls:sys_enter_readv,

tracepoint:syscalls:sys_enter_pread*,

tracepoint:syscalls:sys_enter_recvfrom,

tracepoint:syscalls:sys_enter_recvmsg,

tracepoint:syscalls:sys_enter_recvmmsg

/@connstart[pid, args->fd]/
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{

        @readfd[tid] = args->fd;

}

 

tracepoint:syscalls:sys_exit_read,

tracepoint:syscalls:sys_exit_readv,

tracepoint:syscalls:sys_exit_pread*,

tracepoint:syscalls:sys_exit_recvfrom,

tracepoint:syscalls:sys_exit_recvmsg,

tracepoint:syscalls:sys_exit_recvmmsg

/@readfd[tid]/

{

        $fd = @readfd[tid];

        @us[comm, pid] = hist((nsecs - @connstart[pid, $fd]) / 1000);

        delete(@connstart[pid, $fd]);

        delete(@readfd[tid]);

}

 

END

{

        clear(@connstart); clear(@connfd); clear(@readfd);

}

This tool records a starting timestamp in a @connstart map during the entry to connect(2), keyed 
by the process ID and file descriptor. If this connect(2) is a failure (unless it is non-blocking and 
returned with EINPROGRESS) or close(2) was issued, it deletes the timestamp to stop tracking that 
connection. When the first read or recv syscall is entered on the socket file descriptor seen earlier, 
it tracks the file descriptor in @readfd so that it can be fetched on syscall exit, and finally the start-
ing time read from the @connstart map.

This timespan is similar to the TCP time to first byte described earlier, but with a small difference: 
the connect(2) duration is included.

Many syscall tracepoints need to be instrumented to catch the first read for the socket, adding 
overhead to all of those read paths. This overhead and the number of traced events could be 
reduced by switching instead to kprobes such as sock_recvmsg() for socket functions, and track-
ing the sock pointer as the unique ID rather than the PID and FD pair. The tradeoff would be that 
kprobes are not stable.

10.3.11 tcpconnect

tcpconnect(8)24 is a BCC and bpftrace tool to trace new TCP active connections. Unlike the earlier 
socket tools, tcpconnect(8) and the following TCP tools trace deeper in the network stack in the 

24 Origin: I created a similar tcpconnect.d tool for the 2011 DTrace book [Gregg 11], and I created the BCC version on 

25-Sep-2015, and the tcpconnect-tp(8) bpftrace tracepoint version on 7-Apr-2019.
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TCP code, rather than tracing the socket syscalls. tcpconnect(8) is named after the socket system 
call connect(2), and these are often termed outbound connections, although they may also be to 
localhost.

tcpconnect(8) is useful for workload characterization: determining who is connecting to whom, 
and at what rate. Here is tcpconnect(8) from BCC:

# tcpconnect.py -t

TIME(s)  PID    COMM         IP SADDR            DADDR            DPORT

0.000    4218   java         4  100.1.101.18     100.2.51.232     6001

0.011    4218   java         4  100.1.101.18     100.2.135.216    6001

0.072    4218   java         4  100.1.101.18     100.2.135.94     6001

0.073    4218   java         4  100.1.101.18     100.2.160.87     8980

0.124    4218   java         4  100.1.101.18     100.2.177.63     6001

0.212    4218   java         4  100.1.101.18     100.2.58.22      6001

0.214    4218   java         4  100.1.101.18     100.2.43.148     6001

[...]

This has caught several connections to different remote hosts with the same port, 6001. The 
columns are:

 ■ TIME(s): The time of the accept in seconds, counting from the first event seen.

 ■ PID: The process ID that accepted the connection. This is best-effort that matches on the 
current process; at the TCP level, these events may not happen in process context. For 
reliable PIDs, use socket tracing.

 ■ COMM: The process name that accepted the connection. As with PID, this is best-effort, 
and socket tracing should be used for better reliability.

 ■ IP: IP address protocol.

 ■ SADDR: Source address.

 ■ DADDR: Destination address.

 ■ DPORT: Destination port.

Both IPv4 and IPv6 are supported, although IPv6 addresses can be so wide that they can make the 
output columns untidy.

This works by tracing events related to creating new TCP sessions, rather than per-packet tracing. 
On this production server, the packet rate is around 50,000/s, whereas the new TCP session rate 
is around 350/s. By tracing session-level events instead of packets, the overhead is reduced by 
around a hundred fold, becoming negligible.

The BCC version currently works by tracing the tcp_v4_connect() and tcp_v6_connect() kernel 
functions. A future version should switch to using the sock:inet_sock_set_state tracepoint if 
available.
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BCC

Command line usage:

tcpconnect [options]

Options include:

 ■ -t: Include a timestamp column

 ■ -p PID: Trace this process only

 ■ -P PORT[,PORT,...]: Trace these destination ports only

bpftrace

The following is the code for tcpconnect-tp(8), a bpftrace version of tcpconnect(8) that uses the 
sock:inet_sock_set_state tracepoint:

#!/usr/local/bin/bpftrace

 

#include <net/tcp_states.h>

#include <linux/socket.h>

 

BEGIN

{

        printf("%-8s %-6s %-16s %-3s ", "TIME", "PID", "COMM", "IP");

        printf("%-15s %-15s %-5s\n", "SADDR", "DADDR", "DPORT");

}

 

tracepoint:sock:inet_sock_set_state

/args->oldstate == TCP_CLOSE && args->newstate == TCP_SYN_SENT/

{

        time("%H:%M:%S ");

        printf("%-6d %-16s %-3d ", pid, comm, args->family == AF_INET ? 4 : 6);

        printf("%-15s %-15s %-5d\n", ntop(args->family, args->saddr),

            ntop(args->family, args->daddr), args->dport)

}

This matches active opens by the transition from TCP_CLOSE to TCP_SYN_SENT.

The bpftrace repository has a tcpconnect(8)25 version for older Linux kernels that lack the 
sock:inet_sock_set_state tracepoint and traces the tcp_connect() kernel function instead.

25 Origin: This was created by Dale Hamel on 23-Nov-2018, for which he also added the ntop() builtin to bpftrace.



ptg30854589

440 Chapter 10  Networking

10.3.12 tcpaccept

tcpaccept(8)26 is a BCC and bpftrace tool to trace new TCP passive connections; it’s the counter-
part to tcpconnect(8). It is named after the socket system call accept(2). These are often termed 
inbound connections, although they may also come from localhost. As with tcpconnect(8), this 
tool is useful for workload characterization: determining who is connecting to the local system, 
and at what rate.

The following shows tcpaccept(8) from BCC, from a 48-CPU production instance, running with 
the -t option to print a timestamp column:

# tcpaccept -t

TIME(s)  PID     COMM         IP RADDR            RPORT LADDR            LPORT

0.000    4218    java         4  100.2.231.20     53422 100.1.101.18     6001 

0.004    4218    java         4  100.2.236.45     36400 100.1.101.18     6001 

0.013    4218    java         4  100.2.221.222    29836 100.1.101.18     6001 

0.014    4218    java         4  100.2.194.78     40416 100.1.101.18     6001 

0.016    4218    java         4  100.2.239.62     53422 100.1.101.18     6001 

0.016    4218    java         4  100.2.199.236    28790 100.1.101.18     6001 

0.021    4218    java         4  100.2.192.209    35840 100.1.101.18     6001 

0.022    4218    java         4  100.2.215.219    21450 100.1.101.18     6001 

0.026    4218    java         4  100.2.231.176    47024 100.1.101.18     6001 

[...]

This output shows many new connections to local port 6001 from different remote addresses, 
which were accepted by a Java process with PID 4218. The columns are similar to those for 
tcpconnect(8), with these differences:

 ■ RADDR: Remote address

 ■ RPORT: Remote port

 ■ LADDR: Local address

 ■ LPORT: Local port

This tool works by tracing the inet_csk_accept() kernel function. This might sound like an 
unusual name compared with other high-level TCP functions, and you might wonder why I chose 
it. I chose it because it’s the accept function from the tcp_prot struct (net/ipv4/tcp_ipv4.c):

struct proto tcp_prot = {

        .name                   = "TCP",

        .owner                  = THIS_MODULE,

26 Origin: I created a similar tcpaccept.d tool for the 2011 DTrace book [Gregg 11], and earlier versions in 2006 

(tcpaccept1.d and tcpaccept2.d) which counted connections, that I created while I was developing the DTrace TCP 

provider [106]. I was up late finishing them to demo in my first-ever conference talk at CEC2006 in San Francisco 

[107] and then overslept and barely made it to the venue in time. I created the BCC version on 13-Oct-2015, and the 

tcpconnect-tp(8) version on 7-Apr-2019.
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        .close                  = tcp_close,

        .pre_connect            = tcp_v4_pre_connect,

        .connect                = tcp_v4_connect,

        .disconnect             = tcp_disconnect,

        .accept                 = inet_csk_accept,

        .ioctl                  = tcp_ioctl,

[...]

IPv6 addresses are also supported, although the output columns can get untidy due to their 
width. As an example from a different production server:

# tcpaccept -t

TIME(s)  PID    COMM         IP RADDR            LADDR            LPORT

0.000    7013   java         6  ::ffff:100.1.54.4 ::ffff:100.1.58.46 13562

0.103    7013   java         6  ::ffff:100.1.7.19 ::ffff:100.1.58.46 13562

0.202    7013   java         6  ::ffff:100.1.58.59 ::ffff:100.1.58.46 13562

[...]

These addresses are IPv4 mapped over IPv6.

BCC

Command line usage:

tcpaccept [options]

tcpaccept(8) has similar options to tcpconnect(8), including:

 ■ -t: Include a timestamp column

 ■ -p PID: Trace this process only

 ■ -P PORT[,PORT,...]: Trace these local ports only

bpftrace

The following is the code for tcpaccept-tp(8), a bpftrace version of tcpaccept(8) developed for this 
book that uses the sock:inet_sock_set_state tracepoint:

#!/usr/local/bin/bpftrace

 

#include <net/tcp_states.h>

#include <linux/socket.h>

 

BEGIN

{

        printf("%-8s %-3s %-14s %-5s %-14s %-5s\n", "TIME", "IP",

            "RADDR", "RPORT", "LADDR", "LPORT");



ptg30854589

442 Chapter 10  Networking

}

 

tracepoint:sock:inet_sock_set_state

/args->oldstate == TCP_SYN_RECV && args->newstate == TCP_ESTABLISHED/

{

        time("%H:%M:%S ");

        printf("%-3d %-14s %-5d %-14s %-5d\n", args->family == AF_INET ? 4 : 6,

            ntop(args->family, args->daddr), args->dport,

            ntop(args->family, args->saddr), args->sport);

}

Since the process ID is not expected to be on-CPU at the time of this TCP state transition, the pid 
and comm builtins have been elided from this version. Sample output:

# tcpaccept-tp.bt 

Attaching 2 probes...

TIME     IP  RADDR          RPORT LADDR          LPORT

07:06:46 4   127.0.0.1      63998 127.0.0.1      28527

07:06:47 4   127.0.0.1      64002 127.0.0.1      28527

07:06:48 4   127.0.0.1      64004 127.0.0.1      28527

[...]

The bpftrace repository has a version of tcpaccept(8)27 that uses kernel dynamic tracing of 
the inet_csk_accept() function, as used by the BCC version. This function is expected to be 
application-process synchronous, so the PID and process name are printed using the pid and 
comm built-ins. An excerpt:

[...]

kretprobe:inet_csk_accept

{

        $sk = (struct sock *)retval;

        $inet_family = $sk->__sk_common.skc_family;

 

        if ($inet_family == AF_INET || $inet_family == AF_INET6) {

                $daddr = ntop(0);

                $saddr = ntop(0);

                if ($inet_family == AF_INET) {

                        $daddr = ntop($sk->__sk_common.skc_daddr);

                        $saddr = ntop($sk->__sk_common.skc_rcv_saddr);

                } else {

                        $daddr = ntop(

                            $sk->__sk_common.skc_v6_daddr.in6_u.u6_addr8);

27 Origin: This was created by Dale Hamel on 23-Nov-2018.

http://_sk_common.skc_v6_daddr.in6_u.u6_addr8
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                        $saddr = ntop(

                            $sk->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr8);

                }

                $lport = $sk->__sk_common.skc_num;

                $dport = $sk->__sk_common.skc_dport;

                $qlen  = $sk->sk_ack_backlog;

                $qmax  = $sk->sk_max_ack_backlog;

[...]

The program fetches the protocol details from the sock struct. It also fetches tcp listen backlog 
details, and is an example of extending these tools to provide additional insights. This listen 
backlog was added to diagnose a Shopify production issue where Redis was degrading under peak 
load: it was found to be TCP listen drops.28 Adding a column to tcpaccept.bt made it possible to 
see the current length of the listen backlog, useful for characterization and capacity planning.

A future change to bpftrace’s variable scoping may cause variables initialized in if-statement 
clauses to be scoped to the clause only, which would cause a problem for this program because 
$daddr and $saddr are then used outside of the clause. To avoid this future constraint, this 
program initializes these variables beforehand to ntop(0) (ntop(0) returns type inet, which is 
printed as a string.) This initialization is unnecessary in the current version of bpftrace (0.9.1), but 
has been included to make this program future-proof.

10.3.13 tcplife

tcplife(8)29 is a BCC and bpftrace tool to trace the lifespan of TCP sessions: showing their dura-
tion, address details, throughput, and when possible, the responsible process ID and name.

The following shows tcplife(8) from BCC, from a 48-CPU production instance:

# tcplife

PID   COMM       LADDR           LPORT RADDR           RPORT TX_KB RX_KB  MS

4169  java       100.1.111.231   32648 100.2.0.48      6001      0     0  3.99

4169  java       100.1.111.231   32650 100.2.0.48      6001      0     0  4.10

4169  java       100.1.111.231   32644 100.2.0.48      6001      0     0  8.41

4169  java       100.1.111.231   40158 100.2.116.192   6001      7    33  3590.91

4169  java       100.1.111.231   56940 100.5.177.31    6101      0     0  2.48

4169  java       100.1.111.231   6001  100.2.176.45    49482     0     0  17.94

4169  java       100.1.111.231   18926 100.5.102.250   6101      0     0  0.90

4169  java       100.1.111.231   44530 100.2.31.140    6001      0     0  2.64

28 Production example provided by Dale Hamel.

29 Origin: This began as a tweet from Julia Evans: “i really wish i had a command line tool that would give me stats 

on TCP connection lengths on a given port” [108]. In response I created tcplife(8) as a BCC tool on 18-Oct-2016, and 

I created the bpftrace version on 17-Apr-2019 after merging a needed bpftrace capability from Matheus Marchini that 

morning. This is one of the most popular tools I’ve developed. It forms the basis of several higher-level GUIs, as it 

provides efficient network flow stats that can be visualized as directed graphs.

http://_sk_common.skc_v6_rcv_saddr.in6_u.u6_addr8
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4169  java       100.1.111.231   44406 100.2.8.109     6001     11    28 3982.11

34781 sshd       100.1.111.231   22    100.2.17.121    41566     5     7 2317.30

4169  java       100.1.111.231   49726 100.2.9.217     6001     11    28 3938.47

4169  java       100.1.111.231   58858 100.2.173.248   6001      9    30 2820.51

[...]

This output shows a series of connections that were either short-lived (less than 20 milliseconds) 
or long-lived (over three seconds), as shown in the duration column "MS" for milliseconds). This 
is an application server pool that listens on port 6001. Most of the sessions in this screenshot 
show connections to port 6001 on remote application servers, with only one connection to the 
local port 6001. An ssh session was also seen, owned by sshd and local port 22—an inbound 
session.

This works by tracing TCP socket state change events, and prints the summary details when the 
state changes to TCP_CLOSE. These state-change events are much less frequent than packets, 
making this approach much less costly in overhead than per-packet sniffers. This has made 
tcplife(8) acceptable to run continuously as a TCP flow logger on Netflix production servers.

The original tcplife(8) traced the tcp_set_state() kernel function using kprobes. Since Linux 4.16, a 
tracepoint has been added for this purpose: sock:inet_sock_set_state. The tcplife(8) tool uses that 
tracepoint if available; otherwise, it defaults to the kprobe. There is a subtle difference between 
these events, which can be seen in the following one-liner. This counts the TCP state number for 
each event:

# bpftrace -e 'k:tcp_set_state { @kprobe[arg1] = count(); } 

    t:sock:inet_sock_set_state { @tracepoint[args->newstate] = count(); }'

Attaching 2 probes...

^C

 

@kprobe[4]: 12

@kprobe[5]: 12

@kprobe[9]: 13

@kprobe[2]: 13

@kprobe[8]: 13

@kprobe[1]: 25

@kprobe[7]: 25

 

@tracepoint[3]: 12

@tracepoint[4]: 12

@tracepoint[5]: 12

@tracepoint[2]: 13

@tracepoint[9]: 13

@tracepoint[8]: 13

@tracepoint[7]: 25

@tracepoint[1]: 25
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See it? The tcp_set_state() kprobe never sees state 3, which is TCP_SYN_RECV. This is because the 
kprobe is exposing the kernel implementation, and the kernel never calls tcp_set_state() with 
TCP_SYN_RECV: it doesn’t need to. This is an implementation detail that is normally hidden 
from end users. But with the addition of a tracepoint to expose these state changes, it was found 
to be confusing to leave out this state transition, so the tracepoint has been called to show all 
transitions.

BCC

Command line usage:

tcplife [options]

Options include:

 ■ -t: Include time column (HH:MM:SS)

 ■ -w: Wider columns (to better fit IPv6 addresses)

 ■ -p PID: Trace this process only

 ■ -L PORT[,PORT[,...]]: Trace only sessions with these local ports

 ■ -D PORT[,PORT[,...]]: Trace only sessions with these remote ports

bpftrace

The following is the code for the bpftrace version, developed for this book, and which summarizes 
its core functionality. This version uses a kprobe of tcp_set_state() so that it runs on older kernels, 
and does not support options.

#!/usr/local/bin/bpftrace

 

#include <net/tcp_states.h>

#include <net/sock.h>

#include <linux/socket.h>

#include <linux/tcp.h>

 

BEGIN

{

        printf("%-5s %-10s %-15s %-5s %-15s %-5s ", "PID", "COMM",

            "LADDR", "LPORT", "RADDR", "RPORT");

        printf("%5s %5s %s\n", "TX_KB", "RX_KB", "MS");

}

 

kprobe:tcp_set_state

{

        $sk = (struct sock *)arg0;

        $newstate = arg1;
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        /*

         * This tool includes PID and comm context. From TCP this is best

         * effort, and may be wrong in some situations. It does this:

         * - record timestamp on any state < TCP_FIN_WAIT1

         *      note some state transitions may not be present via this kprobe

         * - cache task context on:

         *      TCP_SYN_SENT: tracing from client

         *      TCP_LAST_ACK: client-closed from server

         * - do output on TCP_CLOSE:

         *      fetch task context if cached, or use current task

         */

 

        // record first timestamp seen for this socket

        if ($newstate < TCP_FIN_WAIT1 && @birth[$sk] == 0) {

                @birth[$sk] = nsecs;

        }

 

        // record PID & comm on SYN_SENT

        if ($newstate == TCP_SYN_SENT || $newstate == TCP_LAST_ACK) {

                @skpid[$sk] = pid;

                @skcomm[$sk] = comm;

        }

 

        // session ended: calculate lifespan and print

        if ($newstate == TCP_CLOSE && @birth[$sk]) {

                $delta_ms = (nsecs - @birth[$sk]) / 1000000;

                $lport = $sk->__sk_common.skc_num;

                $dport = $sk->__sk_common.skc_dport;

                $dport = ($dport >> 8) | (($dport << 8) & 0xff00);

                $tp = (struct tcp_sock *)$sk;

                $pid = @skpid[$sk];

                $comm = @skcomm[$sk];

                if ($comm == "") {

                        // not cached, use current task

                        $pid = pid;

                        $comm = comm;

                }

 

                $family = $sk->__sk_common.skc_family;

                $saddr = ntop(0);

                $daddr = ntop(0);

                if ($family == AF_INET) {

                        $saddr = ntop(AF_INET, $sk->__sk_common.skc_rcv_saddr);
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                        $daddr = ntop(AF_INET, $sk->__sk_common.skc_daddr);

                } else {

                        // AF_INET6

                        $saddr = ntop(AF_INET6,

                            $sk->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr8);

                        $daddr = ntop(AF_INET6,

                            $sk->__sk_common.skc_v6_daddr.in6_u.u6_addr8);

                }

                printf("%-5d %-10.10s %-15s %-5d %-15s %-6d ", $pid,

                    $comm, $saddr, $lport, $daddr, $dport);

                printf("%5d %5d %d\n", $tp->bytes_acked / 1024,

                    $tp->bytes_received / 1024, $delta_ms);

 

                delete(@birth[$sk]);

                delete(@skpid[$sk]);

                delete(@skcomm[$sk]);

        }

}

 

END

{

        clear(@birth); clear(@skpid); clear(@skcomm);

}

The logic in this tool is somewhat complex, and I added block comments to explain it in both the 
BCC and bpftrace versions. What it does is:

 ■ Measure the time from the first state transition seen for the socket, to TCP_CLOSE. This is 
printed as the duration.

 ■ Fetch throughput statistics from the struct tcp_sock in the kernel. This avoids tracing each 
packet and summing throughput from their sizes. These throughput counters are relatively 
recent, added since 2015 [109].

 ■ Cache the process context on either TCP_SYN_SENT or TCP_LAST_ACK, or (if not 
cached by those) on TCP_CLOSE. This works reasonably well but relies on these events 
happening in process context, which is a kernel implementation detail. Future kernels 
could change their logic to make this approach much less reliable, at which point this 
tool would need to be updated to cache task context from socket events instead (see the 
earlier tools).

The BCC version of this tool has been extended by the Netflix network engineering team to 
record other useful fields from the sock and tcp_sock structs.

This bpftrace tool can be updated to use the sock:inet_sock_set_state tracepoint, which needs an 
additional check for args->protocol == IPPROTO_TCP as that tracepoint fires for more than just 
TCP. Using this tracepoint improves stability, but there will still be unstable parts: for example, 
transferred bytes still need to be fetched from the tcp_sock struct.

http://_sk_common.skc_v6_rcv_saddr.in6_u.u6_addr8
http://_sk_common.skc_v6_daddr.in6_u.u6_addr8
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10.3.14 tcptop

tcptop(8)30 is a BCC tool that shows top processes using TCP. For example, from a 36-CPU produc-
tion Hadoop instance:

# tcptop

09:01:13 loadavg: 33.32 36.11 38.63 26/4021 123015

 

PID    COMM       LADDR                RADDR                 RX_KB  TX_KB

118119 java       100.1.58.46:36246    100.2.52.79:50010     16840      0

122833 java       100.1.58.46:52426    100.2.6.98:50010          0   3112

122833 java       100.1.58.46:50010    100.2.50.176:55396     3112      0

120711 java       100.1.58.46:50010    100.2.7.75:23358       2922      0

121635 java       100.1.58.46:50010    100.2.5.101:56426      2922      0

121219 java       100.1.58.46:50010    100.2.62.83:40570      2858      0

121219 java       100.1.58.46:42324    100.2.4.58:50010          0   2858

122927 java       100.1.58.46:50010    100.2.2.191:29338      2351      0

[...]

This output shows one connection at the top receiving over 16 Mbytes during this interval. By 
default, the screen is updated every second.

This works by tracing the TCP send and receive code path, and summarizing data in a BPF map 
efficiency. Even so, these events can be frequent, and on high network throughput systems the 
overhead may become measurable.

The actual functions traced are tcp_sendmsg() and tcp_cleanup_rbuf(). I chose tcp_cleanup_rbuf() 
as it provides both the sock struct and size as entry arguments. To get the same details from 
tcp_recvmsg() requires two kprobes and thus more overhead: a kprobe on entry for the sock 
struct, and a kretprobe for the returned bytes.

Note that tcptop(8) does not currently trace TCP traffic that was sent via the sendfile(2) syscall, 
as it may not call tcp_sendmsg(). If your workload makes use of sendfile(2), check for an updated 
tcptop(8) version or enhance it.

Command line usage:

tcptop [options] [interval [count]]

Options include:

 ■ -C: Don’t clear the screen

 ■ -p PID: Measure this process only

A future addition should be an option to truncate the number of rows shown.

30 Origin: I created tcptop using DTrace on 5-Jul-2005, inspired by William LeFebvre’s top(1) tool. I created the BCC 

version on 2-Sep-2016.
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10.3.15 tcpsnoop

tcpsnoop(8) was a popular Solaris DTrace tool of mine that I would have introduced at this point 
in this chapter if it existed for Linux BPF, but I have chosen not to port it; the version shown below 
is the Solaris one. I’m sharing it here because it taught me some important lessons the hard way.

tcpsnoop(8) printed a line for each packet, with addresses, packet size, process ID, and user ID. For 
example: 

solaris# tcpsnoop.d

  UID    PID LADDR           LPORT DR RADDR           RPORT  SIZE CMD 

    0    242 192.168.1.5        23 <- 192.168.1.1     54224    54 inetd 

    0    242 192.168.1.5        23 -> 192.168.1.1     54224    54 inetd 

    0    242 192.168.1.5        23 <- 192.168.1.1     54224    54 inetd 

    0    242 192.168.1.5        23 <- 192.168.1.1     54224    78 inetd 

    0    242 192.168.1.5        23 -> 192.168.1.1     54224    54 inetd 

    0  20893 192.168.1.5        23 -> 192.168.1.1     54224    57 in.telnetd 

    0  20893 192.168.1.5        23 <- 192.168.1.1     54224    54 in.telnetd 

[...] 

When I wrote this in 2004, network event analysis was the domain of packet sniffers: snoop(1M) 
for Solaris and tcpdump(8) for Linux. One blind spot of these tools is that they don’t show the 
process ID. I wanted a tool to show which process was creating network traffic, and this seemed 
like the obvious solution: create a version of snoop(1M) with a PID column. To test my solution, 
I ran it alongside snoop(1M) to ensure that they both saw the same packet events.

This turned out to be quite challenging: I needed to cache the PID during socket-level events, and 
fetch the packet size from the other end of the stack after MTU fragmentation. I needed to trace 
the data transfer code, the TCP handshake code, and other code for handling packets to closed 
ports and other events. I succeeded, but my tool traced eleven different points in the kernel, and 
walked various kernel structures, which made it very brittle as it relied on many unstable kernel 
details. The tool itself was over 500 lines of code.

Over a six-year span, the Solaris kernel was updated over a dozen times, and tcpsnoop(8) stopped 
working on seven of those updates. Fixing it became a nightmare: I could fix it for one kernel 
version, but I then had to test across all prior versions to see if the fix introduced a regression. It 
became impractical, and I began releasing separate tcpsnoop(8) versions for specific kernels.

There are two lessons here. First: kernel code is subject to change, and the more kprobes and struct 
usage you have, the more likely it is that your tool will break. The tools in this book purposely use 
the fewest possible kprobes, making maintenance easier when they do break. Where possible, use 
tracepoints instead.

Second: the entire premise of the tool was a mistake. If my aim was to identify which processes 
were causing network traffic, I did not need to do this on a per-packet basis. I could have written 
a tool to summarize data transfers only, bearing in mind that it would miss other packets includ-
ing TCP handshakes—but it would have been close enough to solve most problems. By way of 
example, socketio(8) or tcptop(8), covered earlier, each use only two kprobes, and tcplife(8) uses 
one tracepoint plus some struct walking.



ptg30854589

450 Chapter 10  Networking

10.3.16 tcpretrans

tcpretrans(8)31 is a BCC and bpftrace tool to trace TCP retransmits, showing IP address and 
port details and the TCP state. The following shows tcpretrans(8) from BCC, on a production 
instance:

# tcpretrans

Tracing retransmits ... Hit Ctrl-C to end

TIME     PID    IP LADDR:LPORT         T> RADDR:RPORT         STATE

00:20:11 72475  4  100.1.58.46:35908   R> 100.2.0.167:50010   ESTABLISHED

00:20:11 72475  4  100.1.58.46:35908   R> 100.2.0.167:50010   ESTABLISHED

00:20:11 72475  4  100.1.58.46:35908   R> 100.2.0.167:50010   ESTABLISHED

00:20:12 60695  4  100.1.58.46:52346   R> 100.2.6.189:50010   ESTABLISHED

00:20:12 60695  4  100.1.58.46:52346   R> 100.2.6.189:50010   ESTABLISHED

00:20:12 60695  4  100.1.58.46:52346   R> 100.2.6.189:50010   ESTABLISHED

00:20:12 60695  4  100.1.58.46:52346   R> 100.2.6.189:50010   ESTABLISHED

00:20:13 60695  6  ::ffff:100.1.58.46:13562 R> ::ffff:100.2.51.209:47356 FIN_WAIT1

00:20:13 60695  6  ::ffff:100.1.58.46:13562 R> ::ffff:100.2.51.209:47356 FIN_WAIT1

[...]

This output shows a low rate of retransmits, a few per second (TIME column), which were mostly 
for sessions in the ESTABLISHED state. A high rate in the ESTABLISHED state can point to an 
external network problem. A high rate in the SYN_SENT state can point to an overloaded server 
application which is not consuming its SYN backlog fast enough.

This works by tracing TCP retransmit events in the kernel. Since these should occur infrequently, 
the overhead should be negligible. Compare this to how retransmits are historically analyzed 
using a packet sniffer to capture all packets, and then post-processing to find retransmits—both 
steps can cost significant CPU overhead. Packet-capture can also only see details that are on the 
wire, whereas tcpretrans(8) prints the TCP state directly from the kernel, and can be enhanced to 
print more kernel state if needed.

At Netflix, this tool was used to help diagnose a production issue caused by network traffic 
exceeding external network limits, causing dropped packets and retransmits. It was helpful 
to watch retransmits across different production instances, and be able to immediately see 
source, destination, and TCP state details without the overhead of processing per-packet 
dumps.

Shopify has also used this to debug a production network issue, where the workload was causing 
tcpdump(8) to drop so many packets that its output was not reliable, and the overhead was too 
painful. Both tcpretrans(8) and tcpdrop(8) (mentioned later) were used instead to gather enough 
information to point towards an external issue: in this case, it was a firewall configuration that 
became inundated under load and would drop packets.

31 Origin: I created a number of similar TCP retransmit tracing tools using DTrace in 2011 [110]. I created an Ftrace-

based tcpretrans(8) on 28-Jul-2014 [111], then the BCC tcpretrans(8) on 14-Feb-2016. Matthias Tafelmeier added the 

counting mode. Dale Hamel created the bpftrace version on 23-Nov-2018.



ptg30854589

45110.3 BPF Tools

BCC

Command line usage:

tcpretrans [options]

Options include:

 ■ -l: Include tail loss probe attempts (adds a kprobe for tcp_send_loss_probe())

 ■ -c: Counts retransmits per flow

The -c option changes the behavior of tcpretrans(8), causing it to print a summary of counts 
rather than per-event details.

bpftrace

The following is the code for the bpftrace version, which summarizes its core functionality. This 
version does not support options.

#!/usr/local/bin/bpftrace

 

#include <linux/socket.h>

#include <net/sock.h>

 

BEGIN

{

        printf("Tracing TCP retransmits. Hit Ctrl-C to end.\n");

        printf("%-8s %-8s %20s %21s %6s\n", "TIME", "PID", "LADDR:LPORT",

            "RADDR:RPORT", "STATE");

 

        // See include/net/tcp_states.h:

        @tcp_states[1] = "ESTABLISHED";

        @tcp_states[2] = "SYN_SENT";

        @tcp_states[3] = "SYN_RECV";

        @tcp_states[4] = "FIN_WAIT1";

        @tcp_states[5] = "FIN_WAIT2";

        @tcp_states[6] = "TIME_WAIT";

        @tcp_states[7] = "CLOSE";

        @tcp_states[8] = "CLOSE_WAIT";

        @tcp_states[9] = "LAST_ACK";

        @tcp_states[10] = "LISTEN";

        @tcp_states[11] = "CLOSING";

        @tcp_states[12] = "NEW_SYN_RECV";

}

 

kprobe:tcp_retransmit_skb
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{

        $sk = (struct sock *)arg0;

        $inet_family = $sk->__sk_common.skc_family;

 

        if ($inet_family == AF_INET || $inet_family == AF_INET6) {

                $daddr = ntop(0);

                $saddr = ntop(0);

                if ($inet_family == AF_INET) {

                        $daddr = ntop($sk->__sk_common.skc_daddr);

                        $saddr = ntop($sk->__sk_common.skc_rcv_saddr);

                } else {

                        $daddr = ntop(

                            $sk->__sk_common.skc_v6_daddr.in6_u.u6_addr8);

                        $saddr = ntop(

                            $sk->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr8);

                }

                $lport = $sk->__sk_common.skc_num;

                $dport = $sk->__sk_common.skc_dport;

 

                // Destination port is big endian, it must be flipped

                $dport = ($dport >> 8) | (($dport << 8) & 0x00FF00);

 

                $state = $sk->__sk_common.skc_state;

                $statestr = @tcp_states[$state];

 

                time("%H:%M:%S ");

                printf("%-8d %14s:%-6d %14s:%-6d %6s\n", pid, $saddr, $lport,

                    $daddr, $dport, $statestr);

        }

}

 

END

{

        clear(@tcp_states);

}

This version traces the tcp_retransmit_skb() kernel function. On Linux 4.15, 
tcp:tcp_retransmit_skb and tcp:tcp_retransmit_synack tracepoints were added, and this tool can 
be updated to use them.

http://_sk_common.skc_v6_daddr.in6_u.u6_addr8
http://_sk_common.skc_v6_rcv_saddr.in6_u.u6_addr8
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10.3.17 tcpsynbl

tcpsynbl(8)32 traces the TCP SYN backlog limit and size, showing a histogram of the size measured 
each time the backlog is checked. For example, on a 48-CPU production edge server:

# tcpsynbl.bt

Attaching 4 probes...

Tracing SYN backlog size. Ctrl-C to end.

^C

@backlog[backlog limit]: histogram of backlog size

 

@backlog[128]: 

[0]                    2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@backlog[500]: 

[0]                 2783 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[1]                    9 |                                                    |

[2, 4)                 4 |                                                    |

[4, 8)                 1 |                                                    |

The first histogram shows that a backlog of limit 128 had two connections arrive, where the 
backlog length was 0. The second histogram shows that a backlog limit of 500 had over two 
thousand connections arrive, and the length was usually zero, but sometimes reached the four 
to eight range. If the backlog exceeds the limit, this tool prints a line to say that a SYN has been 
dropped, which causes latency on the client host as it must retransmit.

This backlog size is tunable, and is an argument to the listen(2) syscall:

int listen(int sockfd, int backlog);

It is also truncated by a system limit set in /proc/sys/net/core/somaxconn.

This tool works by tracing new connection events, and checking the limit and size of the backlog. 
The overhead should be negligible, as these are usually infrequent compared to other events.

The source to tcpsynbl(8) is33:

#!/usr/local/bin/bpftrace

 

#include <net/sock.h>

 

BEGIN

{

32 Origin: I created a number of similar TCP SYN backlog tools using DTrace in 2012 [110]. I created this bpftrace 

version on 19-Apr-2019.

33 This tool contains a workaround for an int casting problem: & 0xffffffff. This should become unnecessary in 

a later version of bpftrace.
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        printf("Tracing SYN backlog size. Ctrl-C to end.\n");

}

 

kprobe:tcp_v4_syn_recv_sock,

kprobe:tcp_v6_syn_recv_sock

{

        $sock = (struct sock *)arg0;

        @backlog[$sock->sk_max_ack_backlog & 0xffffffff] =

            hist($sock->sk_ack_backlog);

        if ($sock->sk_ack_backlog > $sock->sk_max_ack_backlog) {

                time("%H:%M:%S dropping a SYN.\n");

        }

}

 

END

{

        printf("\n@backlog[backlog limit]: histogram of backlog size\n");

}

If the backlog exceeds the limit, the time() builtin is used to print a line of output containing the 
time, and a message that a SYN was dropped. This was not seen in the previous production output 
as the limit was not exceeded. 

10.3.18 tcpwin

tcpwin(8)34 traces the TCP send congestion window size and other kernel parameters, so that the 
performance of congestion control can be studied. This tool produces comma-separated value 
output for importing into graphing software. For example, running tcpwin.bt and saving the 
output to a text file:

# tcpwin.bt > out.tcpwin01.txt

 

^C

# more out.tcpwin01.txt 

Attaching 2 probes...

event,sock,time_us,snd_cwnd,snd_ssthresh,sk_sndbuf,sk_wmem_queued

rcv,0xffff9212377a9800,409985,2,2,87040,2304

rcv,0xffff9216fe306e80,534689,10,2147483647,87040,0

rcv,0xffff92180f84c000,632704,7,7,87040,2304

rcv,0xffff92180b04f800,674795,10,2147483647,87040,2304

[...]

34 Origin: I created this on 20-Apr-2019, inspired by the tcp_probe module and the many times I’ve seen it used for 

graphing congestion window size over time.
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The second line of output is a header line, and the following are event details. The second field is 
the sock struct address, which can be used to uniquely identify connections. The awk(1) utility 
can be used to frequency count these sock addresses:

# awk -F, '$1 == "rcv" { a[$2]++ } END { for (s in a) { print s, a[s] } }' 
out.tcpwin01.txt

[...]

0xffff92166fede000 1

0xffff92150a03c800 4564

0xffff9213db2d6600 2

[...]

This shows that the socket with the most TCP receive events while tracing had the address 
0xffff92150a03c800. Events for this address only, and the header line, can also be extracted by 
awk to a new file, out.csv:

# awk -F, '$2 == "0xffff92150a03c800" || NR == 2' out.tcpwin01.txt > out.csv

This CSV file was imported into the R statistics software and plotted (see Figure 10-5).

Figure 10-5 TCP congestion window and send buffer over time

This system is using the cubic TCP congestion control algorithm, showing an increase in send 
congestion window size and then a sharp drop when congestion is encountered (packet loss). This 
occurs several times, creating a sawtooth pattern, until an optimal window size is found.
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The source to tcpwin(8) is:

#!/usr/local/bin/bpftrace

 

#include <net/sock.h>

#include <linux/tcp.h>

 

BEGIN

{

        printf("event,sock,time_us,snd_cwnd,snd_ssthresh,sk_sndbuf,");

        printf("sk_wmem_queued\n");

}

 

kprobe:tcp_rcv_established

{

        $sock = (struct sock *)arg0;

        $tcps = (struct tcp_sock *)arg0; // see tcp_sk()

        printf("rcv,0x%llx,%lld,%d,%d,%d,%d\n", arg0, elapsed / 1000,

            $tcps->snd_cwnd, $tcps->snd_ssthresh, $sock->sk_sndbuf,

            $sock->sk_wmem_queued);

}

This can be extended. The first field is the event type, but only "rcv" is used by this tool. You 
can add more kprobes or tracepoints, each with its own event string to identify it. For example, 
an event type "new" could be added when sockets are established, with fields to identify the IP 
addresses and TCP ports.

A kernel module was used for this type of congestion control analysis, tcp_probe, which recently 
has become a tracepoint: tcp:tcp_probe, in Linux 4.16. The tcpwin(8) tool can be rewritten to be 
based on this tracepoint, although not all socket details are visible from the tracepoint arguments.

10.3.19 tcpnagle

tcpnagle(8)35 traces the usage of TCP nagle on the TCP transmit codepath, and measures the 
duration of transmit delays as a histogram: these delays are caused by nagle and other events. For 
example, on a production edge server:

# tcpnagle.bt 

Attaching 4 probes...

Tracing TCP nagle and xmit delays. Hit Ctrl-C to end.

^C

 

35 Origin: I created it for this book on 23-Apr-2019.
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@blocked_us: 

[2, 4)                 3 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[4, 8)                 2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                  |

 

@nagle[CORK]: 2

@nagle[OFF|PUSH]: 5

@nagle[ON]: 32

@nagle[PUSH]: 11418

@nagle[OFF]: 226697

During tracing, this showed that nagle was often off (perhaps because the application has 
called a setsockopt(2) with TCP_NODELAY) or set to push (perhaps because the application is 
using TCP_CORK). Only five times were transmit packets delayed, for at most the four to eight 
microsecond bucket.

This works by tracing the entry and exit of a TCP transmit function. This can be a frequent 
function, so the overhead may become noticeable on high network throughput systems.

The source to tcpnagle(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing TCP nagle and xmit delays. Hit Ctrl-C to end.\n");

        // from include/net/tcp.h; add more combinations if needed:

        @flags[0x0] = "ON";

        @flags[0x1] = "OFF";

        @flags[0x2] = "CORK";

        @flags[0x3] = "OFF|CORK";

        @flags[0x4] = "PUSH";

        @flags[0x5] = "OFF|PUSH";

}

 

kprobe:tcp_write_xmit

{

        @nagle[@flags[arg2]] = count();

        @sk[tid] = arg0;

}

 

kretprobe:tcp_write_xmit

/@sk[tid]/

{

        $inflight = retval & 0xff;

        $sk = @sk[tid];
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        if ($inflight && !@start[$sk]) {

                @start[$sk] = nsecs;

        }

        if (!$inflight && @start[$sk]) {

                @blocked_us = hist((nsecs - @start[$sk]) / 1000);

                delete(@start[$sk]);

        }

        delete(@sk[tid]);

}

 

END

{

        clear(@flags); clear(@start); clear(@sk);

}

On the entry to tcp_write_xmit(), the nonagle flags (arg2) are converted to a readable string via 
the @flags lookup map. A sock struct point is also saved, as it is used in the kretprobe for saving 
timestamps with a connection for measuring the duration of transmit delays. The duration is 
measured from the first time tcp_write_xmit() returns non-zero (which shows that for some 
reason it did not send the packets; the reason may include nagle), to when tcp_write_xmit() next 
successfully sent packets for that socket.

10.3.20 udpconnect

udpconnect(8)36 traces new UDP connections initiated from the local host that use connect(2) 
(this does not trace unconnected UDP). For example:

# udpconnect.bt 

Attaching 3 probes...

TIME     PID    COMM             IP RADDR            RPORT

20:58:38 6039   DNS Res~er #540  4  10.45.128.25     53

20:58:38 2621   TaskSchedulerFo  4  127.0.0.53       53   

20:58:39 3876   Chrome_IOThread  6  2001:4860:4860::8888 53

[...]

This shows two connections, both to remote port 53, one from a DNS resolver, and the other from 
Chrome_IOThread.

This works by tracing the UDP connection functions in the kernel. Their frequency should be low, 
making the overhead negligible.

36 Origin: I created it for this book on 20-Apr-2019.
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The source to udpconnect(8) is:

#!/usr/local/bin/bpftrace

 

#include <net/sock.h>

 

BEGIN

{

        printf("%-8s %-6s %-16s %-2s %-16s %-5s\n", "TIME", "PID", "COMM",

            "IP", "RADDR", "RPORT");

}

 

kprobe:ip4_datagram_connect,

kprobe:ip6_datagram_connect

{

        $sa = (struct sockaddr *)arg1;

        if ($sa->sa_family == AF_INET || $sa->sa_family == AF_INET6) {

                time("%H:%M:%S ");

                if ($sa->sa_family == AF_INET) {

                        $s = (struct sockaddr_in *)arg1;

                        $port = ($s->sin_port >> 8) |

                            (($s->sin_port << 8) & 0xff00);

                        printf("%-6d %-16s 4  %-16s %-5d\n", pid, comm,

                            ntop(AF_INET, $s->sin_addr.s_addr), $port);

                } else {

                        $s6 = (struct sockaddr_in6 *)arg1;

                        $port = ($s6->sin6_port >> 8) |

                            (($s6->sin6_port << 8) & 0xff00);

                        printf("%-6d %-16s 6  %-16s %-5d\n", pid, comm,

                            ntop(AF_INET6, $s6->sin6_addr.in6_u.u6_addr8),

                            $port);

                }

        }

}

The ip4_datagram_connect() and ip6_datagram_connect() functions are the connect members of 
the udp_prot and udpv6_prot structs, which define the functions that handle the UDP protocol. 
Details are printed similarly to earlier tools.

Also see socketio(8) for a tool that shows UDP sends and receives by process. A UDP-specific one 
can be coded by tracing udp_sendmsg() and udp_recvmsg(), which would have the benefit of 
isolating the overhead to just the UDP functions rather than all the socket functions.

http://>sin6_addr.in6_u.u6_addr8


ptg30854589

460 Chapter 10  Networking

10.3.21 gethostlatency

gethostlatency(8)37 is a BCC and bpftrace tool to trace host resolution calls (DNS) via the resolver 
library calls, getaddrinfo(3), gethostbyname(3), etc. For example:

# gethostlatency 

TIME      PID    COMM                  LATms HOST

13:52:39  25511  ping                   9.65 www.netflix.com

13:52:42  25519  ping                   2.64 www.netflix.com

13:52:49  24989  DNS Res~er #712       43.09 docs.google.com

13:52:52  25527  ping                  99.26 www.cilium.io

13:52:53  19025  DNS Res~er #709        2.58 drive.google.com

13:53:05  21903  ping                 279.09 www.kubernetes.io

13:53:06  25459  TaskSchedulerFo       23.87 www.informit.com

[...]

This output shows the latencies of various resolutions system-wide. The first was the ping(1) 
command resolving www.netflix.com, which took 9.65 milliseconds. A subsequent lookup 
took 2.64 milliseconds (likely thanks to caching). Other threads and lookups can be seen in the 
output, with the slowest a 279 ms resolution of www.kubernetes.io.38

This works by using user-level dynamic instrumentation on the library functions. During a 
uprobe the host name and a timestamp is recorded, and during a uretprobe the duration is 
calculated and printed with the saved name. Since these are typically low-frequency events, the 
overhead of this tool should be negligible.

DNS is a common source of production latency. At Shopify, the bpftrace version of this tool 
was executed on a Kubernetes cluster to characterize a DNS latency issue in production. The 
data did not point to an issue with a certain server or target of the lookup, but rather latency 
when many lookups were in flight. The issue was further debugged and found to be a cloud 
limit on the number of UDP sessions that could be open on each host. Increasing the limit 
resolved the issue.

BCC

Command line usage:

gethostlatency [options]

The only option currently supported is -p PID, to trace one process ID only.

37 Origin: I created a similar tool called getaddrinfo.d for the 2011 DTrace book [Gregg 11]. I created the BCC version 

on 28-Jan-2016 and the bpftrace version on 8-Sep-2018.

38 Slow DNS times for the .io domain from the United States is a known problem, believed to be due to the hosting 

location of the .io name servers [112].

http://www.netflix.com
http://www.kubernetes.io
http://the.io
http://the.io
http://the.io
http://the.io
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bpftrace

The following is the code for the bpftrace version, which does not support options:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing getaddr/gethost calls... Hit Ctrl-C to end.\n");

        printf("%-9s %-6s %-16s %6s %s\n", "TIME", "PID", "COMM", "LATms",

            "HOST");

}

 

uprobe:/lib/x86_64-linux-gnu/libc.so.6:getaddrinfo,

uprobe:/lib/x86_64-linux-gnu/libc.so.6:gethostbyname,

uprobe:/lib/x86_64-linux-gnu/libc.so.6:gethostbyname2

{

        @start[tid] = nsecs;

        @name[tid] = arg0;

}

 

uretprobe:/lib/x86_64-linux-gnu/libc.so.6:getaddrinfo,

uretprobe:/lib/x86_64-linux-gnu/libc.so.6:gethostbyname,

uretprobe:/lib/x86_64-linux-gnu/libc.so.6:gethostbyname2

/@start[tid]/

{

        $latms = (nsecs - @start[tid]) / 1000000;

        time("%H:%M:%S  ");

        printf("%-6d %-16s %6d %s\n", pid, comm, $latms, str(@name[tid]));

        delete(@start[tid]);

        delete(@name[tid]);

}

The different possible resolver calls are traced from libc via its /lib/x86_64-linux-gnu/libc.so.6 loca-
tion. If a different resolver library is used, or if the functions are implemented by the application, or 
statically included (static build), then this tool will need to be modified to trace those other locations.

10.3.22 ipecn

ipecn(8)39 traces IPv4 inbound explicit congestion notification (ECN) events, and is a proof of 
concept tool. For example:

# ipecn.bt 

Attaching 3 probes...

Tracing inbound IPv4 ECN Congestion Encountered. Hit Ctrl-C to end.

39 Origin: I created it for this book on 28-May-2019, based on a suggestion from Sargun Dhillon.
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10:11:02 ECN CE from: 100.65.76.247

10:11:02 ECN CE from: 100.65.76.247

10:11:03 ECN CE from: 100.65.76.247

10:11:21 ECN CE from: 100.65.76.247

[...]

This shows congestion encountered (CE) events from 100.65.76.247. CE can be set by switches and 
routers in the network to notify endpoints of congestion. It can also be set by kernels based on a 
qdisc policy, although that is usually for testing and simulation purposes (with the netem qdisc). 
The DataCenter TCP (DCTCP) congestion control algorithm also makes use of ECN [Alizadeh 10] 
[113].

ipecn(8) works by tracing the kernel ip_rcv() function and reading the congestion encountered 
state from the IP header. Since this adds overhead to every received packet, this method is not 
ideal, and I’d rather call this a proof of concept. Much better would be to trace the kernel func-
tions that handle CE events only, as these would fire less frequently. However, they are inlined 
and unavailable to trace directly (on my kernels). Best of all would be to have a tracepoint for ECN 
congestion encountered events.

The source to ipecn(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/skbuff.h>

#include <linux/ip.h>

 

BEGIN

{

        printf("Tracing inbound IPv4 ECN Congestion Encountered. ");

        printf("Hit Ctrl-C to end.\n");

}

 

kprobe:ip_rcv

{

        $skb = (struct sk_buff *)arg0;

        // get IPv4 header; see skb_network_header():

        $iph = (struct iphdr *)($skb->head + $skb->network_header);

        // see INET_ECN_MASK:

        if (($iph->tos & 3) == 3) {

                time("%H:%M:%S ");

                printf("ECN CE from: %s\n", ntop($iph->saddr));

        }

}
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This is also an example of parsing the IPv4 header from a struct sk_buff. It uses similar logic to 
the kernel’s skb_network_header() function, and will need updates to match any changes to that 
function (another reason that more-stable tracepoints would be preferred). This tool can also be 
extended to trace the outbound path, and IPv6 (see Section 10.5). 

10.3.23 superping

superping(8)40 measures the ICMP echo request to response latency from the kernel network 
stack, as a way to verify the round trip times reported by ping(8). Older versions of ping(8) 
measure the round trip time from user space, which can include CPU scheduling latency on 
busy systems, inflating the measured times. This older method is also used by ping(8) for kernels 
without socket timestamp support (SIOCGSTAMP or SO_TIMESTAMP).

Since I have a newer version of ping(8) and newer kernel, to demonstrate the older behavior I’ve 
run it with the -U option, which measures the original user-to-user latency. For example, in one 
terminal session:

terminal1# ping -U 10.0.0.1

PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.

64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=6.44 ms

64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=6.60 ms

64 bytes from 10.0.0.1: icmp_seq=3 ttl=64 time=5.93 ms

64 bytes from 10.0.0.1: icmp_seq=4 ttl=64 time=7.40 ms

64 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=5.87 ms

[...]

While in another terminal session I had already run superping(8):

terminal2# superping.bt

Attaching 6 probes...

Tracing ICMP echo request latency. Hit Ctrl-C to end.

IPv4 ping, ID 28121 seq 1: 6392 us

IPv4 ping, ID 28121 seq 2: 6474 us

IPv4 ping, ID 28121 seq 3: 5811 us

IPv4 ping, ID 28121 seq 4: 7270 us

IPv4 ping, ID 28121 seq 5: 5741 us

[...]

The output can be compared: it shows that the times reported by ping(8) can be inflated by over 
0.10 ms, for this current system and workload. Without -U, so that ping(8) uses socket time-
stamps, the time difference is often within 0.01 ms.

This works by instrumenting the send and receive of ICMP packets, saving a timestamp in a 
BPF map for each ICMP echo request, and compares the ICMP header details to match the echo 

40 Origin: I first created this for the 2011 DTrace book [Gregg 11] and wrote this version for this book on 20-Apr-2019.



ptg30854589

464 Chapter 10  Networking

packets. The overhead should be negligible, since this is only instrumenting raw IP packets and 
not TCP packets.

The source to superping(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/skbuff.h>

#include <linux/icmp.h>

#include <linux/ip.h>

#include <linux/ipv6.h>

#include <linux/in.h>

 

BEGIN

{

        printf("Tracing ICMP ping latency. Hit Ctrl-C to end.\n");

}

 

/*

 * IPv4

 */

kprobe:ip_send_skb

{

        $skb = (struct sk_buff *)arg1;

        // get IPv4 header; see skb_network_header():

        $iph = (struct iphdr *)($skb->head + $skb->network_header);

        if ($iph->protocol == IPPROTO_ICMP) {

                // get ICMP header; see skb_transport_header():

                $icmph = (struct icmphdr *)($skb->head +

                    $skb->transport_header);

                if ($icmph->type == ICMP_ECHO) {

                        $id = $icmph->un.echo.id;

                        $seq = $icmph->un.echo.sequence;

                        @start[$id, $seq] = nsecs;

                }

        }

}

 

kprobe:icmp_rcv

{

        $skb = (struct sk_buff *)arg0;

        // get ICMP header; see skb_transport_header():

        $icmph = (struct icmphdr *)($skb->head + $skb->transport_header);
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        if ($icmph->type == ICMP_ECHOREPLY) {

                $id = $icmph->un.echo.id;

                $seq = $icmph->un.echo.sequence;

                $start = @start[$id, $seq];

                if ($start > 0) {

                        $idhost = ($id >> 8) | (($id << 8) & 0xff00);

                        $seqhost = ($seq >> 8) | (($seq << 8) & 0xff00);

                        printf("IPv4 ping, ID %d seq %d: %d us\n",

                            $idhost, $seqhost, (nsecs - $start) / 1000);

                        delete(@start[$id, $seq]);

                }

        }

}

 

/*

 * IPv6

 */

kprobe:ip6_send_skb

{

        $skb = (struct sk_buff *)arg0;

        // get IPv6 header; see skb_network_header():

        $ip6h = (struct ipv6hdr *)($skb->head + $skb->network_header);

        if ($ip6h->nexthdr == IPPROTO_ICMPV6) {

                // get ICMP header; see skb_transport_header():

                $icmp6h = (struct icmp6hdr *)($skb->head +

                    $skb->transport_header);

                if ($icmp6h->icmp6_type == ICMPV6_ECHO_REQUEST) {

                        $id = $icmp6h->icmp6_dataun.u_echo.identifier;

                        $seq = $icmp6h->icmp6_dataun.u_echo.sequence;

                        @start[$id, $seq] = nsecs;

                }

        }

}

 

kprobe:icmpv6_rcv

{

        $skb = (struct sk_buff *)arg0;

        // get ICMPv6 header; see skb_transport_header():

        $icmp6h = (struct icmp6hdr *)($skb->head + $skb->transport_header);

        if ($icmp6h->icmp6_type == ICMPV6_ECHO_REPLY) {

                $id = $icmp6h->icmp6_dataun.u_echo.identifier;

                $seq = $icmp6h->icmp6_dataun.u_echo.sequence;

                $start = @start[$id, $seq];
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                if ($start > 0) {

                        $idhost = ($id >> 8) | (($id << 8) & 0xff00);

                        $seqhost = ($seq >> 8) | (($seq << 8) & 0xff00);

                        printf("IPv6 ping, ID %d seq %d: %d us\n",

                            $idhost, $seqhost, (nsecs - $start) / 1000);

                        delete(@start[$id, $seq]);

                }

        }

}

 

END { clear(@start); }

Both IPv4 and IPv6 are handled by different kernel functions, and are traced separately. This code 
is another example of packet header analysis: the IPv4, IPv6, ICMP, and ICMPv6 packet headers 
are read by BPF. The method of finding these header structures from the struct sk_buff depends 
on the kernel source and its functions skb_network_header() and skb_transport_header(). As with 
kprobes, this is an unstable interface, and changes to how headers are found and processed by the 
network stack will require updates to this tool to match.

A minor note for this source: the ICMP identifier and sequence number are printed out after switch-
ing from network to host order (see $idhost = and $seqhost =). For the @start map that saves 
timestamps, I used the network order instead; this saved some instructions on the send kprobes.

10.3.24 qdisc-fq

qdisc-fq(8)41 shows the time spent on the Fair Queue (FQ) qdisc. For example, from a busy produc-
tion edge server:

# qdisc-fq.bt

Attaching 4 probes...

Tracing qdisc fq latency. Hit Ctrl-C to end.

^C

 

@us: 

[0]                 6803 |@@@@@@@@@@@@                                        |

[1]                20084 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                 |

[2, 4)             29230 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[4, 8)               755 |@                                                   |

[8, 16)              210 |                                                    |

[16, 32)              86 |                                                    |

[32, 64)              39 |                                                    |

[64, 128)             90 |                                                    |

[128, 256)            65 |                                                    |

[256, 512)            61 |                                                    |

41 Origin: I created it for this book on 21-Apr-2019.
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[512, 1K)             26 |                                                    |

[1K, 2K)               9 |                                                    |

[2K, 4K)               2 |                                                    |

This shows that packets usually spent less than four microseconds on this queue, with a very 
small percentage reaching up to the two to four-millisecond bucket. Should there be a problem 
with queue latency, it will show up as higher latencies in the histogram.

This works by tracing the enqueue and dequeue functions for this qdisc. For high network I/O 
systems, the overhead may become measurable as these can be frequent events.

The source to qdisc-fq(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing qdisc fq latency. Hit Ctrl-C to end.\n");

}

 

kprobe:fq_enqueue

{

        @start[arg0] = nsecs;

}

 

kretprobe:fq_dequeue

/@start[retval]/

{

        @us = hist((nsecs - @start[retval]) / 1000);

        delete(@start[retval]);

}

 

END

{

        clear(@start);

}

The argument to fq_enqueue(), and the return value of fq_dequeue(), is the struct sk_buff address, 
which is used as a unique key for storing the timestamp.

Note that this tool only works when the FQ qdisc scheduler is loaded. If it is not, this tool will error:

# qdisc-fq.bt 

Attaching 4 probes...

cannot attach kprobe, Invalid argument

Error attaching probe: 'kretprobe:fq_dequeue'
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This can be fixed by forcibly loading the FQ scheduler kernel module:

# modprobe sch_fq

# qdisc-fq.bt

Attaching 4 probes...

Tracing qdisc fq latency. Hit Ctrl-C to end.

^C

#

Although, if this qdisc is not in use, then there will be no queueing events to measure. Use tc(1) to 
add and administer qdisc schedulers.

10.3.25 qdisc-cbq, qdisc-cbs, qdisc-codel, qdisc-fq_codel, qdisc-red, 

and qdisc-tbf

There are many other qdisc schedulers, and the previous qdisc-fq(8) tool can usually be adapted 
to trace each. For example, here is a Class Based Queueing (CBQ) version:

# qdisc-cbq.bt

Attaching 4 probes...

Tracing qdisc cbq latency. Hit Ctrl-C to end.

^C

 

@us: 

[0]                  152 |@@                                                  |

[1]                  766 |@@@@@@@@@@@@@@                                      |

[2, 4)              2033 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@             |

[4, 8)              2279 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@        |

[8, 16)             2663 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16, 32)             427 |@@@@@@@@                                            |

[32, 64)              15 |                                                    |

[64, 128)              1 |                                                    |

The enqueue and dequeue functions that are traced are from struct Qdisc_ops, which defines 
their arguments and return value (include/net/sch_generic.h):

struct Qdisc_ops {

        struct Qdisc_ops        *next;

        const struct Qdisc_class_ops    *cl_ops;

        char                    id[IFNAMSIZ];

        int                     priv_size;

        unsigned int            static_flags;
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        int                     (*enqueue)(struct sk_buff *skb,

                                           struct Qdisc *sch,

                                           struct sk_buff **to_free);

        struct sk_buff *        (*dequeue)(struct Qdisc *);

[...]

This is why the skb_buff address was the first argument for the enqueue function, and the return 
value of the dequeue function.

This Qdisc_ops is declared for other schedulers. For the CBQ qdisc (net/sched/sch_cbq.c):

static struct Qdisc_ops cbq_qdisc_ops __read_mostly = {

        .next           =       NULL,

        .cl_ops         =       &cbq_class_ops,

        .id             =       "cbq",

        .priv_size      =       sizeof(struct cbq_sched_data),

        .enqueue        =       cbq_enqueue,

        .dequeue        =       cbq_dequeue,

[...]

A qdisc-cbq.bt tool can thus be written by changing qdisc-fq(8)’s fq_enqueue to cbq_enqueue, 
and fq_dequeue to cbq_dequeue. is Here is a table of substitutions for some of the qdiscs:

BPF Tool Qdisc Enqueue Function Dequeue Function

qdisc-cbq.bt Class Based Queueing cbq_enqueue() cbq_dequeue()

qdisc-cbs.bt Credit Based Shaper cbs_enqueue()) cbs_dequeue()

qdisc-codel.bt Controlled-Delay Active 
Queue Management

codel_qdisc_enqueue() codel_qdisc_dequeue()

qdisc-fq_codel.bt Fair Queueing with 
Controlled Delay

fq_codel_enqueue() fq_codel_dequeue()

qdisc-red Random Early Detection red_enqueue() red_dequeue()

qdisc-tbf Token Bucket Filter tbf_enqueue() tbf_dequeue()

It would be a straightforward exercise to create a shell script wrapper to bpftrace, called qdisclat, 
that accepted a qdisc name as an argument and then built and ran the bpftrace program to show 
its latency.
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10.3.26 netsize

netsize(8)42 shows the size of received and sent packets from the net device layer, both before and 
after software segmentation offload (GSO and GRO). This output can be used to investigate how 
packets become segmented before sending. For example, from a busy production server:

# netsize.bt

Attaching 5 probes...

Tracing net device send/receive. Hit Ctrl-C to end.

^C

 

@nic_recv_bytes: 

[32, 64)           16291 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[64, 128)            668 |@@                                                  |

[128, 256)            19 |                                                    |

[256, 512)            18 |                                                    |

[512, 1K)             24 |                                                    |

[1K, 2K)             157 |                                                    |

 

 

@nic_send_bytes: 

[32, 64)             107 |                                                    |

[64, 128)            356 |                                                    |

[128, 256)           139 |                                                    |

[256, 512)            31 |                                                    |

[512, 1K)             15 |                                                    |

[1K, 2K)           45850 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

 

@recv_bytes: 

[32, 64)           16417 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[64, 128)            688 |@@                                                  |

[128, 256)            20 |                                                    |

[256, 512)            33 |                                                    |

[512, 1K)             35 |                                                    |

[1K, 2K)             145 |                                                    |

[2K, 4K)               1 |                                                    |

[4K, 8K)               5 |                                                    |

[8K, 16K)              3 |                                                    |

[16K, 32K)             2 |                                                    |

 

 

42 Origin: I created this for this book on 21-Apr-2019.
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@send_bytes: 

[32, 64)             107 |@@@                                                 |

[64, 128)            356 |@@@@@@@@@@@                                         |

[128, 256)           139 |@@@@                                                |

[256, 512)            29 |                                                    |

[512, 1K)             14 |                                                    |

[1K, 2K)             131 |@@@@                                                |

[2K, 4K)             151 |@@@@@                                               |

[4K, 8K)             269 |@@@@@@@@                                            |

[8K, 16K)            391 |@@@@@@@@@@@@@                                       |

[16K, 32K)          1563 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[32K, 64K)           494 |@@@@@@@@@@@@@@@@                                    |

The output shows the packet sizes at the NIC (@nic_recv_bytes, @nic_send_bytes), and the packet 
sizes for the kernel network stack (@recv_bytes, @send_bytes). This shows that the server was 
receiving small packets, often smaller than 64 bytes, and mostly sending in the eight- to 64-Kbyte 
range (which becomes a one- to two-Kbyte range after segmentation for the NIC). These are likely 
1500 MTU sends.

This interface does not support TCP segmentation offload (TSO), so the GSO was used to segment 
before delivery to the NIC. If TSO was supported and enabled, the @nic_send_bytes histogram 
would also show large sizes, as segmentation happens later in NIC hardware.

Switching to jumbo frames will increase the packet size and system throughput, although there 
can be issues with enabling jumbo frames in a datacenter, including consuming more switch 
memory and worsening TCP incast issues.

This output can be compared to the earlier output of socksize(8).

This works by tracing net device tracepoints and summarizing the length argument in BPF maps. 
The overhead may become measurable on high network I/O systems.

There is a Linux tool called iptraf-ng(8) that also shows histograms for network packet sizes. 
However, iptraf-ng(8) works by packet sniffing and processing packets in user space. This costs 
more CPU overhead than netsize(8), which summarizes in kernel space. For example, examining 
the CPU usage of each tool during a localhost iperf(1) benchmark:

# pidstat -p $(pgrep iptraf-ng) 1

Linux 4.15.0-47-generic (lgud-bgregg)     04/22/2019     _x86_64_       (8 CPU)

 

11:32:15 AM  UID    PID    %usr %system  %guest   %wait    %CPU  CPU Command

11:32:16 AM    0  30825   18.00   74.00    0.00    0.00   92.00    2 iptraf-ng

11:32:17 AM    0  30825   21.00   70.00    0.00    0.00   91.00    1 iptraf-ng

11:32:18 AM    0  30825   21.00   71.00    0.00    1.00   92.00    6 iptraf-ng  

[...]
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# pidstat -p $(pgrep netsize) 1

Linux 4.15.0-47-generic (lgud-bgregg)     04/22/2019     _x86_64_       (8 CPU)

 

11:33:39 AM  UID    PID    %usr %system  %guest   %wait    %CPU  CPU Command

11:33:40 AM    0  30776    0.00    0.00    0.00    0.00    0.00    5 netsize.bt

11:33:41 AM    0  30776    0.00    0.00    0.00    0.00    0.00    7 netsize.bt

11:33:42 AM    0  30776    0.00    0.00    0.00    0.00    0.00    1 netsize.bt

[...]

iptraf-ng(8) consumes over 90% of one CPU to summarize packet sizes as histograms, whereas 
netsize(8) consumes 0%. This highlights a key difference between the approaches, although there 
are additional overheads not shown here for kernel processing.

The source to netsize(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing net device send/receive. Hit Ctrl-C to end.\n");

}

 

tracepoint:net:netif_receive_skb

{

        @recv_bytes = hist(args->len);

}

 

tracepoint:net:net_dev_queue

{

        @send_bytes = hist(args->len);

}

 

tracepoint:net:napi_gro_receive_entry

{

        @nic_recv_bytes = hist(args->len);

}

 

tracepoint:net:net_dev_xmit

{

        @nic_send_bytes = hist(args->len);

}

This uses the net tracepoints to watch the send path and receive paths.
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10.3.27 nettxlat

nettxlat(8)43 shows network device transmission latency: the time spent pushing the packet into 
the driver layer to enqueue it on a TX ring for the hardware to send out, until the hardware signals 
the kernel that packet transmission has completed (usually via NAPI) and the packet is freed. For 
example, from a busy production edge server:

# nettxlat.bt

Attaching 4 probes...

Tracing net device xmit queue latency. Hit Ctrl-C to end.

^C

 

@us: 

[4, 8)              2230 |                                                    |

[8, 16)           150679 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@                        |

[16, 32)          275351 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[32, 64)           59898 |@@@@@@@@@@@                                         |

[64, 128)          27597 |@@@@@                                               |

[128, 256)           276 |                                                    |

[256, 512)             9 |                                                    |

[512, 1K)              3 |                                                    |

This shows that device queued time was usually faster than 128 microseconds.

The source to nettxlat(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing net device xmit queue latency. Hit Ctrl-C to end.\n");

}

 

tracepoint:net:net_dev_start_xmit

{

        @start[args->skbaddr] = nsecs;

}

 

tracepoint:skb:consume_skb

/@start[args->skbaddr]/

{

        @us = hist((nsecs - @start[args->skbaddr]) / 1000);

        delete(@start[args->skbaddr]);

43 Origin: I created it for this book on 21-Apr-2019.
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}

 

tracepoint:net:net_dev_queue

{

        // avoid timestamp reuse:

        delete(@start[args->skbaddr]);

}

 

END

{

        clear(@start);

}

This works by measuring the time from when a packet is issued to the device queue via the 
net:net_dev_start_xmit tracepoint, and then when that packet is freed via the skb:consume_skb 
tracepoint, which occurs when the device has completed sending it.

There are some edge cases where a packet may not pass through the usual skb:consume_skb path: 
this creates a problem as the saved timestamp may be reused by a later sk_buff, causing latency 
outliers to appear in the histogram. This has been avoided by deleting timestamps on 
net:net_dev_queue, to help eliminate their reuse.

As an example of breaking down by device name, the following lines were modified, turning 
nettxlat(8) into nettxlat-dev(8):

[...]

#include <linux/skbuff.h>

#include <linux/netdevice.h>

[...]

tracepoint:skb:consume_skb

/@start[args->skbaddr]/

{

        $skb = (struct sk_buff *)args->skbaddr;

        @us[$skb->dev->name] = hist((nsecs - @start[args->skbaddr]) / 1000);

[...]

The output then becomes:

# nettxlat-dev.bt 

Attaching 4 probes...

Tracing net device xmit queue latency. Hit Ctrl-C to end.

^C
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@us[eth0]: 

[4, 8)                65 |                                                    |

[8, 16)             6438 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                      |

[16, 32)           10899 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[32, 64)            2265 |@@@@@@@@@@                                          |

[64, 128)            977 |@@@@                                                |

[...]

This server only has eth0, but if other interfaces were in use, there would be a separate histogram 
for each.

Note that this change reduces the stability of the tool, since it is now referring to unstable struct 
internals instead of just tracepoints and tracepoint arguments.

10.3.28 skbdrop

skbdrop(8)44 traces unusual skb drop events, and shows their kernel stack traces along with 
network counters while tracing. For example, on a production server:

# bpftrace --unsafe skbdrop.bt 

Attaching 3 probes...

Tracing unusual skb drop stacks. Hit Ctrl-C to end.

^C#kernel

IpInReceives                    28717              0.0

IpInDelivers                    28717              0.0

IpOutRequests                   32033              0.0

TcpActiveOpens                  173                0.0

TcpPassiveOpens                 278                0.0

[...]

TcpExtTCPSackMerged             1                  0.0

TcpExtTCPSackShiftFallback      5                  0.0

TcpExtTCPDeferAcceptDrop        278                0.0

TcpExtTCPRcvCoalesce            3276               0.0

TcpExtTCPAutoCorking            774                0.0

[...]

 

[...]

@[

    kfree_skb+118

    skb_release_data+171

    skb_release_all+36

44 Origin: I created this tool for this book on 21-Apr-2019.



ptg30854589

476 Chapter 10  Networking

    __kfree_skb+18

    tcp_recvmsg+1946

    inet_recvmsg+81

    sock_recvmsg+67

    SYSC_recvfrom+228

]: 50

@[

    kfree_skb+118

    sk_stream_kill_queues+77

    inet_csk_destroy_sock+89

    tcp_done+150

    tcp_time_wait+446

    tcp_fin+216

    tcp_data_queue+1401

    tcp_rcv_state_process+1501

]: 142

@[

    kfree_skb+118

    tcp_v4_rcv+361

    ip_local_deliver_finish+98

    ip_local_deliver+111

    ip_rcv_finish+297

    ip_rcv+655

    __netif_receive_skb_core+1074

    __netif_receive_skb+24

]: 276

This begins by showing network counter increments while tracing, and then stack traces 
for skb drops and counts for comparison. The above output shows that the most frequent 
drop path was via tcp_v4_rcv(), with 276 drops. The network counters show a similar count: 
278 in TcpPassiveOpens and TcpExtTCPDeferAcceptDrop. (The slightly higher number can be 
explained: extra time is needed to fetch these counters.) This suggests that those events might 
be all related.

This works by instrumenting the skb:kfree_skb tracepoint, and automates running the nstat(8) 
tool for counting network statistics while tracing. nstat(8) must be installed for this tool to work: 
it is in the iproute2 package. 

The skb:kfree_skb tracepoint is a counterpart of skb:consume_skb. The consume_skb tracepoint 
fires for the normal skb consumption code path, and kfree_skb fires for other unusual events that 
may be worth investigating.
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The source to skbdrop(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing unusual skb drop stacks. Hit Ctrl-C to end.\n");

        system("nstat > /dev/null");

}

 

tracepoint:skb:kfree_skb

{

        @[kstack(8)] = count();

}

 

END

{

        system("nstat; nstat -rs > /dev/null");

}

This begins by setting the nstat(8) counters to zero in the BEGIN action, and then using nstat(8) 
again in the END action to print the interval counts, and then to reset nstat(8) back to its original 
state (-rs). This will interfere with other users of nstat(8) while tracing. Note that the bpftrace 
--unsafe option is necessary when executing this, due to the use of system().

10.3.29 skblife

skblife(8)45 measures the lifespan of a sk_buff (skb), the object used to pass packets through the 
kernel. Measuring the lifespan can show if there is latency within the network stack, including 
packets waiting for locks. For example, on a busy production server:

# skblife.bt

Attaching 6 probes...

^C

 

@skb_residency_nsecs: 

[1K, 2K)             163 |                                                    |

[2K, 4K)             792 |@@@                                                 |

[4K, 8K)            2591 |@@@@@@@@@@                                          |

[8K, 16K)           3022 |@@@@@@@@@@@@                                        |

[16K, 32K)         12695 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[32K, 64K)         11025 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       |

45 Origin: I created it for this book on 4-Apr-2019.
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[64K, 128K)         3277 |@@@@@@@@@@@@@                                       |

[128K, 256K)        2954 |@@@@@@@@@@@@                                        |

[256K, 512K)        1608 |@@@@@@                                              |

[512K, 1M)          1594 |@@@@@@                                              |

[1M, 2M)             583 |@@                                                  |

[2M, 4M)             435 |@                                                   |

[4M, 8M)             317 |@                                                   |

[8M, 16M)            104 |                                                    |

[16M, 32M)            10 |                                                    |

[32M, 64M)            12 |                                                    |

[64M, 128M)            1 |                                                    |

[128M, 256M)           1 |                                                    |

This shows that the lifespan of sk_buffs was often between 16 and 64 microseconds, however, 
there are outliers reaching as high as the 128 to 256 millisecond bucket. These can be further 
investigated with other tools, including the previously queue latency tools, to see if the latency is 
coming from those locations.

This works by tracing kernel slab cache allocations to find when sk_buffs are allocated and freed. 
Such allocations can be very frequent, and this tool may cause noticeable or significant overhead 
on very busy systems. It can be used for short-term analysis rather than long-term monitoring.

The source to skblife(8) is:

#!/usr/local/bin/bpftrace

 

kprobe:kmem_cache_alloc,

kprobe:kmem_cache_alloc_node

{

        $cache = arg0;

        if ($cache == *kaddr("skbuff_fclone_cache") ||

            $cache == *kaddr("skbuff_head_cache")) {

                @is_skb_alloc[tid] = 1;

        }

}

 

kretprobe:kmem_cache_alloc,

kretprobe:kmem_cache_alloc_node

/@is_skb_alloc[tid]/

{

        delete(@is_skb_alloc[tid]);

        @skb_birth[retval] = nsecs;

}
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kprobe:kmem_cache_free

/@skb_birth[arg1]/

{

        @skb_residency_nsecs = hist(nsecs - @skb_birth[arg1]);

        delete(@skb_birth[arg1]);

}

 

END

{

        clear(@is_skb_alloc);

        clear(@skb_birth);

}

The kmem_cache_alloc() functions are instrumented, and the cache argument is matched to see 
if it is an sk_buff cache. If so, on the kretprobe a timestamp is associated with the sk_buff address, 
which is then retrieved on kmem_cache_free().

There are some caveats with this approach: sk_buffs can be segmented into other sk_buffs on 
GSO, or attached to others on GRO. TCP can also coalesce sk_buffs (tcp_try_coalesce()). This 
means that, while the lifespan of the sk_buffs can be measured, the lifespan of the full packet may 
be undercounted. This tool could be enhanced to take these code paths into account: copying an 
original birth timestamp to new sk_buffs as they are created.

Since this adds kprobe overhead to all kmem cache alloc and free calls (not just for sk_buffs), the 
overhead may become significant. In the future there may be a way to reduce this. The kernel 
already has skb:consume_skb and skb:free_skb tracepoints. If an alloc skb tracepoint was added, 
that could be used instead, and reduce this overhead to just the sk_buff allocations.

10.3.30 ieee80211scan

ieee80211scan(8)46 traces IEEE 802.11 WiFi scanning. For example:

# ieee80211scan.bt

Attaching 5 probes...

Tracing ieee80211 SSID scans. Hit Ctrl-C to end.

13:55:07 scan started (on-CPU PID 1146, wpa_supplicant)

13:42:11 scanning channel 2GHZ freq 2412: beacon_found 0

13:42:11 scanning channel 2GHZ freq 2412: beacon_found 0

13:42:11 scanning channel 2GHZ freq 2412: beacon_found 0

[...]

13:42:13 scanning channel 5GHZ freq 5660: beacon_found 0

13:42:14 scanning channel 5GHZ freq 5785: beacon_found 1

46 Origin: I created this for this book on 23-Apr-2019. The first time I wrote a WiFi scanning tracer was out of necessity 

when I was in a hotel room in 2004 with a laptop that wouldn’t connect to the WiFi, and no error messages to say why. 

I came up with a similar scanner tool using DTrace, although I don’t think I published it.
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13:42:14 scanning channel 5GHZ freq 5785: beacon_found 1

13:42:14 scanning channel 5GHZ freq 5785: beacon_found 1

13:42:14 scanning channel 5GHZ freq 5785: beacon_found 1

13:42:14 scanning channel 5GHZ freq 5785: beacon_found 1

13:42:14 scan completed: 3205 ms

This shows a scan likely initiated by a wpa_supplicant process, which steps through various chan-
nels and frequencies. The scan took 3205 ms. This provides insight that can be useful for debug-
ging WiFi problems.

This works by instrumenting the ieee80211 scan routines. The overhead should be negligible as 
these routines should be infrequent.

The source to ieee80211scan(8) is:

#!/usr/local/bin/bpftrace

 

#include <net/mac80211.h>

 

BEGIN

{

        printf("Tracing ieee80211 SSID scans. Hit Ctrl-C to end.\n");

        // from include/uapi/linux/nl80211.h:

        @band[0] = "2GHZ";

        @band[1] = "5GHZ";

        @band[2] = "60GHZ";

}

 

kprobe:ieee80211_request_scan

{

        time("%H:%M:%S ");

        printf("scan started (on-CPU PID %d, %s)\n", pid, comm);

        @start = nsecs;

}

 

kretprobe:ieee80211_get_channel

/retval/

{

        $ch = (struct ieee80211_channel *)retval;

        $band = 0xff & *retval; // $ch->band; workaround for #776

        time("%H:%M:%S ");

        printf("scanning channel %s freq %d: beacon_found %d\n",

            @band[$band], $ch->center_freq, $ch->beacon_found);

}

 

kprobe:ieee80211_scan_completed
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/@start/

{

        time("%H:%M:%S ");

        printf("scan compeleted: %d ms\n", (nsecs - @start) / 1000000);

        delete(@start);

}

 

END

{

        clear(@start); clear(@band);

}

More information can be added to show the different flags and settings used while scanning. Note that 
this tool currently assumes that only one scan will be active at a time, and has a global @start time-
stamp. If scans may be active in parallel, this will need a key to associate a timestamp with each scan.

10.3.31 Other Tools

Other BPF tools worth mentioning:

 ■ solisten(8): A BCC tool to print socket listen calls with details47

 ■ tcpstates(8): A BCC tool that prints a line of output for each TCP session state change, with 
IP address and port details, and duration in each state

 ■ tcpdrop(8): A BCC and bpftrace tool that prints IP address and TCP state details, and kernel 
stack traces, for packets dropped by the kernel tcp_drop() function

 ■ sofdsnoop(8): A BCC tool to trace file descriptors passed through Unix sockets

 ■ profile(8): Covered in Chapter 6, sampling of kernel stack traces can quantify time spent in 
network code paths

 ■ hardirqs(8) and softirqs(8): Covered in Chapter 6, can be used to measure the time spent 
in networking hard and soft interrupts

 ■ filetype(8): From Chapter 8, traces vfs_read() and vfs_write(), identifying which are socket 
reads and writes via the inode

Example output from tcpstates(8):

# tcpstates 

SKADDR           C-PID C-COMM LADDR     LPORT  RADDR      RPORT OLDSTATE -> NEWSTATE      MS

ffff88864fd55a00 3294  record 127.0.0.1 0      127.0.0.1  28527 CLOSE    -> SYN_SENT     0.00

ffff88864fd55a00 3294  record 127.0.0.1 0      127.0.0.1  28527 SYN_SENT -> ESTABLISHED  0.08

ffff88864fd56300 3294  record 127.0.0.1 0      0.0.0.0    0     LISTEN   -> SYN_RECV     0.00

[...]

This uses the sock:inet_sock_set_state tracepoint.

47 solisten(8) was added by Jean-Tiare Le Bigot on 4-Mar-2016.
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10.4 BPF One-Liners

These sections show BCC and bpftrace one-liners. Where possible, the same one-liner is imple-
mented using both BCC and bpftrace.

10.4.1 BCC

Count failed socket connect(2)s by error code:

argdist -C 't:syscalls:sys_exit_connect():int:args->ret:args->ret<0'

Count socket connect(2)s by user stack trace:

stackcount -U t:syscalls:sys_enter_connect

TCP send bytes as a histogram:

argdist -H 'p::tcp_sendmsg(void *sk, void *msg, int size):int:size'

TCP receive bytes as a histogram:

argdist -H 'r::tcp_recvmsg():int:$retval:$retval>0'

Count all TCP functions (adds high overhead to TCP):

funccount 'tcp_*'

UDP send bytes as a histogram:

argdist -H 'p::udp_sendmsg(void *sk, void *msg, int size):int:size'

UDP receive bytes as a histogram:

argdist -H 'r::udp_recvmsg():int:$retval:$retval>0'

Count all UDP functions (adds high overhead to UDP):

funccount 'udp_*'

Count transmit stack traces:

stackcount t:net:net_dev_xmit

Count ieee80211 layer functions (adds high overhead to packets):

funccount 'ieee80211_*'

Count all ixgbevf device driver functions (adds high overhead to ixgbevf):

funccount 'ixgbevf_*'

10.4.2 bpftrace

Count socket accept(2)s by PID and process name: 

bpftrace -e 't:syscalls:sys_enter_accept* { @[pid, comm] = count(); }'
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Count socket connect(2)s by PID and process name: 

bpftrace -e 't:syscalls:sys_enter_connect { @[pid, comm] = count(); }'

Count failed socket connect(2)s by process name and error code:

bpftrace -e 't:syscalls:sys_exit_connect /args->ret < 0/ { @[comm, - args->ret] =

    count(); }'

Count socket connect(2)s by user stack trace:

bpftrace -e 't:syscalls:sys_enter_connect { @[ustack] = count(); }'

Count socket send/receives by direction, on-CPU PID, and process name48:

bpftrace -e 'k:sock_sendmsg,k:sock_recvmsg { @[func, pid, comm] = count(); }'

Count socket send/receive bytes by on-CPU PID and process name:

bpftrace -e 'kr:sock_sendmsg,kr:sock_recvmsg /(int32)retval > 0/ { @[pid, comm] =

    sum((int32)retval); }'

Count TCP connects by on-CPU PID and process name:

bpftrace -e 'k:tcp_v*_connect { @[pid, comm] = count(); }'

Count TCP accepts by on-CPU PID and process name:

bpftrace -e 'k:inet_csk_accept { @[pid, comm] = count(); }'

Count TCP send/receives:

bpftrace -e 'k:tcp_sendmsg,k:tcp*recvmsg { @[func] = count(); }'

Count TCP send/receives by on-CPU PID and process name:

bpftrace -e 'k:tcp_sendmsg,k:tcp_recvmsg { @[func, pid, comm] = count(); }'

TCP send bytes as a histogram:

bpftrace -e 'k:tcp_sendmsg { @send_bytes = hist(arg2); }'

TCP receive bytes as a histogram:

bpftrace -e 'kr:tcp_recvmsg /retval >= 0/ { @recv_bytes = hist(retval); }'

Count TCP retransmits by type and remote host (assumes IPv4):

bpftrace -e 't:tcp:tcp_retransmit_* { @[probe, ntop(2, args->saddr)] = count(); }'

Count all TCP functions (adds high overhead to TCP):

bpftrace -e 'k:tcp_* { @[func] = count(); }'

48 The earlier socket syscalls are in process context, where PID and comm are reliable. These kprobes are deeper in 

the kernel, and the process endpoint for these connections my not be currently on-CPU, meaning the pid and comm 

shown by bpftrace could be unrelated. They usually work, but that may not always be the case.
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Count UDP send/receives by on-CPU PID and process name:

bpftrace -e 'k:udp*_sendmsg,k:udp*_recvmsg { @[func, pid, comm] = count(); }'

UDP send bytes as a histogram:

bpftrace -e 'k:udp_sendmsg { @send_bytes = hist(arg2); }'

UDP receive bytes as a histogram:

bpftrace -e 'kr:udp_recvmsg /retval >= 0/ { @recv_bytes = hist(retval); }'

Count all UDP functions (adds high overhead to UDP):

bpftrace -e 'k:udp_* { @[func] = count(); }'

Count transmit kernel stack traces:

bpftrace -e 't:net:net_dev_xmit { @[kstack] = count(); }'

Show receive CPU histogram for each device:

bpftrace -e 't:net:netif_receive_skb { @[str(args->name)] = lhist(cpu, 0, 128, 1); }'

Count ieee80211 layer functions (adds high overhead to packets):

bpftrace -e 'k:ieee80211_* { @[func] = count()'

Count all ixgbevf device driver functions (adds high overhead to ixgbevf):

bpftrace -e 'k:ixgbevf_* { @[func] = count(); }'

Count all iwl device driver tracepoints (adds high overhead to iwl):

bpftrace -e 't:iwlwifi:*,t:iwlwifi_io:* { @[probe] = count(); }'

10.4.3 BPF One-Liners Examples

Including some sample output, as was done for each tool, is also useful for illustrating one-liners.

Counting Transmit Kernel Stack Traces

# bpftrace -e 't:net:net_dev_xmit { @[kstack] = count(); }'

Attaching 1 probe...

^C

[...]

 

@[

    dev_hard_start_xmit+945

    sch_direct_xmit+882

    __qdisc_run+1271

    __dev_queue_xmit+3351

    dev_queue_xmit+16

    ip_finish_output2+3035

    ip_finish_output+1724
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    ip_output+444

    ip_local_out+117

    __ip_queue_xmit+2004

    ip_queue_xmit+69

    __tcp_transmit_skb+6570

    tcp_write_xmit+2123

    __tcp_push_pending_frames+145

    tcp_rcv_established+2573

    tcp_v4_do_rcv+671

    tcp_v4_rcv+10624

    ip_protocol_deliver_rcu+185

    ip_local_deliver_finish+386

    ip_local_deliver+435

    ip_rcv_finish+342

    ip_rcv+212

    __netif_receive_skb_one_core+308

    __netif_receive_skb+36

    netif_receive_skb_internal+168

    napi_gro_receive+953

    ena_io_poll+8375

    net_rx_action+1750

    __do_softirq+558

    irq_exit+348

    do_IRQ+232

    ret_from_intr+0

    native_safe_halt+6

    default_idle+146

    arch_cpu_idle+21

    default_idle_call+59

    do_idle+809

    cpu_startup_entry+29

    start_secondary+1228

    secondary_startup_64+164

]: 902

@[

    dev_hard_start_xmit+945

    sch_direct_xmit+882

    __qdisc_run+1271

    __dev_queue_xmit+3351

    dev_queue_xmit+16

    ip_finish_output2+3035

    ip_finish_output+1724

    ip_output+444
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    ip_local_out+117

    __ip_queue_xmit+2004

    ip_queue_xmit+69

    __tcp_transmit_skb+6570

    tcp_write_xmit+2123

    __tcp_push_pending_frames+145

    tcp_push+1209

    tcp_sendmsg_locked+9315

    tcp_sendmsg+44

    inet_sendmsg+278

    sock_sendmsg+188

    sock_write_iter+740

    __vfs_write+1694

    vfs_write+341

    ksys_write+247

    __x64_sys_write+115

    do_syscall_64+339

    entry_SYSCALL_64_after_hwframe+68

]: 10933

This one-liner produced many pages of output; only the last two stack traces have been included here. 
The last shows a write(2) syscall passing through VFS, sockets, TCP, IP, net device, and then beginning 
the transmit to the driver. This illustrates the stack from the application to the device driver.

The first stack trace is even more interesting. It begins with the idle thread receiving an interrupt, 
running the net_rx_action() softirq, the ena driver ena_io_poll(), the NAPI (new API) network 
interface receive path, then IP, tcp_rcv_established(), and then...__tcp_push_pending_frames(). 
The real code path is tcp_rcv_established() -> tcp_data_snd_check() -> tcp_push_pending_
frames() -> tcp_push_pending_frames(). However, the middle two functions were tiny and inlined 
by the compiler, eliding them from that stack trace. What’s happening is that TCP is checking for 
pending transmits during the receive codepath.

Counting All ixgbevf Device Driver Functions (Adding High Overhead to ixgbevf)

# bpftrace -e 'k:ixgbevf_* { @[func] = count(); }'

Attaching 116 probes...

^C

 

@[ixgbevf_get_link_ksettings]: 2

@[ixgbevf_get_stats]: 2

@[ixgbevf_obtain_mbx_lock_vf]: 2

@[ixgbevf_read_mbx_vf]: 2

@[ixgbevf_service_event_schedule]: 3

@[ixgbevf_service_task]: 3

@[ixgbevf_service_timer]: 3
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@[ixgbevf_check_for_bit_vf]: 5

@[ixgbevf_check_for_rst_vf]: 5

@[ixgbevf_check_mac_link_vf]: 5

@[ixgbevf_update_stats]: 5

@[ixgbevf_read_reg]: 21

@[ixgbevf_alloc_rx_buffers]: 36843

@[ixgbevf_features_check]: 37842

@[ixgbevf_xmit_frame]: 37842

@[ixgbevf_msix_clean_rings]: 66417

@[ixgbevf_poll]: 67013

@[ixgbevf_maybe_stop_tx]: 75684

@[ixgbevf_update_itr.isra.39]: 132834

The internals of how network device drivers operate can be studied in detail using these kprobes. 
Don’t forget to check whether the driver supports tracepoints as well, as shown in the next example.

Counting All iwl Device Driver Tracepoints (Adding High Overhead to iwl)

# bpftrace -e 't:iwlwifi:*,t:iwlwifi_io:* { @[probe] = count(); }'

Attaching 15 probes...

^C

 

@[tracepoint:iwlwifi:iwlwifi_dev_hcmd]: 39

@[tracepoint:iwlwifi_io:iwlwifi_dev_irq]: 3474

@[tracepoint:iwlwifi:iwlwifi_dev_tx]: 5125

@[tracepoint:iwlwifi_io:iwlwifi_dev_iowrite8]: 6654

@[tracepoint:iwlwifi_io:iwlwifi_dev_ict_read]: 7095

@[tracepoint:iwlwifi:iwlwifi_dev_rx]: 7493

@[tracepoint:iwlwifi_io:iwlwifi_dev_iowrite32]: 19525

This one-liner is showing only two of several groups of iwl tracepoints.

10.5 Optional Exercises

If not specified, these can be completed using either bpftrace or BCC:

 1. Write an solife(8) tool to print per-session durations from connect(2) and accept(2) (and 
variants) to close(2) for that socket file descriptor. It can be similar to tcplife(8), although it 
does not necessarily need all the same fields (some are harder to fetch than others).

 2. Write tcpbind(8): a tool for per-event tracing of TCP bind events.

 3. Extend tcpwin.bt with a "retrans" event type, with the socket address and time as fields.

 4. Extend tcpwin.bt with a "new" event type, that has socket address, time, IP addresses, and 
TCP ports as fields. This should be printed when the TCP session reaches the established state.
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 5. Modify tcplife(8) to emit connection details in DOT format, then plot using graphing 
software (e.g., GraphViz).

 6. Develop udplife(8) to show the lifespan of UDP connections, similar to tcplife(8).

 7. Extend ipecn.bt to instrument outbound CE events, as well as IPv6. CE events can be 
introduced at the qdisc layer using the netem qdisc. The following example command 
replaces the current qdisc on eth0 with one that causes 1% ECN CE events:

tc qdisc replace dev eth0 root netem loss 1% ecn

  If you use this qdisc during development, be aware that it inserts CE events at a lower 
level than IP. If you traced, say, ip_output(), you may not see the CE events as they are 
added later.

 8. (Advanced) Develop a tool to show TCP round-trip time by host. This could show either 
an average RTT by host, or a RTT histogram by host. The tool could time sent packets by 
sequence number and associate the timestamp on the ACK, or make use of struct 
tcp_sock->rtt_min, or another approach. If the first approach is used, the TCP header can 
be read, given a struct sk_buff * in $skb as (using bpftrace):

$tcph = (struct tcphdr *)($skb->head + $skb->transport_header);

 9. (Advanced, unsolved) Develop a tool to show ARP or IPv6 neighbor discovery latency, 
either per-event or as a histogram.

 10. (Advanced, unsolved) Develop a tool that shows the full sk_buff lifespan, dealing (when or 
if necessary) with GRO, GSO, tcp_try_coalesce(), skb_split(), skb_append(), skb_insert(), etc, 
and other events that modify an sk_buff during its lifespan. This tool will become much 
more complex than skblife(8).

 11. (Advanced, unsolved) Develop a tool that breaks down the sk_buff lifespan (from (9)) into 
components or wait states.

 12. (Advanced, unsolved) Develop a tool to show latency caused by TCP pacing.

 13. (Advanced, unsolved) Develop a tool to show byte queue limit latency. 

10.6 Summary

This chapter summarizes characteristics of the Linux network stack, and their analysis with 
traditional tools: netstat(8), sar(1), ss(8), and tcpdump(8). BPF tools were then used to provide 
extended observability of the socket layer, TCP, UDP, ICMP, qdiscs, net driver queues, and then a 
network device driver. This observability included showing new connections efficiently and their 
lifespans, connection and first byte latency, SYN backlog queue size, TCP retransmits, and various 
other events.
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This chapter summarizes the security of BPF and BPF for security analysis, providing various tools 
that can be helpful for both security and performance observability. You can use these tools to detect 
intrusions, create whitelists of normal executable and privileged usage, and to enforce policies.

Learning Objectives:

 ■ Understand use cases for BPF security

 ■ Show new process execution to detect possible malicious software

 ■ Show TCP connections and resets to detect possible suspicious activity

 ■ Study Linux capability usage to aid the creation of whitelists

 ■ Understand other forensic sources, such as shell and console logging

This chapter begins with background on security tasks and then summarizes BPF capabilities, 
configuring BPF security, strategy, and BPF tools.

11.1 Background

The term security covers a broad range of tasks, including:

 ■ Security analysis

 ■ Sniffing activity for real-time forensics

 ■ Privilege debugging

 ■ Executable usage whitelists

 ■ Reverse engineering of malware

 ■ Monitoring

 ■ Custom auditing

 ■ Host-based intrusion detection systems (HIDS)

 ■ Container-based intrusion detection systems (CIDS)

 ■ Policy enforcement

 ■ Networking firewalls

 ■ Detecting malware and dynamically blocking packets and taking other preventive actions
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Security engineering can be similar to performance engineering, as it can involve the analysis of a 
wide variety of software.

11.1.1 BPF Capabilities

BPF can help with these security tasks, including analysis, monitoring, and policy enforcement. 
For security analysis, the types of questions that BPF can answer include:

 ■ Which processes are being executed?

 ■ What network connections are being made? By which processes?

 ■ Which system privileges are being requested by which processes?

 ■ What permission denied errors are happening on the system?

 ■ Is this kernel/user function being executed with these arguments (in checking for active 
exploits)?

Another way to summarize the analysis and monitoring capabilities of BPF tracing is by showing 
the targets that can be traced, as illustrated in Figure 11-1.1

Figure 11-1 BPF security monitoring targets

1 Alex Maestretti and I presented this diagram in the talk “Linux Monitoring at Scale with eBPF” at the BSidesSF confer-

ence in 2017 [114].
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While this figure illustrates many specific targets, it is also possible, using uprobes and kprobes, to 
instrument any user-level or kernel function—which is useful in zero-day vulnerability detection.

Zero-Day Vulnerability Detection

There is sometimes an urgent need to detect whether a new software vulnerability is in use; 
ideally, it can be detected on the first day that the vulnerability is disclosed (day zero). bpftrace is 
especially suited for this role, as its easy-to-program language allows custom tools to be created in 
minutes, and it can access not only tracepoints and USDT events, but also kprobes and uprobes, as 
well as their arguments.

As a real example, at the time of writing, a Docker vulnerability was disclosed that uses a 
symlink-race attack [115]. This involved calling the renameat2(2) syscall in a loop with the 
RENAME_EXCHANGE flag, while also using docker cp.

There are a number of ways this could have been detected. Since the renameat2(2) syscall with 
the RENAME_EXCHANGE flag is an uncommon activity on my production systems (I caught no 
natural cases of it being used), one way to detect this vulnerability in use is to trace that syscall 
and flag combination. For example, the following can be run on the host to trace all containers:

# bpftrace -e 't:syscalls:sys_enter_renameat2 /args->flags == 2/ { time();

    printf("%s RENAME_EXCHANGE %s <-> %s\n", comm, str(args->oldname),

    str(args->newname)); }'

Attaching 1 probe...

22:03:47

symlink_swap RENAME_EXCHANGE totally_safe_path <-> totally_safe_path-stashed

22:03:47

symlink_swap RENAME_EXCHANGE totally_safe_path <-> totally_safe_path-stashed

22:03:47

symlink_swap RENAME_EXCHANGE totally_safe_path <-> totally_safe_path-stashed

[...]

This one-liner normally emits no output, but in this case, a flood of output occurred as the vulner-
ability proof-of-concept code was running as a test. The output includes timestamps, the process 
name, and the filename arguments to renameat2(2). A different approach would be to trace the 
docker cp process as it operates on symlinks, from either syscalls or kernel function calls.

I can imagine a future where a vulnerability disclosure is accompanied by a bpftrace one-liner or 
tool for detecting its use in the wild. An intrusion detection system could be built to execute these 
tools across a company’s infrastructure. This would not be dissimilar to how some network intru-
sion detection systems work, such as Snort [116], which shares rules for the detection of new worms.

Security Monitoring

BPF tracing programs can be used for security monitoring and intrusion detection. Current 
monitoring solutions often use loadable kernel modules to provide visibility of kernel and packet 
events. However, such modules introduce their own risk of kernel bugs and vulnerabilities. BPF 
programs are passed through a verifier and use existing kernel technologies, making them safer 
and more secure.
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BPF tracing has also been optimized for efficiency. In a 2016 internal study, I compared the overhead 
of auditd logging to that of a similar BPF program; BPF introduced six times less overhead [117].

An important behavior of BPF monitoring is what happens under extreme load. BPF output 
buffers and maps have limits that can be exceeded, causing events to not be recorded. This may be 
exploited by an attacker as an attempt to evade proper logging or policy enforcement, by inundat-
ing the system with events. BPF is aware of when these limits are exceeded, and can report this to 
user space for appropriate action. Any security solution built using BPF tracing needs to record 
these overflow or dropped events, to satisfy non-repudiation requirements.

Another approach is to add a per-CPU map to count important events. Unlike the perf output 
buffer or maps involving keys, once BPF has created a per-CPU map of fixed counters, there is no 
risk of losing events. This could be used in conjunction with perf event output to provide more 
detail: the more detail may be lost, but the count of events will not be.

Policy Enforcement

A number of policy enforcement technologies already use BPF. While this topic is outside of the 
scope of this book, they are important developments in BPF and worth summarizing. They are:

 ■ seccomp: The secure computing (seccomp) facility can execute BPF programs (currently 
classic BPF) to make policy decisions about allowing syscalls [118]. seccomp’s programmable 
actions include killing the calling process (SECCOMP_RET_KILL_PROCESS) and returning an 
error (SECCOMP_RET_ERRNO). Complex decisions can also be offloaded by a BPF program to 
user-space programs (SECCOMP_RET_USER_NOTIF); this blocks the process while a user-space 
helper program is notified via a file descriptor. That program can read and process the event 
and then write a struct seccomp_notif_resp in response to the same file descriptor [119].

 ■ Cilium: Cilium provides and transparently secures network connectivity and load 
balancing for workloads such as application containers or processes. It makes use of a 
combination of BPF programs at various layers such as XDP, cgroup and tc (traffic control) 
based hooks. The main networking data path in the tc layer, for example, employs a 
sch_clsact qdisc coupled with a BPF program through cls_bpf in order to mangle, forward, 
or drop packets [24] [120] [121].

 ■ bpfilter: bpfilter is a proof-of-concept for replacing the iptables firewall with BPF entirely. 
To help with a transition from iptables, an iptables ruleset sent to the kernel can be 
redirected to a user-mode helper that converts it to BPF [122] [123].

 ■ Landlock: Landlock is a BPF-based security module that provides fine-grained access 
control to kernel resources using BPF [124]. One example use case is to restrict access to 
subsets of a file system based on a BPF inode map, which can be updated from user space.

 ■ KRSI: Kernel Runtime Security Instrumentation is a new LSM from Google for extensible 
auditing and enforcement. It uses a new BPF program type, BPF_PROG_TYPE_KRSI [186].

A new BPF helper, bpf_send_signal(), should be included in the upcoming Linux 5.3 release [125]. 
This will allow a new type of enforcement program that can send SIGKILL and other signals to 
processes from BPF programs alone, without needing seccomp. Taking the previous vulnerability 
detection example further, imagine a bpftrace program that not only detects a vulnerability, but 
immediately kills the process using it. For example:
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bpftrace --unsafe -e 't:syscalls:sys_enter_renameat2 /args->flags == 2/ {

    time(); printf("killing PID %d %s\n", pid, comm); signal(9); }'

Such tools could be used as a temporary workaround until software can be properly patched.2 
Care must be taken when using signal(): this particular example kills all users of renameat2(2) 
who are using RENAME_EXCHANGE, and it can’t tell whether the process was good or evil.

Other signals, such as SIGABRT, could be used to core dump the process to allow forensic analysis 
of the malicious software.

Until bpf_send_signal() is available, processes can be terminated by the user-space tracer, based on 
reading events from the perf buffer. For example, using bpftrace’s system():

bpftrace --unsafe -e 't:syscalls:sys_enter_renameat2 /args->flags == 2/ {

    time(); printf("killing PID %d %s\n", pid, comm);

    system("kill -9 %d", pid); }'

system() is an asynchronous action (see Chapter 5) issued to bpftrace via the perf output buffer, 
and then executed by bpftrace some time after the event. This introduces a lag between detection 
and enforcement, which in some environments may be unacceptable. bpf_send_signal() solves 
this by sending the signal immediately, in kernel context, during the BPF program.

11.1.2 Unprivileged BPF Users

For unprivileged users, specifically those without the CAP_SYS_ADMIN capability, BPF can 
currently only be used for socket filters, as of Linux 5.2. The test is in the bpf(2) syscall source in 
kernel/bpf/syscall.c:

        if (type != BPF_PROG_TYPE_SOCKET_FILTER &&

            type != BPF_PROG_TYPE_CGROUP_SKB &&

            !capable(CAP_SYS_ADMIN))

                return -EPERM;

This code also allows cgroup skb programs for inspection and dropping of cgroup packets. 
However, these programs require CAP_NET_ADMIN in order to attach to BPF_CGROUP_INET_
INGRESS and BPF_CGROUP_INET_EGRESS.

For users without CAP_SYS_ADMIN, the bpf(2) syscall will fail with EPERM, and BCC tools will 
report "Need super-user privileges to run". bpftrace programs currently check for UID 0, and if the 
user is not 0, will report "bpftrace currently only supports running as the root user". This is why 
all the BPF tools in this book are in section 8 of the man pages: they are superuser tools.

One day BPF should support unprivileged users for more than just socket filters.3 One particular 
use case is container environments, where access to the host is limited, and it is desirable to be 
able to run BPF tools from the containers themselves. (This use case is mentioned in Chapter 15.)

2 In the past, Red Hat has published similar SystemTap tracing tools for vulnerability mitigation, such as Bugzilla [126]. 

3 Proposals were discussed at LSFMM 2019 in Puerto Rico [128]. One involved using a /dev/bpf device that when 

opened sets a task_struct flag to allow access, and which was also close-on-exec.
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11.1.3 Configuring BPF Security

There are a number of system controls (tunables) for configuring BPF security. These can be 
configured using the sysctl(8) command or files in /proc/sys. They are:

# sysctl -a | grep bpf

kernel.unprivileged_bpf_disabled = 1

net.core.bpf_jit_enable = 1

net.core.bpf_jit_harden = 0

net.core.bpf_jit_kallsyms = 0

net.core.bpf_jit_limit = 264241152

kernel.unprivileged_bpf_disabled can disable unprivileged access using either of these 
commands:

# sysctl -w kernel.unprivileged_bpf_disabled=1

# echo 1 > /proc/sys/kernel/unprivileged_bpf_disabled

This is a one-time shot: setting this tunable back to zero will be rejected. The following sysctls can 
also be set using similar commands.

net.core.bpf_jit_enable enables the just-in-time BPF compiler. This improves both performance 
and security. As a mitigation for the Spectre v2 vulnerability, a CONFIG_BPF_JIT_ALWAYS_ON 
option was added to the kernel to permanently enable the JIT compiler, and to compile-out the 
BPF interpreter. Possible settings (in Linux 5.2) [127]:

 ■ 0: Disable JIT (default)

 ■ 1: Enable JIT

 ■ 2: Enable JIT and write compiler debug traces to the kernel log (this setting should be used 
for debugging only, not in production)

This has been enabled by default at companies including Netflix and Facebook. Note that the JIT 
is processor-architecture dependent. The Linux kernel comes with BPF JIT compilers for the vast 
majority of supported architectures, including x86_64, arm64, ppc64, s390x, sparc64, and even 
mips64 and riscv. While the x86_64 and arm64 compilers are feature-complete and battle tested 
in production, others might not be as yet.

net.core.bpf_jit_harden can be set to one to enable additional protections, including mitigation 
against JIT spraying attacks, at the cost of performance [129]. Possible settings (in Linux 5.2) [127]:

 ■ 0: Disable JIT hardening (default)

 ■ 1: Enable JIT hardening for unprivileged users only

 ■ 2: Enable JIT hardening for all users

net.core.bpf_jit_kallsyms exposes the compiled BPF JIT images via /proc/kallsyms for privileged 
users, providing symbols to aid debugging [130]. If bpf_jit_harden is enabled, this is disabled.

http://commands.net.core.bpf_jit_enable
http://commands.net.core.bpf_jit_enable
http://yet.net.core.bpf_jit_harden
http://yet.net.core.bpf_jit_harden
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net.core.bpf_jit_limit sets a limit in bytes for module memory that can be consumed. Once 
the limit is reached, unprivileged user requests are blocked and redirected to the interpreter, 
if compiled in.

For more on BPF hardening, see the Cilium BPF reference guide section on hardening, written by 
BPF maintainer Daniel Borkmann [131].

11.1.4 Strategy

Here is a suggested strategy for the security analysis of system activity not already covered by 
other BPF tools:

 1. Check whether there are tracepoints or USDT probes available to instrument the activity.

 2. Check whether LSM kernel hooks can be traced: these begin with "security_".

 3. Use kprobes/uprobes as appropriate to instrument the raw code.

11.2 BPF Tools

This section covers key BPF tools you can use for security analysis. They are shown in Figure 11-2.

Figure 11-2 BPF tools for security analysis

These tools are either from the BCC and bpftrace repositories covered in Chapters 4 and 5, or were 
created for this book. Table 11-1 lists the origins of these tools (BT is short for bpftrace).
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Table 11-1 Security-Related Tools

Tool Source Target Description

execsnoop BCC/BT Syscalls List new process execution

elfsnoop Book Kernel Show ELF file loads

modsnoop Book Kernel Show kernel module loads

bashreadline BCC/BT bash List entered bash shell commands

shellsnoop Book shells Mirror shell output

ttysnoop BCC/book TTY Mirror tty output

opensnoop BCC/BT Syscalls List files opened

eperm Book Syscalls Count failed EPERM and EACCES syscalls

tcpconnect BCC/BT TCP Trace outbound TCP connections (active)

tcpaccept BCC/BT TCP Trace inbound TCP connections (passive)

tcpreset Book TCP Show TCP send resets: port scan detection

capable BCC/BT Security Trace kernel security capability checks

setuids Book Syscalls Trace the setuid syscalls: privilege escalation

For the tools from BCC and bpftrace, see their repositories for full and updated lists of tool options and 
capabilities. Some of the following tools were introduced in earlier chapters and are recapped here.

Also refer to other chapters for more observability into any subsystem, especially network connec-
tions in Chapter 10, file usage in Chapter 8, and software execution in Chapter 6.

11.2.1 execsnoop

execsnoop(8) was introduced in Chapter 6; it is a BCC and bpftrace tool to trace new processes, 
and can be used to identify suspicious process execution. Example output:

# execsnoop

PCOMM            PID    PPID   RET ARGS

ls               7777   21086    0 /bin/ls -F

a.out            7778   21086    0 /tmp/a.out

[...]

This shows a process executing from /tmp named a.out.

execsnoop(8) works by tracing the execve(2) syscall. This is a typical step in the creation of new 
processes, which begins by calling fork(2) or clone(2) to create a new process and calls execve(2) to 
execute a different program. Note that this is not the only way new software can execute: a buffer 
overflow attack can add new instructions to an existing process, and execute malicious software 
without needing to call execve(2).

See Chapter 6 for more about execsnoop(8).
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11.2.2 elfsnoop

elfsnoop(8)4 is a bpftrace tool to trace the execution of binary files of the executable and linking 
format (ELF) commonly used on Linux. This traces execution from deep in the kernel, from a 
function where all ELF execution must pass. For example:

# elfsnoop.bt 

Attaching 3 probes...

Tracing ELF loads. Ctrl-C to end

TIME     PID    INTERPRETER        FILE               MOUNT      INODE      RET

11:18:43 9022   /bin/ls            /bin/ls            /          29098068     0

11:18:45 9023   /tmp/ls            /tmp/ls            /          23462045     0

11:18:49 9029   /usr/bin/python    ./opensnoop.py     /          20190728     0

[...]

This shows the executed file with various details. Columns are:

 ■ TIME: Timestamp as HH:MM:SS.

 ■ PID: Process ID.

 ■ INTERPRETER: For scripts, the interpreter that was executed.

 ■ FILE: Executed file.

 ■ MOUNT: Mount point for the executed file.

 ■ INODE: Index node number for the executed file: with the mount point, this forms a 
unique identifier.

 ■ RET: Return value from the attempted execution. 0 is success.

The mount point and inode number are printed out for further verification of the executed 
binary. An attacker may create their own version of system binaries with the same name (and 
perhaps use control characters so that when displayed it appears to have the same path as well), 
but these attacks will be unable to spoof the mount point and inode combination.

This tool works by tracing the load_elf_binary() kernel function, which is responsible for loading 
new ELF programs for execution. The overhead of this tool should be negligible, as the rate of this 
function should be low.

The source to elfsnoop(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/binfmts.h>

#include <linux/fs.h>

#include <linux/mount.h>

 

4 Origin: I created it for this book on 25-Feb-2019.
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BEGIN

{

        printf("Tracing ELF loads. Ctrl-C to end\n");

        printf("%-8s %-6s %-18s %-18s %-10s %-10s RET\n",

            "TIME", "PID", "INTERPRETER", "FILE", "MOUNT", "INODE");

}

 

kprobe:load_elf_binary

{

        @arg0[tid] = arg0;

}

 

kretprobe:load_elf_binary

/@arg0[tid]/

{

        $bin = (struct linux_binprm *)@arg0[tid];

        time("%H:%M:%S ");

        printf("%-6d %-18s %-18s %-10s %-10d %3d\n", pid,

            str($bin->interp), str($bin->filename),

            str($bin->file->f_path.mnt->mnt_root->d_name.name),

            $bin->file->f_inode->i_ino, retval);

        delete(@arg0[tid]);

}

This tool can be enhanced to print extra details about the file that is executed, including the full 
path. Note that bpftrace currently has a seven-element limit to printf(), so multiple printf()s will 
be necessary to print extra fields.

11.2.3 modsnoop

modsnoop(8)5 is a bpftrace tool to show kernel module loads. For example:

# modsnoop.bt 

Attaching 2 probes...

Tracing kernel module loads. Hit Ctrl-C to end.

12:51:38 module init: msr, by modprobe (PID 32574, user root, UID 0)

[...]

This shows that at 10:50:26 the "msr" module was loaded by the modprobe(8) tool, with UID 0. 
Loading modules is another way for the system to execute code, and is one way that various 
rootkits work, making it a target for security tracing.

5 Origin: I created it for this book on 14-Mar-2019.
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The source to modsnoop(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/module.h>

 

BEGIN

{

        printf("Tracing kernel module loads. Hit Ctrl-C to end.\n");

}

 

 

kprobe:do_init_module

{

        $mod = (struct module *)arg0;

        time("%H:%M:%S ");

        printf("module init: %s, by %s (PID %d, user %s, UID %d)\n",

            $mod->name, comm, pid, username, uid);

}

This works by tracing the do_init_module() kernel function, which can access details from the 
module struct.

There is also a module:module_load tracepoint, used by later one-liners.

11.2.4 bashreadline

bashreadline(8)6 is a BCC and bpftrace tool to trace interactively entered commands in the bash 
shell, system-wide. For example, running the BCC version:

# bashreadline

bashreadline

TIME      PID    COMMAND

11:43:51  21086  ls

11:44:07  21086  echo hello book readers

11:44:22  21086  eccho hi

11:44:33  21086  /tmp/ls

[...]

This output shows commands that were entered while tracing, including shell built-ins (echo) 
and commands that failed (eccho). This works by tracing the readline() function from the bash 

6 Origin: I wrote the first version for BCC on 28-Jan-2016 and for bpftrace on 6-Sep-2018. These were created as 

easy-to-demonstrate example programs of uprobes with BPF. Since then it’s caught the eye of security professionals, 

especially for logging activity in locked-down environments where only one shell (bash) can be used.



ptg30854589

500 Chapter 11  Security

shell, so any entered command will be shown. Note that while this can trace commands across all 
shells running on the system, it cannot trace commands by other shell programs, and an attacker 
may install their own shell (e.g., a nanoshell) that is not traced.

bpftrace

The following is the code for the bpftrace version.

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing bash commands... Hit Ctrl-C to end.\n");

        printf("%-9s %-6s %s\n", "TIME", "PID", "COMMAND");

}

 

uretprobe:/bin/bash:readline

{

        time("%H:%M:%S  ");

        printf("%-6d %s\n", pid, str(retval));

}

This traces the readline() function in /bin/bash using a uretprobe. Some Linux distributions build 
bash differently such that readline() is used from the libreadline library instead; see Section 12.2.3 
in Chapter 12  for more about this and tracing readline().

11.2.5 shellsnoop

shellsnoop(8)7 is a BCC and bpftrace tool that mirrors the output from another shell session. For 
example:

# shellsnoop 7866

bgregg:~/Build/bpftrace/tools> date

Fri May 31 18:11:02 PDT 2019

bgregg:~/Build/bpftrace/tools> echo Hello BPF

Hello BPF

bgregg:~/Build/bpftrace/tools> typo

 

Command 'typo' not found, did you mean:

 

  command 'typop' from deb terminology

 

Try: apt install <deb name>

7 Origin: I wrote the BCC version on 15-Oct-2016 and the bpftrace version on 31-May-2019. These were based on 

my earlier shellsnoop tool from 24-Mar-2004, inspired by ttywatcher. My earlier shellsnoop was mentioned in a 2005 

Phrack ezine by Boris Loza as a security forensics tool [132].
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This shows the commands and output from a shell session with PID 7866. It works by tracing writes 
by that process to STDOUT or STDERR, including children of that process. Tracing children is 
necessary to catch the output of their commands, such as the output of date(1) seen in this output.

shellsnoop(8) also has an option to emit a replay shell script. For example:

# shellsnoop -r 7866

echo -e 'd\c'

sleep 0.10

echo -e 'a\c'

sleep 0.06

echo -e 't\c'

sleep 0.07

echo -e 'e\c'

sleep 0.25

echo -e '

\c'

sleep 0.00

echo -e 'Fri May 31 18:50:35 PDT 2019

\c'

This can be saved to a file and executed using the bash(1) shell: it then replays the shell session 
output with the original timing. It’s a little spooky.

BCC

Command line usage:

shellsnoop [options] PID

Options include:

 ■ s: Shell only output (no subcommands)

 ■ -r: Replay shell script

bpftrace

This bpftrace version shows the core functionality8:

#!/usr/local/bin/bpftrace

 

BEGIN

/$1 == 0/

{

8 This currently truncates each output to BPFTRACE_STRLEN (64) bytes. We are working to greatly increase this limit in 

the future by switching from BPF stack storage to map storage for strings.
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        printf("USAGE: shellsnoop.bt PID\n");

        exit();

}

 

tracepoint:sched:sched_process_fork

/args->parent_pid == $1 || @descendent[args->parent_pid]/

{

        @descendent[args->child_pid] = 1;

}

 

tracepoint:syscalls:sys_enter_write

/(pid == $1 || @descendent[pid]) && (args->fd == 1 || args->fd == 2)/

{

        printf("%s", str(args->buf, args->count));

}

11.2.6 ttysnoop

ttysnoop(8)9 is a BCC and bpftrace tool to mirror output from a tty or pts device. This can be used 
to watch a suspicious login session in real time. For example, watching /dev/pts/16:

# ttysnoop 16

$ uname -a

Linux lgud-bgregg 4.15.0-43-generic #46-Ubuntu SMP Thu Dec 6 14:45:28 UTC 2018 x86_64 

x86_64 x86_64 GNU/Linux

$ gcc -o a.out crack.c

$ ./a.out

Segmentation fault

[...]

The output duplicates what the user on /dev/pts/16 is seeing. This works by tracing the tty_write() 
kernel function, and printing what is being written.

BCC

Command line usage:

ttysnoop [options] device

Options include:

 ■ -C: Don’t clear the screen

9 Origin: I wrote the BCC tool on 15-Oct-2016, inspired by an older Unix tool called ttywatcher, and my earlier cuckoo.d 

tool from 2011. As a sysadmin, I used ttywatcher to watch a non-root intruder in real time on a production system as 

they downloaded various privilege escalation exploits, compiled them, and ran them without success. Most annoying 

of all: watching them use the pico text editor instead of my favorite, vi. For a more exciting story of TTY snooping, see 

[Stoll 89], which was the inspiration for cuckoo.d. I wrote the bpftrace version for this book on 26-Feb-2019.
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The device is either a full path to a pseudo terminal, e.g., /dev/pts/2, or just the number 2, or 
another tty device path: e.g., /dev/tty0. Running ttysnoop(8) on /dev/console shows what is 
printed on the system console.

bpftrace

The following is the code for the bpftrace version:

#!/usr/local/bin/bpftrace

 

#include <linux/fs.h>

 

BEGIN

{

        if ($1 == 0) {

                printf("USAGE: ttysnoop.bt pts_device    # eg, pts14\n");

                exit();

        }

        printf("Tracing tty writes. Ctrl-C to end.\n");

}

 

kprobe:tty_write

{

        $file = (struct file *)arg0;

        // +3 skips "pts":

        if (str($file->f_path.dentry->d_name.name) == str($1 + 3)) {

                printf("%s", str(arg1, arg2));

        }

}

This is an example of a bpftrace program that takes a required argument. If the device name is not 
specified, a USAGE message is printed, and bpftrace exits. This exit is necessary because tracing all 
devices will mix the output together and create a feedback loop with the tool itself.

11.2.7 opensnoop

opensnoop(8) was covered in Chapter 8 and shown in earlier chapters; it is a BCC and bpftrace 
tool to trace file opens, which can be used for a number of security tasks, such as understanding 
malware behavior and monitoring file usage. Example output from the BCC version:

# opensnoop

PID    COMM             FD ERR PATH

12748  opensnoop        -1   2 /usr/lib/python2.7/encodings/ascii.x86_64-linux-gnu.so

12748  opensnoop        -1   2 /usr/lib/python2.7/encodings/ascii.so

12748  opensnoop        -1   2 /usr/lib/python2.7/encodings/asciimodule.so
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12748  opensnoop        18   0 /usr/lib/python2.7/encodings/ascii.py

12748  opensnoop        19   0 /usr/lib/python2.7/encodings/ascii.pyc

1222   polkitd          11   0 /etc/passwd

1222   polkitd          11   0 /proc/11881/status

1222   polkitd          11   0 /proc/11881/stat

1222   polkitd          11   0 /etc/passwd

1222   polkitd          11   0 /proc/11881/status

1222   polkitd          11   0 /proc/11881/stat

1222   polkitd          11   0 /proc/11881/cgroup

1222   polkitd          11   0 /proc/1/cgroup

1222   polkitd          11   0 /run/systemd/sessions/2

[...]

This output shows opensnoop(8) searching for and then loading an ascii python module: the 
first three opens were unsuccessful. Then polkitd(8) (PolicyKit daemon) is caught opening the 
passwd file and checking process statuses. opensnoop(8) works by tracing the open(2) variety 
of syscalls.

See Chapter 8 for more about opensnoop(8).

11.2.8 eperm

eperm(8)10 is a bpftrace tool to count syscalls that failed with either EPERM “operation not 
permitted” or EACCES “permission denied” errors, both of which may be interesting for security 
analysis. For example:

# eperm.bt 

Attaching 3 probes...

Tracing EACCESS and EPERM syscall errors. Ctrl-C to end.

^C

 

@EACCESS[systemd-logind, sys_setsockopt]: 1

 

@EPERM[cat, sys_openat]: 1

@EPERM[gmain, sys_inotify_add_watch]: 6

This shows the process name and the syscall that failed, grouped by failure. For example, this 
output shows there was one EPERM failure by cat(1) for the openat(2) syscall. These failures can 
be further investigated using other tools, such as opensnoop(8) for open failures. 

This works by tracing the raw_syscalls:sys_exit tracepoint, which fires for all syscalls. The 
overhead may begin to be noticeable on systems with high I/O rates; you should test in a lab 
environment.

10 Origin: I created it for this book on 25-Feb-2019.
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The source to eperm(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing EACCESS and EPERM syscall errors. Ctrl-C to end.\n");

}

 

tracepoint:raw_syscalls:sys_exit

/args->ret == -1/

{

        @EACCESS[comm, ksym(*(kaddr("sys_call_table") + args->id * 8))] =

            count();

}

 

tracepoint:raw_syscalls:sys_exit

/args->ret == -13/

{

        @EPERM[comm, ksym(*(kaddr("sys_call_table") + args->id * 8))] =

            count();

}

The raw_syscalls:sys_exit tracepoint provides only an identification number for the syscall. To 
convert this to a name, a lookup table of syscalls can be used, which is how the BCC syscount(8) 
tool does it. eperm(8) uses a different technique: the kernel system call table (sys_call_table) is 
read, finding the function that handles the syscall, and then it converts that function address to 
the kernel symbol name.

11.2.9 tcpconnect and tcpaccept

tcpconnect(8) and tcpaccept(8) were introduced in Chapter 10: they are BCC and bpftrace tools to 
trace new TCP connections, and can be used to identify suspicious network activity. Many types 
of attacks involve connecting to a system at least once. Example output from BCC tcpconnect(8):

# tcpconnect 

PID    COMM         IP SADDR            DADDR            DPORT

22411  a.out        4  10.43.1.178      10.0.0.1         8080 

[...]

The tcpconnect(8) output shows an a.out process making a connection to 10.0.0.1 port 8080, 
which sounds suspicious. (a.out is a default filename from some compilers and is not normally 
used by any installed software.)
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Example output from BCC tcpaccept(8), also using the -t option to print timestamps:

# tcpaccept -t

TIME(s)  PID    COMM         IP RADDR            LADDR            LPORT

0.000    1440   sshd         4  10.10.1.201      10.43.1.178      22  

0.201    1440   sshd         4  10.10.1.201      10.43.1.178      22  

0.408    1440   sshd         4  10.10.1.201      10.43.1.178      22  

0.612    1440   sshd         4  10.10.1.201      10.43.1.178      22  

[...]

This output shows multiple connections from 10.10.1.201 to port 22, served by sshd(8). These are 
happening about every 200 milliseconds (from the "TIME(s)" column), which could be a brute-
force attack.

A key feature of these tools is that, for efficiency, they instrument only TCP session events. Other 
tools trace every network packet, which can incur high overhead on busy systems.

See Chapter 10 for more about tcpconnect(8) and tcpaccept(8).

11.2.10 tcpreset

tcpreset(8)11 is a bpftrace tool to trace when TCP sends reset (RST) packets. This can be used for the 
detection of TCP port scanning, which sends packets to a range of ports, including closed ones, 
triggering RSTs in response. For example:

# tcpreset.bt 

Attaching 2 probes...

Tracing TCP resets. Hit Ctrl-C to end.

TIME     LADDR          LPORT  RADDR          RPORT

20:50:24 100.66.115.238 80     100.65.2.196   45195 

20:50:24 100.66.115.238 443    100.65.2.196   45195 

20:50:24 100.66.115.238 995    100.65.2.196   45451 

20:50:24 100.66.115.238 5900   100.65.2.196   45451 

20:50:24 100.66.115.238 443    100.65.2.196   45451 

20:50:24 100.66.115.238 110    100.65.2.196   45451 

20:50:24 100.66.115.238 135    100.65.2.196   45451 

20:50:24 100.66.115.238 256    100.65.2.196   45451 

20:50:24 100.66.115.238 21     100.65.2.196   45451 

20:50:24 100.66.115.238 993    100.65.2.196   45451 

20:50:24 100.66.115.238 3306   100.65.2.196   45451 

20:50:24 100.66.115.238 25     100.65.2.196   45451 

20:50:24 100.66.115.238 113    100.65.2.196   45451 

20:50:24 100.66.115.238 1025   100.65.2.196   45451 

11 Origin: I created it for this book on 26-Feb-2019.
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20:50:24 100.66.115.238 18581  100.65.2.196   45451 

20:50:24 100.66.115.238 199    100.65.2.196   45451 

20:50:24 100.66.115.238 56666  100.65.2.196   45451 

20:50:24 100.66.115.238 8080   100.65.2.196   45451 

20:50:24 100.66.115.238 53     100.65.2.196   45451 

20:50:24 100.66.115.238 587    100.65.2.196   45451 

[...]

This shows many TCP RSTs were sent for different local ports within the same second: this looks 
like a port scan. It works by tracing the kernel function that sends resets, and the overhead should 
therefore be negligible, as this occurs infrequently in normal operation.

Note that there are different types of TCP port scans, and TCP/IP stacks can respond to them 
differently. I tested a Linux 4.15 kernel using the nmap(1) port scanner, and it responded with 
RSTs to SYN, FIN, NULL, and Xmas scans, making them all visible using tcpreset(8).

The columns are:

 ■ TIME: Time in HH:MM:SS format

 ■ LADDR: Local address

 ■ LPORT: Local TCP port

 ■ RADDR: Remote IP address

 ■ RPORT: Remote TCP port

The source to tcpreset(8) is:

#!/usr/local/bin/bpftrace

 

#include <net/sock.h>

#include <uapi/linux/tcp.h>

#include <uapi/linux/ip.h>

 

BEGIN

{

        printf("Tracing TCP resets. Hit Ctrl-C to end.\n");

        printf("%-8s %-14s %-6s %-14s %-6s\n", "TIME",

            "LADDR", "LPORT", "RADDR", "RPORT");

}

 

kprobe:tcp_v4_send_reset

{

        $skb = (struct sk_buff *)arg1;

        $tcp = (struct tcphdr *)($skb->head + $skb->transport_header); 

        $ip = (struct iphdr *)($skb->head + $skb->network_header);
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        $dport = ($tcp->dest >> 8) | (($tcp->dest << 8) & 0xff00);

        $sport = ($tcp->source >> 8) | (($tcp->source << 8) & 0xff00);

 

        time("%H:%M:%S ");

        printf("%-14s %-6d %-14s %-6d\n", ntop(AF_INET, $ip->daddr), $dport,

            ntop(AF_INET, $ip->saddr), $sport);

}

This traces the tcp_v4_send_reset() kernel function, which only traces IPv4 traffic. The tool can be 
enhanced to trace IPv6 as well if desired.

This tool is also an example of reading IP and TCP headers from a socket buffer: the lines that set 
$tcp and $ip. This logic is based on the kernel’s ip_hdr() and tcp_hdr() functions, and will need 
updates if the kernel changes this logic.

11.2.11 capable

capable(8)12 is a BCC and bpftrace tool to show security capability usage. This may be useful for 
constructing whitelists of required capabilities by applications, with the intent of blocking others 
to improve security.

# capable

TIME      UID    PID    COMM             CAP  NAME                 AUDIT

22:52:11  0      20007  capable          21   CAP_SYS_ADMIN        1

22:52:11  0      20007  capable          21   CAP_SYS_ADMIN        1

22:52:11  0      20007  capable          21   CAP_SYS_ADMIN        1

22:52:11  0      20007  capable          21   CAP_SYS_ADMIN        1

22:52:11  0      20007  capable          21   CAP_SYS_ADMIN        1

22:52:11  0      20007  capable          21   CAP_SYS_ADMIN        1

22:52:12  1000   20108  ssh              7    CAP_SETUID           1

22:52:12  0      20109  sshd             6    CAP_SETGID           1

22:52:12  0      20109  sshd             6    CAP_SETGID           1

22:52:12  0      20110  sshd             18   CAP_SYS_CHROOT       1

22:52:12  0      20110  sshd             6    CAP_SETGID           1

22:52:12  0      20110  sshd             6    CAP_SETGID           1

22:52:12  0      20110  sshd             7    CAP_SETUID           1

22:52:12  122    20110  sshd             6    CAP_SETGID           1

22:52:12  122    20110  sshd             6    CAP_SETGID           1

22:52:12  122    20110  sshd             7    CAP_SETUID           1

[...]

12 Origin: I wrote the first version using BCC on 13-Sep-2016 and ported it to bpftrace on 8-Sep-2018. I created it after 

a discussion with Michael Wardrop from the Netflix platform security team, who wanted this kind of visibility.
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This output shows the capable(8) tool checking for the CAP_SYS_ADMIN capability (super 
user), and then ssh(1) checking CAP_SETUID, and then sshd(8) checking various capabilities. 
Documentation for these capabilities can be found in the capabilities(7) man page.

Columns include:

 ■ CAP: Capability number

 ■ NAME: Code name for the capability (see capabilities(7))

 ■ AUDIT: Whether this capability check writes to the audit log

This works by tracing the kernel cap_capable() function, which determines whether the current 
task has a given capability. The frequency of this is typically so low that the overhead should be 
negligible.

There are options to show user- and kernel-stack traces. For example, including both:

# capable -KU

[...]

TIME      UID    PID    COMM             CAP  NAME                 AUDIT

12:00:37  0      26069  bash             2    CAP_DAC_READ_SEARCH  1

        cap_capable+0x1 [kernel]

        ns_capable_common+0x68 [kernel]

        capable_wrt_inode_uidgid+0x33 [kernel]

        generic_permission+0xfe [kernel]

        __inode_permission+0x36 [kernel]

        inode_permission+0x14 [kernel]

        may_open+0x5a [kernel]

        path_openat+0x4b5 [kernel]

        do_filp_open+0x9b [kernel]

        do_sys_open+0x1bb [kernel]

        sys_openat+0x14 [kernel]

        do_syscall_64+0x73 [kernel]

        entry_SYSCALL_64_after_hwframe+0x3d [kernel]

        open+0x4e [libc-2.27.so]

        read_history+0x22 [bash]

        load_history+0x8c [bash]

        main+0x955 [bash]

        __libc_start_main+0xe7 [libc-2.27.so]

        [unknown]

[...]

This includes the kernel stack showing the openat(2) syscall and the user stack showing the bash 
process calling read_history().
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BCC

Command line usage:

capable [options]

Options include:

 ■ -v: Include non-audit checks (verbose)

 ■ -p PID: Measure this process only

 ■ -K: Include kernel stack traces

 ■ -U: Include user-level stack traces

Some checks are considered “non-audit” and don’t write a message to the audit log. These are 
excluded by default unless -v is used.

bpftrace

The following is the code for the bpftrace version, which summarizes its core functionality. This 
version does not support options and traces all capability checks, included non-audit.

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing cap_capable syscalls... Hit Ctrl-C to end.\n");

        printf("%-9s %-6s %-6s %-16s %-4s %-20s AUDIT\n", "TIME", "UID", "PID",

            "COMM", "CAP", "NAME");

        @cap[0] = "CAP_CHOWN";

        @cap[1] = "CAP_DAC_OVERRIDE";

        @cap[2] = "CAP_DAC_READ_SEARCH";

        @cap[3] = "CAP_FOWNER";

        @cap[4] = "CAP_FSETID";

        @cap[5] = "CAP_KILL";

        @cap[6] = "CAP_SETGID";

        @cap[7] = "CAP_SETUID";

        @cap[8] = "CAP_SETPCAP";

        @cap[9] = "CAP_LINUX_IMMUTABLE";

        @cap[10] = "CAP_NET_BIND_SERVICE";

        @cap[11] = "CAP_NET_BROADCAST";

        @cap[12] = "CAP_NET_ADMIN";

        @cap[13] = "CAP_NET_RAW";

        @cap[14] = "CAP_IPC_LOCK";

        @cap[15] = "CAP_IPC_OWNER";
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        @cap[16] = "CAP_SYS_MODULE";

        @cap[17] = "CAP_SYS_RAWIO";

        @cap[18] = "CAP_SYS_CHROOT";

        @cap[19] = "CAP_SYS_PTRACE";

        @cap[20] = "CAP_SYS_PACCT";

        @cap[21] = "CAP_SYS_ADMIN";

        @cap[22] = "CAP_SYS_BOOT";

        @cap[23] = "CAP_SYS_NICE";

        @cap[24] = "CAP_SYS_RESOURCE";

        @cap[25] = "CAP_SYS_TIME";

        @cap[26] = "CAP_SYS_TTY_CONFIG";

        @cap[27] = "CAP_MKNOD";

        @cap[28] = "CAP_LEASE";

        @cap[29] = "CAP_AUDIT_WRITE";

        @cap[30] = "CAP_AUDIT_CONTROL";

        @cap[31] = "CAP_SETFCAP";

        @cap[32] = "CAP_MAC_OVERRIDE";

        @cap[33] = "CAP_MAC_ADMIN";

        @cap[34] = "CAP_SYSLOG";

        @cap[35] = "CAP_WAKE_ALARM";

        @cap[36] = "CAP_BLOCK_SUSPEND";

        @cap[37] = "CAP_AUDIT_READ";

}

 

kprobe:cap_capable

{

        $cap = arg2;

        $audit = arg3;

        time("%H:%M:%S  ");

        printf("%-6d %-6d %-16s %-4d %-20s %d\n", uid, pid, comm, $cap,

            @cap[$cap], $audit);

}

 

END

{

        clear(@cap);

}

The program declares a hash for capability number to name lookups. This will need to be updated 
to match additions to the kernel.
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11.2.12 setuids

setuids(8)13 is a bpftrace tool to trace privilege escalation syscalls: setuid(2), setresuid(2), and 
setfsuid(2). For example:

# setuids.bt 

Attaching 7 probes...

Tracing setuid(2) family syscalls. Hit Ctrl-C to end.

TIME     PID    COMM             UID    SYSCALL   ARGS (RET)

23:39:18 23436  sudo             1000   setresuid ruid=-1 euid=1000 suid=-1 (0)

23:39:18 23436  sudo             1000   setresuid ruid=-1 euid=0 suid=-1 (0)

23:39:18 23436  sudo             1000   setresuid ruid=-1 euid=0 suid=-1 (0)

23:39:18 23436  sudo             1000   setresuid ruid=0 euid=-1 suid=-1 (0)

23:39:18 23436  sudo             0      setresuid ruid=1000 euid=-1 suid=-1 (0)

23:39:18 23436  sudo             1000   setresuid ruid=-1 euid=-1 suid=-1 (0)

23:39:18 23436  sudo             1000   setuid    uid=0 (0)

23:39:18 23437  sudo             0      setresuid ruid=0 euid=0 suid=0 (0)

[...]

This shows a sudo(8) command that was changing a UID from 1000 to 0 and the various syscalls it 
used to do this. Logins via sshd(8) can also be seen via setuids(8), as they also change the UID.

The columns include:

 ■ UID: The user ID before the setuid call.

 ■ SYSCALL: The syscall name.

 ■ ARGS: Arguments to the syscall.

 ■ (RET): Return value. For setuid(2) and setresuid(2), this shows whether the call was 
successful. For setfsuid(2), it shows the previous UID.

This works by instrumenting the tracepoints for these syscalls. Since the rate of these syscalls 
should be low, the overhead of this tool should be negligible.

The source to setuids(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing setuid(2) family syscalls. Hit Ctrl-C to end.\n");

        printf("%-8s %-6s %-16s %-6s %-9s %s\n", "TIME",

            "PID", "COMM", "UID", "SYSCALL", "ARGS (RET)");

13 Origin: I created the first version as setuids.d on 9-May-2004, finding it useful as a way to trace logins as it caught 

them setting the uid: login, su, and sshd. I developed this bpftrace version on 26-Feb-2019 for this book.
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}

 

tracepoint:syscalls:sys_enter_setuid,

tracepoint:syscalls:sys_enter_setfsuid

{

        @uid[tid] = uid;

        @setuid[tid] = args->uid;

        @seen[tid] = 1;

}

 

tracepoint:syscalls:sys_enter_setresuid

{

        @uid[tid] = uid;

        @ruid[tid] = args->ruid;

        @euid[tid] = args->euid;

        @suid[tid] = args->suid;

        @seen[tid] = 1;

}

 

tracepoint:syscalls:sys_exit_setuid

/@seen[tid]/

{

        time("%H:%M:%S ");

        printf("%-6d %-16s %-6d setuid    uid=%d (%d)\n", pid, comm,

            @uid[tid], @setuid[tid], args->ret);

        delete(@seen[tid]); delete(@uid[tid]); delete(@setuid[tid]);

}

 

tracepoint:syscalls:sys_exit_setfsuid

/@seen[tid]/

{

        time("%H:%M:%S ");

        printf("%-6d %-16s %-6d setfsuid  uid=%d (prevuid=%d)\n", pid, comm,

            @uid[tid], @setuid[tid], args->ret);

        delete(@seen[tid]); delete(@uid[tid]); delete(@setuid[tid]);

}

 

tracepoint:syscalls:sys_exit_setresuid

/@seen[tid]/

{

        time("%H:%M:%S ");

        printf("%-6d %-16s %-6d setresuid ", pid, comm, @uid[tid]);

        printf("ruid=%d euid=%d suid=%d (%d)\n", @ruid[tid], @euid[tid],
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            @suid[tid], args->ret);

        delete(@seen[tid]); delete(@uid[tid]); delete(@ruid[tid]);

        delete(@euid[tid]); delete(@suid[tid]);

}

This traces the three syscall entry and exit tracepoints, stashing entry details into maps that can 
be fetched and printed on exit.

11.3 BPF One-Liners

These sections show BCC and bpftrace one-liners. Where possible, the same one-liner is implemented 
using both BCC and bpftrace.

11.3.1 BCC

Count security audit events for PID 1234:

funccount -p 1234 'security_*'

Trace pluggable authentication module (PAM) session starts:

trace 'pam:pam_start "%s: %s", arg1, arg2'

Trace kernel module loads:

trace 't:module:module_load "load: %s", args->name'

11.3.2 bpftrace

Count security audit events for PID 1234:

bpftrace -e 'k:security_* /pid == 1234 { @[func] = count(); }'

Trace pluggable authentication module (PAM) session starts:

bpftrace -e 'u:/lib/x86_64-linux-gnu/libpam.so.0:pam_start { printf("%s: %s\n",

    str(arg0), str(arg1)); }'

Trace kernel module loads:

bpftrace -e 't:module:module_load { printf("load: %s\n", str(args->name)); }'

11.3.3 BPF One-Liners Examples

Including some sample output, as was done for each tool, is also useful for illustrating one-liners. 
Here are some selected one-liners with example output.



ptg30854589

51511.4 Summary

Counting Security Audit Events

# funccount -p 21086 'security_*'

Tracing 263 functions for "security_*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

security_task_setpgid                       1

security_task_alloc                         1

security_inode_alloc                        1

security_d_instantiate                      1

security_prepare_creds                      1

security_file_alloc                         2

security_file_permission                   13

security_vm_enough_memory_mm               27

security_file_ioctl                        34

Detaching...

This counts occurrences to the Linux Security Module (LSM) hooks for handling and auditing 
security events. Each of these hook functions can be traced for more information.

Tracing PAM Session Starts

# trace 'pam:pam_start "%s: %s", arg1, arg2'

PID     TID     COMM            FUNC             -

25568   25568   sshd            pam_start        sshd: bgregg

25641   25641   sudo            pam_start        sudo: bgregg

25646   25646   sudo            pam_start        sudo: bgregg

[...]

This shows sshd(8) and sudo(8) beginning a pluggable authentication module (PAM) session for 
the bgregg user. Other PAM functions can also be traced to see the final authentication request.

11.4 Summary

BPF can be used for various security uses, including sniffing activity for real-time forensics, 
privilege debugging, usage whitelists, and more. This chapter introduces these capabilities and 
demonstrates them with some BPF tools.
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Chapter 12
Languages

There are many programming languages, as well as compilers and runtimes to execute them, 
and the way each language is executed affects how it can be traced. This chapter explains such 
differences and will help you find ways to trace any given language.

Learning Objectives:

 ■ Understand compiled language instrumentation (e.g.: C)

 ■ Understand JIT compiled language instrumentation (e.g.: Java, Node.js)

 ■ Understand interpreted language instrumentation (e.g.: bash shell)

 ■ Trace function calls, arguments, return value, and latency when possible

 ■ Trace the user-level stack trace in a given language

This chapter begins by summarizing programming language implementations, then uses a few 
languages as examples: C for compiled languages, Java for a JIT-compiled language, and bash shell 
scripting for a fully interpreted language. For each, I cover how to find function names (symbols), 
function arguments, and how to investigate and trace stack traces. I have included notes for 
tracing other languages at the end of this chapter: JavaScript (Node.js), C++, and Golang.

Whatever your language of interest, this chapter should give you a head start in instrumenting it 
and understanding the challenges and solutions that have worked for other languages.

12.1 Background

To understand how to instrument a given language, you need to examine how it is converted into 
machine code for execution. This isn’t usually an attribute of the language, but rather an attribute 
of how the language is implemented. Java, for example, is not a JIT-compiled language: Java is just a 
language. The commonly used JVM runtime from OracleJDK or OpenJDK executes Java methods with 
a pipeline that moves from interpretation to JIT compilation, but that is an attribute of the JVM. The 
JVM itself is also compiled C++ code, which runs functions such as class loading and garbage collec-
tion. In a fully instrumented Java application, you may encounter code that is compiled (C++ JVM 
functions), interpreted (Java methods), and JIT compiled (Java methods)—and there are differences in 
how each should be instrumented. Other languages have separate implementations of compilers and 
interpreters, and you need to know which is being used to understand how to trace it.
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Put simply: if your task is to trace language X, your first question should be, what is the thing 
we are currently using to run X, and how does it work? Is it a compiler, JIT compiler, interpreter, 
animal, vegetable, or mineral?

This section provides general advice for tracing any language with BPF, by classifying language 
implementations by how they generate machine code: compiled, JIT compiled, or interpreted. 
Some implementations (e.g., the JVM) support multiple techniques.

12.1.1 Compiled

Examples of languages that are commonly compiled include C, C++, Golang, Rust, Pascal, 
Fortran, and COBOL.

For compiled languages, functions are compiled into machine code and stored in an executable 
binary, typically the ELF format, with the following attributes:

 ■ For user-level software, symbol tables are included in the ELF binary file for mapping 
addresses to function and object names. These addresses do not move during execution, so 
the symbol table can be read at any time for correct mappings. Kernel-level software differs 
as it has its own dynamic symbol table in /proc/kallsyms, which can grow as modules are 
loaded.

 ■ Function arguments and their return values are stored in registers and stack offsets. Their 
location usually follows a standard calling convention for each processor type; however, some 
compiled languages (e.g., Golang) use different conventions, and some (e.g., V8 built-ins) use 
no convention at all.

 ■ The frame pointer register (RBP on x86_64) can be walked to reveal the stack trace, if the 
compiler initializes it in function prologues. Compilers often instead reuse it as a general 
purpose register (a performance optimization for register-limited processors). A side effect is 
that it breaks frame pointer–based stack walking.

Compiled languages are usually easy to trace, using uprobes for user-level software and kprobes for 
kernel-level software. There are numerous examples throughout this book.

When approaching compiled software, check whether the symbol tables are present (e.g., using 
nm(1), objdump(1), or readelf(1)). If they are not, check whether a debuginfo package is available 
for the software, which can provide the missing symbols. If that, too, is a dead end, check the 
compiler and build software to see why the symbols are missing in the first place: they may be 
stripped using strip(1). One fix is to recompile the software without calling strip(1).

Also check whether frame pointer-based stack walking is working. This is the current default for 
walking user-space stacks via BPF, and if it is not working, the software may need to be recom-
piled with a compiler flag to honor the frame pointer (e.g., gcc -fno-omit-frame-pointer). 
If this is infeasible, other stack-walking techniques can be explored, such as last branch record 
(LBR),1 DWARF, user-level ORC, and BTF. There is still BPF tooling work needed to make use of 
these, discussed in Chapter 2.

1 There is not currently support for LBR in BPF or its front ends, but we intend to add it. perf(1) currently supports it 

with --call-graph lbr.
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12.1.2 JIT Compiled

Examples of languages that are commonly JIT compiled include Java, JavaScript, Julia, .Net., and 
Smalltalk.

JIT compiled languages compile into bytecode, which is then compiled into machine code at 
runtime, often with feedback from runtime operation to direct compiler optimization. They have 
the following attributes (discussing user level only):

 ■ Because functions are compiled on the fly, there is no pre-built symbol table. The mappings 
are usually stored in memory of the JIT runtime, and used for purposes such as printing 
exception stacks. These mappings may also change, as the runtime may recompile and 
move functions around.

 ■ Function arguments and return values may or may not follow a standard calling convention.

 ■ The JIT runtime may or may not honor the frame pointer register, so frame pointer–based 
stack walking may work, or it may be broken (in which case you would see the stack trace 
ending abruptly with a bogus address). The runtime usually has a way to walk its own stack 
for an exception handler to print the stack trace during errors.

Tracing JIT-compiled languages is difficult. There is no symbol table on the binary since it is 
dynamic and in memory. Some applications provide supplemental symbol files for the JIT 
mappings (/tmp/perf-PID.map); however, these cannot be used with uprobes for two reasons:

 1. The compiler may move uprobe-instrumented functions in memory without informing the 
kernel. When the instrumentation is no longer needed, the kernel reverts the instructions back 
to normal, but it is now writing to the wrong location and will corrupt user-space memory.2

 2. uprobes are inode based and require a file location to work, whereas the JIT functions may 
be stored in anonymous private mappings.3

Tracing compiled functions may be possible if the runtime provides USDT probes for each 
function, although this technique usually incurs high overhead, whether  it is enabled or 
not. A more efficient approach is to instrument selected points with dynamic USDT. (USDT 
and dynamic USDT were introduced in Chapter 2.) USDT probes also provide a solution for 
instrumenting function arguments and return values as arguments to those probes.

If stack traces from BPF already work, supplemental symbol files can be used to translate them 
into the function names. For a runtime that doesn’t support USDT, this provides one path for 
visibility into running JIT functions: stack traces can be collected on syscalls, kernel events, and 
via timed profiling, revealing the JIT functions that are running. This may be the easiest way you 
can get JIT function visibility to work, and can help solve many problem types.

If stack traces do not work, check whether the runtime supports frame pointers with an option 
or whether LBR can be used. If these are dead ends, there are a number of other ways to fix 
stack traces, although these may require significant engineering work. One way is to modify 
the runtime compiler to preserve the frame pointer. Another is to add USDT probes that use 

2 I’ve asked the JVM team for a way to pause the c2 compiler so that functions stop moving during uprobe tracing.

3 Along with others, I have been looking into how to remove this limitation from the kernel.
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the language’s own means of getting the call stack, and providing this as a string argument. Yet 
another way is to signal the process from BPF and have a user-space helper write a stack trace to 
memory that BPF can read, as Facebook has implemented for hhvm [133].

Java is discussed later in this chapter as an example of how these techniques work in practice.

12.1.3 Interpreted

Examples of languages that are commonly interpreted include the bash shell, Perl, Python, 
and Ruby. There are also languages that commonly use interpretation as a stage before JIT 
compilation—for example, Java and JavaScript. The analysis of those staged languages during 
their interpretation stage is similar to analysis of languages that use only interpretation.

Interpreted language runtimes do not compile the program functions to machine code but 
instead parse and execute the program using their own built-in routines. They have the following 
attributes:

 ■ The binary symbol table shows interpreter internals but no functions from the user-
supplied program. The functions are likely stored in a memory table that is specific to the 
interpreter implementation and maps to interpreter objects.

 ■ Function arguments and return values are processed by the interpreter. They are likely 
passed around by interpreter function calls and may be bundled as interpreter objects and 
rather than simple ints and strings.

 ■ If the interpreter itself is compiled to honor the frame pointer, frame pointer stack walking 
will work, but it will show only the interpreter internals with no function name context 
from the user-supplied program that is running. The program stack is likely known by the 
interpreter and printed for exception stacks but stored in a custom data structure.

USDT probes may exist to show the start and end of function calls, with the function name and 
arguments as arguments to the USDT probe. For example, the Ruby runtime has built-in USDT 
probes in the interpreter. While this provides a way to trace function calls, it can come with high 
overhead: it usually means instrumenting all function calls, and then filtering on the name for 
the functions of interest. If there is a dynamic USDT library for the language runtime, it can be 
used to insert custom USDT probes only in the functions of interest, rather than tracing all func-
tions and then filtering. (See Chapter 2 for an introduction to dynamic USDT.) For example, the 
ruby-static-tracing package provides this for Ruby.

If the runtime does not have built-in USDT probes, and no package provides runtime USDT 
support (such as libstapsdt/libusdt), its interpreter functions can be traced using uprobes and 
details such as function names and arguments can be fetched. They may be stored as interpreter 
objects and require some struct navigation to parse.

Stack traces may be very difficult to tease out of the interpreter’s memory. One approach, albeit 
one with high overhead, is to trace all function calls and returns in BPF and construct a synthetic 
stack for each thread in BPF memory that can be read when needed. As with JIT-compiled 
languages, there may be other ways to add stack trace support, including via custom USDT 
probes and the runtime’s own method for fetching a stack (as with ruby’s “caller” built-in, or an 
exception method), or with a BPF signal to a user-space helper.
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12.1.4 BPF Capabilities

The target capabilities for tracing a language with BPF are to answer these questions:

 ■ What functions are called?

 ■ What are the arguments to a function?

 ■ What is the return value of a function? Did it error?

 ■ What is code path (stack trace) that led to any event?

 ■ What is the duration of a function? As a histogram?

How many of these questions can be answered with BPF depends on the language implementation. 
Many language implementations come with custom debuggers that can answer the first four of these 
questions easily, so you might wonder why we even need BPF for this. A primary reason is to trace 
multiple layers of the software stack in one tool. Instead of examining disk I/O or page faults with 
kernel context alone, you can trace them along with the user-level code path responsible, and with 
application context: which user requests led to how much disk I/O or page faults, etc. In many cases, 
kernel events can identify and quantify an issue, but it’s the user-level code that shows how to fix it.

For some languages (e.g., Java), showing which stack trace led to an event is easier to get working than 
tracing its function/method calls. Combined with the numerous other kernel events that BPF can 
instrument, stack traces can accomplish much. You can see which application code paths led to disk 
I/O, page faults, and other resource usage; you can see which code paths led to the thread blocking and 
leaving the CPU; and you can use timed sampling to profile CPU usage and build CPU flame graphs.

12.1.5 Strategy

Here is a suggested overall strategy you can follow for the analysis of a language:

 1. Determine how the language is executed. For the software that runs it, is it using 
compilation to binaries, JIT compilation on the fly, interpretation, or a mix of these? This 
directs your approach as discussed in this chapter.

 2. Browse the tools and one-liners in this chapter to understand the kinds of things that are 
possible for each language type.

 3. Do an internet search for “[e]BPF language”, “BCC language”, and “bpftrace language” to see 
if there are already tools and know-how for analyzing the language with BPF.

 4. Check if the language software has USDT probes and if they are enabled in the distributed 
binaries (or if you need to recompile to enable them). These are a stable interface and 
preferable to use. If the language software does not have USDT probes, consider adding 
them. Most language software is open source.

 5. Write a sample program to instrument. Call a function with a known name a known 
number of times, and with known latency (explicit sleep). This can be used to check if your 
analysis tools are working, by checking that they identify all these knowns correctly.

 6. For user-level software, use uprobes to inspect the language execution at the native level. 
For kernel-level software, use kprobes.
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The sections that follow are longer discussions on three example languages: C for compiled, Java 
for JIT compiled, and the bash shell for interpreted languages.

12.1.6 BPF Tools

The BPF tools covered in this chapter are pictured in Figure 12-1.

Figure 12-1 BPF tools for language analysis

These tools cover C, Java, and bash.

12.2 C

C is the easiest of the languages to trace.

For kernel-level C, the kernel has its own symbol table, and most distributions honor the 
frame pointer for their kernel builds (CONFIG_FRAME_POINTER=y). This makes tracing kernel 
functions with kprobes straightforward: the functions can be seen and traced, arguments follow 
the processor ABI, and stack traces can be fetched. At least, most functions can be seen and traced: 
exceptions include inlined functions, and those marked on a tracing blacklist by the kernel as 
unsafe to instrument.

For user-level C, if a compiled binary does not strip its symbol tables, and does not omit the 
frame pointer, then tracing is straightforward with uprobes: functions can be seen and traced, 
arguments follow the processor ABI, and stack traces can be fetched. Unfortunately, many 
binaries do strip their symbol tables and compilers do omit the frame pointer, meaning you need 
to recompile them or find other ways to read symbols and stacks.

USDT probes can be used in C programs for static instrumentation. Some C libraries, including 
libc, provide USDT probes by default.

This section discusses C function symbols, C stack traces, C function tracing, C function offset 
tracing, C USDT, and C one-liners. Table 12-1 lists tools for instrumenting custom C code that 
have already been covered in other chapters.
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C++ tracing is similar to C and is summarized in Section 12.5.

Table 12-1 C-Related Tools

Tool Source Target Description Chapter

funccount BCC Functions Count function calls 4

stackcount BCC Stacks Count native stacks to events 4

trace BCC Functions Print function calls and returns with details 4

argdist BCC Functions Summarize function arguments or return value 4

bpftrace BT All Custom function and stack instrumentation 5

12.2.1 C Function Symbols

Function symbols can be read from the ELF symbol tables. readelf(1) can be used to check if these 
are present. For example, here are symbols in a microbenchmark program:

$ readelf -s bench1

 

Symbol table '.dynsym' contains 10 entries:

   Num:    Value         Size Type    Bind   Vis    Ndx Name

     0: 0000000000000000    0 NOTYPE LOCAL  DEFAULT UND 

     1: 0000000000000000    0 NOTYPE WEAK   DEFAULT UND _ITM_deregisterTMCloneTab

     2: 0000000000000000    0 FUNC   GLOBAL DEFAULT UND puts@GLIBC_2.2.5 (2)

     3: 0000000000000000    0 FUNC   GLOBAL DEFAULT UND __libc_start_main@GLIBC...

     4: 0000000000000000    0 NOTYPE WEAK   DEFAULT UND __gmon_start__

     5: 0000000000000000    0 FUNC   GLOBAL DEFAULT UND malloc@GLIBC_2.2.5 (2)

     6: 0000000000000000    0 FUNC   GLOBAL DEFAULT UND atoi@GLIBC_2.2.5 (2)

     7: 0000000000000000    0 FUNC   GLOBAL DEFAULT UND exit@GLIBC_2.2.5 (2)

     8: 0000000000000000    0 NOTYPE WEAK   DEFAULT UND _ITM_registerTMCloneTable

     9: 0000000000000000    0 FUNC   WEAK   DEFAULT UND __cxa_finalize@GLIBC_2.2.5 (2)

 

Symbol table '.symtab' contains 66 entries:

   Num:    Value          Size Type    Bind   Vis      Ndx Name

     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 

     1: 0000000000000238     0 SECTION LOCAL  DEFAULT    1 

     2: 0000000000000254     0 SECTION LOCAL  DEFAULT    2 

     3: 0000000000000274     0 SECTION LOCAL  DEFAULT    3 

     4: 0000000000000298     0 SECTION LOCAL  DEFAULT    4  

     [...] 

    61: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND exit@@GLIBC_2.2.5

    62: 0000000000201010     0 OBJECT  GLOBAL HIDDEN    23 __TMC_END__

    63: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND _ITM_registerTMCloneTable

    64: 0000000000000000     0 FUNC    WEAK   DEFAULT  UND __cxa_finalize@@GLIBC_2.2

    65: 0000000000000590     0 FUNC    GLOBAL DEFAULT   11 _init
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The symbol table, ".symtab", has dozens of entries (truncated here). There is an additional symbol 
table used for dynamic linking, ".dynsym", which has six function symbols.

Now consider these symbol tables after the binary has been run through strip(1), which is often 
the case for many packaged binaries:

$ readelf -s bench1 

 

Symbol table '.dynsym' contains 10 entries:

   Num:    Value          Size Type    Bind   Vis      Ndx Name

     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 

     1: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND _ITM_deregisterTMCloneTab

     2: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND puts@GLIBC_2.2.5 (2)

     3: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND __libc_start_main@GLIBC...

     4: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__

     5: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND malloc@GLIBC_2.2.5 (2)

     6: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND atoi@GLIBC_2.2.5 (2)

     7: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND exit@GLIBC_2.2.5 (2)

     8: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND _ITM_registerTMCloneTable

     9: 0000000000000000     0 FUNC    WEAK   DEFAULT  UND __cxa_finalize@GLIBC_2....

strip(1) removes the .symtab symbol table but leaves the .dynsym table. .dynsym contains exter-
nal global symbols that are called, and .symtab contains the same plus local symbols from the 
application. Without .symtab, there are still some symbols in the binary for library calls, but it 
may be missing the most interesting ones.

Statically compiled applications that are stripped may lose all symbols, since they had all been 
placed in the .symtab that is removed.

There are at least two ways to fix this:

 ■ Remove strip(1) from the software build process and recompile the software.

 ■ Use a different source of symbols: DWARF debuginfo or BTF.

Debuginfo for software packages is sometimes available as a software package with a -dbg, 
-dbgsym, or -debuginfo extension. It is supported by the perf(1) command, BCC, and 
bpftrace.

Debuginfo

Debuginfo files may have the same name as the binary with a ".debuginfo" extension, or use a 
build ID unique checksum for the filename and reside under /usr/lib/debug/.build-id or a user 
version of this. For the latter, the build ID is stored in the binary ELF notes section, and can be 
seen using readelf -n.
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As an example, this system has openjdk-11-jre and openjdk-11-dbg packages installed, providing 
both libjvm.so and libjvm.debuginfo files. Here are the symbol counts for each:

$ readelf -s /usr/lib/jvm/.../libjvm.so | wc -l

456

$ readelf -s /usr/lib/jvm/.../libjvm.debuginfo | wc -l

52299

The stripped version has 456 symbols, and the debuginfo version has 52,299.

Lightweight Debuginfo 

While it might seem worthwhile to always install the debuginfo file, it comes at a file size cost: the 
debuginfo file is 222 Mbytes, compared to 17 Mbytes for libjvm.so. Much of this size is not symbol 
information but other debuginfo sections. The size of the symbol information can be checked 
using readelf(1):

$ readelf -S libjvm.debuginfo 

There are 39 section headers, starting at offset 0xdd40468:

 

Section Headers:

  [Nr] Name              Type             Address           Offset

       Size              EntSize          Flags  Link  Info  Align

[...]

  [36] .symtab           SYMTAB           0000000000000000  0da07530

       00000000001326c0  0000000000000018          37   51845     8

[...]

This shows the size of .symtab is only 1.2 Mbytes. For comparison, the openjdk package that 
provided libjvm.so is 175 Mbytes.

If the full debuginfo size is a problem, you could explore stripping down the debuginfo file. The 
following commands use objcopy(1) to strip out the other debuginfo sections (which begin with 
".debug_") to create a lightweight debuginfo file. This can be used as a debuginfo replacement that 
contains symbols, or it can also be reattached to the binary using eu-unstrip(1). Example commands:

$ objcopy -R.debug_\* libjvm.debuginfo libjvm.symtab

$ eu-unstrip -o libjvm.new.so libjvm.so libjvm.symtab

$ ls -lh libjvm.orig.so libjvm.debuginfo libjvm.symtab libjvm.new.so 

-rwxr-xr-x 1 root root 222M Nov 13 04:53 libjvm.debuginfo*

-rwxr-xr-x 1 root root  20M Feb 16 19:02 libjvm.new.so*

-rw-r--r-- 1 root root  17M Nov 13 04:53 libjvm.so

-rwxr-xr-x 1 root root 3.3M Feb 16 19:00 libjvm.symtab*

$ readelf -s libjvm.new.so | wc -l

52748
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The new libjvm.new.so is only 20 Mbytes and contains all the symbols. Note that this is a proof of 
concept technique I developed for this book, and has not yet had production testing.

BTF

In the future, the BPF Type Format (BTF) may provide another lightweight source of debuginfo, 
and one that was designed for use by BPF. So far BTF is kernel only: work has not yet began on a 
user-level version. See Chapter 2 for BTF.

Using bpftrace

Apart from using readelf(1), bpftrace can also list symbols from a binary by matching which 
uprobes are available to instrument4:

# bpftrace -l 'uprobe:/bin/bash'

uprobe:/bin/bash:rl_old_menu_complete

uprobe:/bin/bash:maybe_make_export_env

uprobe:/bin/bash:initialize_shell_builtins

uprobe:/bin/bash:extglob_pattern_p

uprobe:/bin/bash:dispose_cond_node

[...]

Wildcards can also be used:

# bpftrace -l 'uprobe:/bin/bash:read*'

uprobe:/bin/bash:reader_loop

uprobe:/bin/bash:read_octal

uprobe:/bin/bash:readline_internal_char

uprobe:/bin/bash:readonly_builtin

uprobe:/bin/bash:read_tty_modified

[...]

Section 12.2.3 instruments one of these as an example.

12.2.2 C Stack Traces

BPF currently supports frame pointer–based stack walking. For this to work, the software 
must be compiled to use the frame pointer register. For the gcc compiler, this is the 
-fno-omit-frame-pointer option. In the future, BPF may support other types of stack 
walking as well.

Since BPF is programmable, I was able to code a frame pointer stack walker in pure BPF before 
real support was added [134]. Alexei Starovoitov added official support with a new map type, 
BPF_MAP_TYPE_STACK_TRACE, and a helper, bpf_get_stackid(). The helper returns a unique ID 

4 Matheus Marchini developed this feature after reviewing a draft of this chapter and realizing it was needed.
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for the stack, and the map stores the contents of the stack. This minimizes storage for stack traces, 
since duplicates reuse the same ID and storage.

From bpftrace, stacks are available via the ustack and kstack built-ins, for user-level and kernel 
stacks. Here is an example of tracing the bash shell, which is a large C program, and printing the 
stack trace that led to a read of file descriptor 0 (STDIN):

# bpftrace -e 't:syscalls:sys_enter_read /comm == "bash" &&

    args->fd == 0/ { @[ustack] = count(); }'

Attaching 1 probe...

^C

 

@[

    read+16

    0x6c63004344006d

]: 7

This stack is actually broken: after the read() function is a hexadecimal number that does not look 
like an address. (pmap(1) can be used to check the address space mappings for a PID to see if it is 
in a range or not; in this case, it isn’t.)

Now a bash shell that’s been recompiled with -fno-omit-frame-pointer:

# bpftrace -e 't:syscalls:sys_enter_read /comm == "bash" &&

    args->fd == 0/ { @[ustack] = count(); }'

Attaching 1 probe...

^C

 

@[

    read+16

    rl_read_key+307

    readline_internal_char+155

    readline_internal_charloop+22

    readline_internal+23

    readline+91

    yy_readline_get+142

    yy_readline_get+412

    yy_getc+13

    shell_getc+464

    read_token+250

    yylex+184

    yyparse+776

    parse_command+122

    read_command+203

    reader_loop+377
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    main+2355

    __libc_start_main+240

    0xa9de258d4c544155

]: 30

The stack trace is now visible. It is printed top-down from leaf to root. Put differently, top-down is 
also child to parent to grandparent and so on.

This example shows the shell reading from STDIN via readline() functions, in a read_command() 
code path. It is the bash shell reading input.

The bottom of the stack is another bogus address after __libc_start_main. The problem is that 
the stack has now walked into a system library, libc, and that has been compiled without the 
frame pointer.

See Section 2.4 in Chapter 2 for more about how BPF walks stacks and future work.

12.2.3 C Function Tracing

Functions can be traced using kprobes and kretprobes for kernel functions, and uprobes and uret-
probes for user-level functions. These technologies were introduced in Chapter 2, and Chapter 5 
covered how to use them from bpftrace. There are many examples of their use in this book.

As one example for this section: the following traces the readline() function, which is usually 
included in the bash shell. Since this is user-level software, it can be traced with uprobes. Here is 
the function signature:

char * readline(char *prompt)

It takes a string argument, the prompt, and also returns a string. Using a uprobe to trace the 
prompt argument, which is available as the arg0 built-in:

# bpftrace -e 'uprobe:/bin/bash:readline { printf("readline: %s\n", str(arg0)); }'

Attaching 1 probe...

readline: bgregg:~/Build/bpftrace/tools>

readline: bgregg:~/Build/bpftrace/tools>

This showed the prompt ($PS1) printed by a shell in another window.

Now tracing the return value and showing it as a string, using a uretprobe:

# bpftrace -e 'uretprobe:/bin/bash:readline { printf("readline: %s\n", 

    str(retval)); }'

Attaching 1 probe...

readline: date

readline: echo hello reader

This showed the input I was typing in another window.
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Apart from the main binary, shared libraries can also be traced by replacing the "/bin/bash" path 
in the probe with the path to the library. Some Linux distributions5 build bash so that readline 
is called via libreadline, and the above one-liners will fail as the readline() symbol is not in 
/bin/bash. They may be traced using the path to libreadline, for example:

# bpftrace -e 'uretprobe:/usr/lib/libreadline.so.8:readline {

    printf("readline: %s\n", str(retval)); }'

12.2.4 C Function Offset Tracing

There may be times when you would like to trace an arbitrary offset within a function rather 
than just its start and return points. Apart from greater visibility to a function’s code flow, by 
inspecting registers you could also determine the contents of local variables.

uprobes and kprobes support tracing at arbitrary offsets, as does BCC’s  attach_uprobe() 
and attach_kprobe() from its Python API. However, this capability is not yet exposed via 
BCC tools such as trace(8) and funccount(8), nor is it available yet in bpftrace. It should be 
straightforward to add to these tools. The difficulty will be adding it safely. uprobes does 
not check for instruction alignment, so tracing the wrong address (e.g., midway through a 
multi-byte instruction) will corrupt the instructions in the target program, causing it to fail 
in unpredictable ways. Other tracers, such as perf(1), use debuginfo to check for instruction 
alignment.

12.2.5 C USDT

USDT probes can be added to C programs to provide static instrumentation: a reliable API for 
tracing tools to use. Some programs and libraries already provide USDT probes, for example, 
listing libc USDT probes using bpftrace:

# bpftrace -l 'usdt:/lib/x86_64-linux-gnu/libc-2.27.so'

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:setjmp

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:longjmp

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:longjmp_target

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt_arena_max

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_mallopt_arena_test

usdt:/lib/x86_64-linux-gnu/libc-2.27.so:libc:memory_tunable_tcache_max_bytes

[...]

There are different libraries that provide USDT instrumentation, including systemtap-sdt-dev and 
Facebook’s Folly. For an example of adding USDT probes to a C program, see Chapter 2.

5 For example, Arch Linux.
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12.2.6 C One-Liners

These sections show BCC and bpftrace one-liners. Where possible, the same one-liner is imple-
mented using both BCC and bpftrace.

BCC

Count kernel function calls starting with "attach":

funccount 'attach*'

Count function calls starting with "a" from a binary (e.g., /bin/bash):

funccount '/bin/bash:a*'

Count function calls starting with "a" from a library (e.g., libc.so.6):

funccount '/lib/x86_64-linux-gnu/libc.so.6:a*'

Trace a function and its argument (e.g., bash readline()):

trace '/bin/bash:readline "%s", arg1'

Trace a function and its return value (e.g., bash readline()):

trace 'r:/bin/bash:readline "%s", retval'

Trace a library function and its argument (e.g., libc fopen()):

trace '/lib/x86_64-linux-gnu/libc.so.6:fopen "%s", arg1'

Count a library function return value (e.g., libc fopen()):

argdist -C 'r:/lib/x86_64-linux-gnu/libc.so.6:fopen():int:$retval'

Count a user-level stack trace on a function (e.g., bash readline()):

stackcount -U '/bin/bash:readline'

Sample user stacks at 49 Hertz:

profile -U -F 49

bpftrace

Count kernel function calls starting with "attach":

bpftrace -e 'kprobe:attach* { @[probe] = count(); }'

Count function calls starting with "a" from a binary (e.g., /bin/bash):

bpftrace -e 'uprobe:/bin/bash:a* { @[probe] = count(); }'

Count function calls starting with "a" from a library (e.g., libc.so.6):

bpftrace -e 'u:/lib/x86_64-linux-gnu/libc.so.6:a* { @[probe] = count(); }'

Trace a function and its argument (e.g., bash readline()):

bpftrace -e 'u:/bin/bash:readline { printf("prompt: %s\n", str(arg0)); }'
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Trace a function and its return value (e.g., bash readline()):

bpftrace -e 'ur:/bin/bash:readline { printf("read: %s\n", str(retval)); }'

Trace a library function and its argument (e.g., libc fopen()):

bpftrace -e 'u:/lib/x86_64-linux-gnu/libc.so.6:fopen { printf("opening: %s\n",

    str(arg0)); }'

Count a library function return value (e.g., libc fopen()):

bpftrace -e 'ur:/lib/x86_64-linux-gnu/libc.so.6:fopen { @[retval] = count(); }'

Count a user-level stack trace on a function (e.g., bash readline()):

bpftrace -e 'u:/bin/bash:readline { @[ustack] = count(); }'

Sample user stacks at 49 Hertz:

bpftrace -e 'profile:hz:49 { @[ustack] = count(); }'

12.3 Java

Java is a complex target to trace. The Java virtual machine (JVM) executes Java methods by 
compiling them to bytecode and then running them in an interpreter. Then, when they have 
exceeded an execution threshold (-XX:CompileThreshold), they are JIT compiled into native 
instructions. The JVM will also profile method execution and recompile methods to further 
improve their performance, changing their memory location on the fly. The JVM includes 
libraries written in C++ for compilation, thread management, and garbage collection. The most 
commonly used JVM is called HotSpot, originally developed by Sun Microsystems.

The C++ components of the JVM (libjvm) can be instrumented as with compiled languages, 
covered in the previous section. The JVM comes with many USDT probes to make tracing JVM 
internals easier. These USDT probes can also instrument Java methods, but they come with chal-
lenges that will be discussed in this section.

This section begins with a brief look at libjvm C++ tracing and then discusses Java thread names, 
Java method symbols, Java stack traces, Java USDT probes, and Java one-liners. The Java-related 
tools listed in Table 12-2 are also covered.

Table 12-2 Java-Related Tools

Tool Source Target Description

jnistacks Book libjvm Show JNI consumers by object stack trace

profile BCC CPUs Timed sampling of stack traces, including Java methods

offcputime BCC Sched Off-CPU time with stack traces, including Java methods

stackcount BCC Events Show stacks traces for any given event

javastat BCC USDT High-level language operation statistics

javathreads Book USDT Trace thread start and stop events

javacalls BCC/book USDT Count Java method calls
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Tool Source Target Description

javaflow BCC USDT Show Java method code flow

javagc BCC USDT Trace Java garbage collections

javaobjnew BCC USDT Count Java new object allocations

Some of these tools show Java methods, and to show their output on Netflix production servers 
would require redacting internal code, making the examples difficult to follow. Instead, I will 
demonstrate these on an open source Java game: freecol. The software for this game is complex 
and performance sensitive, making it a similar target to Netflix production code.6 The freecol 
website is: http://www.freecol.org.

12.3.1 libjvm Tracing

The JVM main library, libjvm, contains thousands of functions for running Java threads, loading 
classes, compiling methods, allocating memory, garbage collection, and more. These are mostly 
written in C++, and can be traced to provide different views of the running Java program.

As an example, I’ll trace all the Java native interface (JNI) functions using BCC’s funccount(8) 
(bpftrace can also be used):

# funccount '/usr/lib/jvm/java-11-openjdk-amd64/lib/server/libjvm.so:jni_*'

Tracing 235 functions

for "/usr/lib/jvm/java-11-openjdk-amd64/lib/server/libjvm.

so:jni_*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

jni_GetObjectClass                          1

jni_SetLongArrayRegion                      2

jni_GetEnv                                 15

jni_SetLongField                           42

jni_NewWeakGlobalRef                       84

jni_FindClass                             168

jni_GetMethodID                           168

jni_NewObject                             168

jni_GetObjectField                        168

jni_ExceptionOccurred                     719

jni_CallStaticVoidMethod                 1144

jni_ExceptionCheck                       1186

jni_ReleasePrimitiveArrayCritical        3787

jni_GetPrimitiveArrayCritical            3787

Detaching...

6 At the SCaLE 2019 conference, I performed live BPF analysis of another complex Java game: Minecraft. While it has 

a similar analysis complexity to freecol and Netflix production applications, it is less suitable to analyze here as it is not 

open source.

http://www.freecol.org
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This traced functions in libjvm.so matching "jni_*", and found that the most frequent was 
jni_ GetPrimitiveArrayCritical(), called 3552 while tracing. The libjvm.so path was truncated in 
the output to prevent line wrapping.

libjvm Symbols

The libjvm.so that is usually packaged with the JDK has been stripped, which means that the 
local symbol table is not available and these JNI functions cannot be traced without extra steps. 
The status can be checked using file(1):

$ file /usr/lib/jvm/java-11-openjdk-amd64/lib/server/libjvm.orig.so

/usr/lib/jvm/java-11-openjdk-amd64/lib/server/libjvm.orig.so: ELF 64-bit LSB shared 

object, x86-64, version 1 (GNU/Linux), dynamically linked, 

BuildID[sha1]=f304ff36e44ce8a68a377cb07ed045f97aee4c2f, stripped

Possible solutions:

 ■ Build your own libjvm from source and do not use strip(1).

 ■ Install the JDK debuginfo package, if available, which BCC and bpftrace support.

 ■ Install the JDK debuginfo package and use elfutils unstrip(1) to add the symbol table back 
to libjvm.so (see the earlier “Debuginfo” section, under Section 12.2.1).

 ■ Use BTF, when available (covered in Chapter 2). 

For this example, I used the second option.

12.3.2 jnistacks

As an example libjvm tool, jnistacks(8)7 counts stacks that led to the jni_NewObject() call seen in 
the previous output, and others starting with "jni_NewObject". This will reveal which Java code 
paths, including Java methods, led to new JNI objects. Some example output:

# bpftrace --unsafe jnistacks.bt 

Tracing jni_NewObject* calls... Ctrl-C to end.

^C

Running /usr/local/bin/jmaps to create Java symbol files in /tmp...

Fetching maps for all java processes...

Mapping PID 25522 (user bgregg):

wc(1):   8350  26012 518729 /tmp/perf-25522.map

 

[...]

@[

    jni_NewObject+0

    Lsun/awt/X11GraphicsConfig;::pGetBounds+171

7 Origin: I created it for this book on 8-Feb-2019.
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    Ljava/awt/MouseInfo;::getPointerInfo+2048

    Lnet/sf/freecol/client/gui/plaf/FreeColButtonUI;::paint+1648

    Ljavax/swing/plaf/metal/MetalButtonUI;::update+232

    Ljavax/swing/JComponent;::paintComponent+672

    Ljavax/swing/JComponent;::paint+2208

    Ljavax/swing/JComponent;::paintChildren+1196

    Ljavax/swing/JComponent;::paint+2256

    Ljavax/swing/JComponent;::paintChildren+1196

    Ljavax/swing/JComponent;::paint+2256

    Ljavax/swing/JLayeredPane;::paint+2356

    Ljavax/swing/JComponent;::paintChildren+1196

    Ljavax/swing/JComponent;::paint+2256

    Ljavax/swing/JComponent;::paintToOffscreen+836

    Ljavax/swing/BufferStrategyPaintManager;::paint+3244

    Ljavax/swing/RepaintManager;::paint+1260

    Interpreter+5955

    Ljavax/swing/JComponent;::paintImmediately+3564

    Ljavax/swing/RepaintManager$4;::run+1684

    Ljavax/swing/RepaintManager$4;::run+132

    call_stub+138

    JavaCalls::call_helper(JavaValue*, methodHandle const&, JavaCallArguments*, Th...

    JVM_DoPrivileged+1600

    Ljava/security/AccessController;::doPrivileged+216

    Ljavax/swing/RepaintManager;::paintDirtyRegions+4572

    Ljavax/swing/RepaintManager;::paintDirtyRegions+660

    Ljavax/swing/RepaintManager;::prePaintDirtyRegions+1556

    Ljavax/swing/RepaintManager$ProcessingRunnable;::run+572

    Ljava/awt/EventQueue$4;::run+1100

    call_stub+138

    JavaCalls::call_helper(JavaValue*, methodHandle const&, JavaCallArguments*, Th...

]: 232

For brevity, only the last stack has been included here. It can be inspected from bottom to top 
to show the path to that call, or top-down to inspect ancestry. It looks like it begins with 
an event from a queue (EventQueue), then moves through paint methods, and finally calls 
sun.awt.X11GraphicsConfig::pGetBounds(), which is making the JNI call—I would guess because 
it needs to call an X11 graphics library.

Some Interpreter() frames are seen: this is Java executing methods using its interpreter, before 
they cross CompileThreshold and become natively compiled methods.
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It is a little hard to read this stack since the Java symbols are class signatures. bpftrace does not yet 
support demangling them. The c++filt(1) tool does not currently support this version of Java class 
signatures either.8 To show how these should be demangled, this symbol:

Ljavax/swing/RepaintManager;::prePaintDirtyRegions+1556

should be:

javax.swing.RepaintManager::prePaintDirtyRegions()+1556

The source code to jnistacks(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing jni_NewObject* calls... Ctrl-C to end.\n");

}

 

uprobe:/usr/lib/jvm/java-11-openjdk-amd64/lib/server/libjvm.so:jni_NewObject*

{

        @[ustack] = count();

}

 

END

{

        $jmaps = "/usr/local/bin/jmaps";

        printf("\nRunning %s to create Java symbol files in /tmp...\n", $jmaps);

        system("%s", $jmaps);

}

The uprobe traces all calls from libjvm.so that begin with "jni_NewObject*", and frequency 
counts the user stack trace.

The END clause runs an external program, jmaps, which sets up a supplemental Java method 
symbol file in /tmp. This uses the system() function, which requires the --unsafe command line 
argument, since the commands that system() runs cannot be verified by the BPF safety verifier.

The output from jmaps was included in the bpftrace output earlier. It is explained in Section 
12.3.4. jmaps can be run externally and does not need to be in this bpftrace program (you can 
delete the END clause); however, the greater the time between its execution and when the symbol 
dump is used, the greater the chance for stale and mistranslated symbols. By including it in the 
bpftrace END clause, it is executed immediately before the stacks are printed out, minimizing the 
time between its collection and use. 

8 Please feel free to fix bpftrace and c++filt(1).
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12.3.3 Java Thread Names

The JVM allows custom names for each thread. If you try to match "java" as a process name, you 
may find no events since the threads are named something else. For example, using bpftrace:

# bpftrace -e 'profile:hz:99 /comm == "java"/ { @ = count(); }'

Attaching 1 probe...

^C

#

Now matching on the Java process ID and showing thread IDs and the comm built-in:

# bpftrace -e 'profile:hz:99 /pid == 16914/ { @[tid, comm] = count(); }'

Attaching 1 probe...

^C

 

@[16936, VM Periodic Tas]: 1

[...]

@[16931, Sweeper thread]: 4

@[16989, FreeColClient:b]: 4

@[21751, FreeColServer:A]: 7

@[21779, FreeColClient:b]: 18

@[21780, C2 CompilerThre]: 20

@[16944, AWT-XAWT]: 22

@[16930, C1 CompilerThre]: 24

@[16946, AWT-EventQueue-]: 51

@[16929, C2 CompilerThre]: 241

The comm built-in returns the thread (task) name, not the parent process name. This has 
the advantage of providing more context for the thread: the above profile shows that the C2 
ComplierThread (name truncated) was consuming the most CPU while sampling. But this can 
also be confusing, since other tools including top(1) show the parent process name: "java".9

These thread names can be seen in /proc/PID/task/TID/comm. For example, using grep(1) to print 
them with filenames:

# grep . /proc/16914/task/*/comm

/proc/16914/task/16914/comm:java

[...]

/proc/16914/task/16959/comm:GC Thread#7

/proc/16914/task/16963/comm:G1 Conc#1

/proc/16914/task/16964/comm:FreeColClient:W

9 In the future, we may add a bpf_get_current_pcomm() to the kernel to return the process name, which could be used 

in addition to the thread name. In bpftrace, this may be exposed as "pcomm."
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/proc/16914/task/16981/comm:FreeColClient:S

/proc/16914/task/16982/comm:TimerQueue

/proc/16914/task/16983/comm:Java Sound Even

/proc/16914/task/16985/comm:FreeColServer:S

/proc/16914/task/16989/comm:FreeColClient:b

/proc/16914/task/16990/comm:FreeColServer:-

The examples in the following sections match on the Java PID rather than the name "java", and 
now you know why. There is an additional reason: USDT probes that use a semaphore require a 
PID so that bpftrace knows to set the semaphore for that PID. See Section 2.10.1 in Chapter 2 for 
more details on these semaphore probes.

12.3.4 Java Method Symbols

The open source perf-map-agent can be used to create supplemental symbol files containing 
the addresses of the complied Java methods [135]. This is necessary any time you are printing 
stack traces or addresses containing Java methods; otherwise, the addresses will be unknown. 
perf-map-agent uses the convention created by Linux perf(1) of writing a text file in /tmp/perf-PID.
map with the following format [136]:

START SIZE symbolname

Here are some example symbols from a production Java application, where the symbol contains 
"sun" (just as an example):

$ grep sun /tmp/perf-3752.map

[...]

7f9ce1a04f60 80 Lsun/misc/FormattedFloatingDecimal;::getMantissa

7f9ce1a06d60 7e0 Lsun/reflect/GeneratedMethodAccessor579;::invoke

7f9ce1a08de0 80 Lsun/misc/FloatingDecimal$BinaryToASCIIBuffer;::isExceptional

7f9ce1a23fc0 140 Lsun/security/util/Cache;::newSoftMemoryCache

7f9ce1a243c0 120 Lsun/security/util/Cache;::<init>

7f9ce1a2a040 1e80 Lsun/security/util/DerInputBuffer;::getBigInteger

7f9ce1a2ccc0 980 Lsun/security/util/DisabledAlgorithmConstraints;::permits

7f9ce1a36c20 200 Lcom/sun/jersey/core/reflection/ReflectionHelper;::findMethodOnCl...

7f9ce1a3a360 6e0 Lsun/security/util/MemoryCache;::<init>

7f9ce1a523c0 760 Lcom/sun/jersey/core/reflection/AnnotatedMethod;::hasMethodAnnota...

7f9ce1a60b60 860 Lsun/reflect/GeneratedMethodAccessor682;::invoke

7f9ce1a68f20 320 Lsun/nio/ch/EPollSelectorImpl;::wakeup

[...]

perf-map-agent can be run on-demand, and attaches to a live Java process and dumps the symbol 
table. Note that this procedure that can generate some performance overhead during the symbol 
dump, and for large Java applications it can take more than one second of CPU time.
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Since this is a snapshot of the symbol table, it will quickly become out of date as the Java compiler 
recompiles methods, which it may continue to do after the workload seems to have reached a 
steady state. The more time between the symbol snapshot and the BPF tool translating method 
symbols, the more chances for symbols to be stale and mistranslated. For busy production 
workloads with high rates of compilation, I do not trust Java symbol dumps that are more than 
60 seconds old.

Section 12.3.5 provides an example of a stack trace without the perf-map-agent symbol table, 
then with it after jmaps was run.

Automation

You can automate these symbol dumps to minimize the time between their creation and 
use by a BPF tool. The perf-map-agent project contains software to automate this, and I’ve 
published my own program called jmaps [137]. jmaps finds all java processes (based on their 
process name) and dumps their symbol tables. An example of running jmaps on a 48-CPU 
production server:

# time ./jmaps 

Fetching maps for all java processes...

Mapping PID 3495 (user www):

wc(1):  116736  351865 9829226 /tmp/perf-3495.map

 

 

real   0m10.495s

user   0m0.397s

sys    0m0.134s

This output includes various statistics: jmaps runs wc(1) on the final symbol dump, which shows 
it is 116,000 lines (symbols) and 9.4 Mbytes (9829226 bytes). I also ran it through time(1) to show 
how long it took: this is a busy Java application with 174 Gbytes of main memory, and it took 
10.5 seconds to run. (Much of the CPU time involved is not seen by the user and sys statistics, as it 
was in the running JVM.)

For use with BCC, jmaps can be run immediately before the tool. For example:

./jmaps; trace -U '...'

This would invoke the trace(8) command immediately after jmaps completed, minimizing 
the time for symbols to become stale. For tools that collect a summary of stack traces (e.g., 
stackcount(8)), the tool itself could be modified to call jmaps immediately before printing the 
summary.

With bpftrace, jmaps can be run in a BEGIN clause for tools that use printf(), and an END 
clause for those that print map summaries. The previous jnistacks(8) tool was an example of 
the latter.
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Other Techniques and Future Work

With these techniques reducing symbol churn, the perf-map-agent approach has served many 
environments well. However, other approaches may better solve the stale symbol table problem, 
and may be supported by BCC in the future. In summary:

 ■ Timestamped symbol logging: perf(1) supports this, and the software is in the Linux 
source.10 It currently involves always-on logging, which incurs some performance 
overhead. Ideally, it would not require always-on logging but instead could be enabled 
on demand at the start of a trace, and then when disabled it could take a full symbol 
table snapshot. This would allow the symbol state over time to be reconstructed from the 
time-trace + snapshot data, without the performance overhead of always-on logging.11

 ■ Making the stale symbols visible: It should be possible to dump a before and after symbol 
table, find locations that have changed, and then construct a new symbol table with these 
locations flagged as unreliable.

 ■ async-profile: This marries perf_events stack traces with those fetched using Java’s 
AsyncGetCallTrace interface. This approach does not require frame pointers to be enabled.

 ■ Kernel support: This has been discussed in the BPF community. One day we may add 
kernel support to improve such stack trace collection with in-kernel symbol translation. 
This was mentioned in Chapter 2.

 ■ JVM built-in support for symbol dumps: perf-map-agent is a single-threaded module that 
is bounded by the JVMTI interface. If the JVM were to support a way to write /tmp/perf-PID.
map supplemental symbol files directly—say, when it received a signal or another JVMTI 
call—it is likely that such a built-in JVM version could be much more efficient.

This is an evolving space.

12.3.5 Java Stack Traces

By default, Java does not honor the frame pointer register, and that method of stack walking does 
not work. For example, using bpftrace to take timed stack samples of the Java process:

# bpftrace -e 'profile:hz:99 /pid == 3671/ { @[ustack] = count(); }'

Attaching 1 probe...

^C

 

@[

    0x7efcff88a7bd

    0x12f023020020fd4

]: 1

10 In the Linux source, see tools/perf/jvmti. 

11 I have spoken about this to Stephane Eranian, who added the jvmti support to Linux perf(1),but I don’t think he or 

I have had the time to code it.
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@[

    0x7efcff88a736

    0x12f023020020fd4

]: 1

@[

    IndexSet::alloc_block_containing(unsigned int)+75

    PhaseChaitin::interfere_with_live(unsigned int, IndexSet*)+628

    PhaseChaitin::build_ifg_physical(ResourceArea*)+1812

    PhaseChaitin::Register_Allocate()+1834

    Compile::Code_Gen()+628

    Compile::Compile(ciEnv*, C2Compiler*, ciMethod*, int, bool, bool, bool, Direct...

    C2Compiler::compile_method(ciEnv*, ciMethod*, int, DirectiveSet*)+177

    CompileBroker::invoke_compiler_on_method(CompileTask*)+931

    CompileBroker::compiler_thread_loop()+1224

    JavaThread::thread_main_inner()+259

    thread_native_entry(Thread*)+240

    start_thread+219

]: 1

@[

    0x7efcff72fc9e

    0x620000cc4

]: 1

@[

    0x7efcff969ba8

]: 1

[...]

This output includes broken stacks, seen as just one or two hex addresses. The Java compiler has 
used the frame pointer register for local variables, as a compiler optimization. This makes Java 
slightly faster (on register-limited processors), at the expense of breaking this method of stack 
walking as used by debuggers and tracers. Attempting to walk the stack trace usually either fails 
after the first address. The above output includes such failures, and also a working stack that is 
entirely C++: since the code path didn’t enter any Java methods, the frame pointer was intact.

PreserveFramePointer

Since Java 8 update 60, the JVM has provided the -XX:+PreserveFramePointer option to enable 
the frame pointer,12 which fixes frame pointer–based stack traces. Now the same bpftrace one-liner, 
but with Java running with this option (this involved adding the -XX:+PreserveFramePointer 
option to the start script, /usr/games/freecol, in the run_java line):

12 I developed this capability and sent it as a patch to the hotspot-compiler-devs mailing list, with a CPU flame graph to 

explain its value. Zoltán Majó from Oracle rewrote it to be parameterized (PreserveFramePointer) and integrated it in the 

official JDK.
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# bpftrace -e 'profile:hz:99 /pid == 3671/ { @[ustack] = count(); }'

Attaching 1 probe...

^C

[...]

@[

    0x7fdbdf74ba04

    0x7fdbd8be8814

    0x7fdbd8bed0a4

    0x7fdbd8beb874

    0x7fdbd8ca336c

    0x7fdbdf96306c

    0x7fdbdf962504

    0x7fdbdf62fef8

    0x7fdbd8cd85b4

    0x7fdbd8c8e7c4

    0x7fdbdf9e9688

    0x7fdbd8c83114

    0x7fdbd8817184

    0x7fdbdf9e96b8

    0x7fdbd8ce57a4

    0x7fdbd8cbecac

    0x7fdbd8cb232c

    0x7fdbd8cc715c

    0x7fdbd8c846ec

    0x7fdbd8cbb154

    0x7fdbd8c7fdc4

    0x7fdbd7b25849

    JavaCalls::call_helper(JavaValue*, methodHandle const&, JavaCallArguments*, Th...

    JVM_DoPrivileged+1600

    0x7fdbdf77fe18

    0x7fdbd8ccd37c

    0x7fdbd8cd1674

    0x7fdbd8cd0c74

    0x7fdbd8c8783c

    0x7fdbd8bd8fac

    0x7fdbd8b8a7b4

    0x7fdbd8b8c514

]: 1

[...]

These stack traces are now complete, except for the symbol translation.
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Stacks and Symbols

As covered in Section 12.3.4, a supplemental symbol file can be created with the perf-map-agent 
software, automated by jmaps. After taking this step in an END clause:

# bpftrace --unsafe -e 'profile:hz:99 /pid == 4663/ { @[ustack] = count(); } 

    END { system("jmaps"); }'

Attaching 2 probes...

^CFetching maps for all java processes...

Mapping PID 4663 (user bgregg):

wc(1):   6555  20559 388964 /tmp/perf-4663.map

@[

    Lsun/awt/X11/XlibWrapper;::RootWindow+31

    Lsun/awt/X11/XDecoratedPeer;::getLocationOnScreen+3764

    Ljava/awt/Component;::getLocationOnScreen_NoTreeLock+2260

    Ljavax/swing/SwingUtilities;::convertPointFromScreen+1820

    Lnet/sf/freecol/client/gui/plaf/FreeColButtonUI;::paint+1068

    Ljavax/swing/plaf/ComponentUI;::update+1804

    Ljavax/swing/plaf/metal/MetalButtonUI;::update+4276

    Ljavax/swing/JComponent;::paintComponent+612

    Ljavax/swing/JComponent;::paint+2120

    Ljavax/swing/JComponent;::paintChildren+13924

    Ljavax/swing/JComponent;::paint+2168

    Ljavax/swing/JLayeredPane;::paint+2356

    Ljavax/swing/JComponent;::paintChildren+13924

    Ljavax/swing/JComponent;::paint+2168

    Ljavax/swing/JComponent;::paintToOffscreen+836

    Ljavax/swing/BufferStrategyPaintManager;::paint+3244

    Ljavax/swing/RepaintManager;::paint+1260

    Ljavax/swing/JComponent;::_paintImmediately+12636

    Ljavax/swing/JComponent;::paintImmediately+3564

    Ljavax/swing/RepaintManager$4;::run+1684

    Ljavax/swing/RepaintManager$4;::run+132

    call_stub+138

    JavaCalls::call_helper(JavaValue*, methodHandle const&, JavaCallArguments*, Th...

    JVM_DoPrivileged+1600

    Ljava/security/AccessController;::doPrivileged+216

    Ljavax/swing/RepaintManager;::paintDirtyRegions+4572

    Ljavax/swing/RepaintManager;::paintDirtyRegions+660

    Ljavax/swing/RepaintManager;::prePaintDirtyRegions+1556

    Ljavax/swing/RepaintManager$ProcessingRunnable;::run+572

    Ljava/awt/event/InvocationEvent;::dispatch+524

    Ljava/awt/EventQueue;::dispatchEventImpl+6260

    Ljava/awt/EventQueue$4;::run+372

]: 1
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The stack is now complete, and fully translated. This stack looks like it was painting a button in 
the UI (FreeColButtonUI::paint()).

Library Stacks

One last example, this time tracing stack traces from the read(2) syscall:

# bpftrace -e 't:syscalls:sys_enter_read /pid == 4663/ { @[ustack] = count(); }'

Attaching 1 probe...

^C

 

@[

    read+68

    0xc528280f383da96d

]: 11

@[

    read+68

]: 25

These stacks are still broken, even though Java is running with -XX:+PreserveFramePointer. 
The problem is that this syscall has walked into the libc library’s read() function, and that library 
has not been compiled with the frame pointer. The fix is to recompile the library, or use a differ-
ent stack walker once BPF tools support it (e.g., DWARF or LBR).

Fixing stack traces can be a lot of work. But it is worth it: it enables profiling including CPU flame 
graphs and stack trace context from any event.

12.3.6 Java USDT Probes

USDT probes, introduced in Chapter 2, have the advantage of providing a stable interface for 
instrumenting events. There are USDT probes in the JVM for various events, including:

 ■ Virtual machine life cycle

 ■ Thread life cycle

 ■ Class loading

 ■ Garbage collection

 ■ Method compilation

 ■ Monitor

 ■ Application tracking

 ■ Method calls

 ■ Object allocation

 ■ Monitor events
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These are only available if the JDK has been compiled with the --enable-dtrace option, which, 
unfortunately, is not yet commonly enabled for Linux distributions of the JDK. To use these USDT 
probes, you will need to compile the JDK from source with --enable-dtrace, or ask the package 
maintainers to enable this option.

The probes are documented in the “DTrace Probes in HotSpot VM” section of the Java Virtual 
Machine Guide [138], which describes the purpose of each probe and its arguments. Table 12-3 lists 
some selected probes.

Table 12-3 USDT Probes

USDT Group USDT Probe Arguments

hotspot thread__start, 
thread__stop

char *thread_name, u64 thread_name_len, u64 thread_id, 
u64 os_thread_id, bool is_daemon

hotspot class__loaded char *class_name, u64 class_name_len, u64 loader_id, 
bool is_shared

hotspot gc__begin bool is_full_gc 

hotspot gc__end —

hotspot object__alloc int thread_id, char *class_name, u64 class_name_len, 
u64 size

hotspot method__entry,

method__return

int thread_id, char *class_name, int class_name_len, 
char *method_name, int method_name_len, char 
*signature, int signature_len

hotspot_jni AllocObject__entry void *env, void *clazz

See the Java Virtual Machine Guide for the full list.

Java USDT Implementation

As an example of how the USDT probes have been inserted into the JDK, the following shows the 
code behind a hotspot:gc__begin probe. For most people, it is not necessary to learn these details; 
they have been provided just to give some insight into how the probes work.

The probe is defined in src/hotspot/os/posix/dtrace/hotspot.d, a definitions file for the USDT 
probes:

provider hotspot {

[...]

  probe gc__begin(uintptr_t);

From this definition, the probe will be called hotspot:gc__begin. At build time this file is 
compiled to a hotspot.h header file, containing a HOTSPOT_GC_BEGIN macro:

#define HOTSPOT_GC_BEGIN(arg1) \

DTRACE_PROBE1 (hotspot, gc__begin, arg1)
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This macro is then inserted where needed in the JVM code. It has been put in a notify_gc_begin() 
function, so that that function can be called for executing the probe. From src/hotspot/share/gc
/shared/gcVMOperations.cpp:

void VM_GC_Operation::notify_gc_begin(bool full) {

  HOTSPOT_GC_BEGIN(

                   full);

  HS_DTRACE_WORKAROUND_TAIL_CALL_BUG();

}

This function happens to have a DTrace bug workaround macro, which is declared in a dtrace.
hpp header file with the comment "// Work around dtrace tail call bug 6672627 until it is fixed in 
solaris 10".

If the JDK was built without --enable-dtrace, then a dtrace_disabled.hpp header file is used 
instead that returns nothing for these macros.

There is also a HOTSPOT_GC_BEGIN_ENABLED macro used for this probe: this returns true when 
the probe is under live instrumentation by a tracer, and is used by the code to know whether to 
calculate expensive probe arguments if the probe is enabled, or whether those can be skipped if 
no one is currently using the probe.

Listing Java USDT Probes

The tplist(8) tool from BCC can be used to list USDT probes from a file or a running process. On 
the JVM, it lists more than 500 probes. The output has been truncated here to show some interest-
ing probes, and the full path to libjvm.so was elided ("..."):

# tplist -p 6820

/.../libjvm.so hotspot:class__loaded

/.../libjvm.so hotspot:class__unloaded

/.../libjvm.so hs_private:cms__initmark__begin

/.../libjvm.so hs_private:cms__initmark__end

/.../libjvm.so hs_private:cms__remark__begin

/.../libjvm.so hs_private:cms__remark__end

/.../libjvm.so hotspot:method__compile__begin

/.../libjvm.so hotspot:method__compile__end

/.../libjvm.so hotspot:gc__begin

/.../libjvm.so hotspot:gc__end

[...]

/.../libjvm.so hotspot_jni:NewObjectArray__entry

/.../libjvm.so hotspot_jni:NewObjectArray__return

/.../libjvm.so hotspot_jni:NewDirectByteBuffer__entry

/.../libjvm.so hotspot_jni:NewDirectByteBuffer__return

[...]
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/.../libjvm.so hs_private:safepoint__begin

/.../libjvm.so hs_private:safepoint__end

/.../libjvm.so hotspot:object__alloc

/.../libjvm.so hotspot:method__entry

/.../libjvm.so hotspot:method__return

/.../libjvm.so hotspot:monitor__waited

/.../libjvm.so hotspot:monitor__wait

/.../libjvm.so hotspot:thread__stop

/.../libjvm.so hotspot:thread__start

/.../libjvm.so hotspot:vm__init__begin

/.../libjvm.so hotspot:vm__init__end

[...]

The probes are grouped into hotspot and hotspot_jni libraries. This output includes probes for 
class loading, garbage collection, safepoints, object allocation, methods, threads, and more. The 
use of double underscores was to create probe names that DTrace could refer to using a single 
dash, without the problem of putting minus signs in the code.

This example ran tplist(8) on a process; it can also be run on libjvm.so. So can readelf(1) to see the 
USDT probes in the ELF binary notes section (-n):

# readelf -n /.../jdk/lib/server/libjvm.so

 

Displaying notes found in: .note.gnu.build-id

  Owner                 Data size   Description

  GNU                  0x00000014   NT_GNU_BUILD_ID (unique build ID bitstring)

    Build ID: 264bc78da04c17524718c76066c6b535dcc380f2

 

Displaying notes found in: .note.stapsdt

  Owner                 Data size   Description

  stapsdt              0x00000050   NT_STAPSDT (SystemTap probe descriptors)

    Provider: hotspot

    Name: class__loaded

    Location: 0x00000000005d18a1, Base: 0x00000000010bdf68, Semaphore: 

0x0000000000000000

    Arguments: 8@%rdx -4@%eax 8@152(%rdi) 1@%sil

  stapsdt              0x00000050   NT_STAPSDT (SystemTap probe descriptors)

    Provider: hotspot

    Name: class__unloaded

    Location: 0x00000000005d1cba, Base: 0x00000000010bdf68, Semaphore: 

0x0000000000000000

    Arguments: 8@%rdx -4@%eax 8@152(%r12) 1@$0

[...]
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Using Java USDT Probes

These probes can be used in both BCC and bpftrace. Their role and arguments are documented in 
the Java Virtual Machine Guide [138]. For example, using BCC trace(8) to instrument the gc-begin 
probe, and the first arguments which is a boolean to show whether this was a full garbage collec-
tion (1) or partial (0):

# trace -T -p $(pidof java) 'u:/.../libjvm.so:gc__begin "%d", arg1'

TIME     PID     TID     COMM            FUNC             -

09:30:34 11889   11900   VM Thread       gc__begin        0

09:30:34 11889   11900   VM Thread       gc__begin        0

09:30:34 11889   11900   VM Thread       gc__begin        0

09:30:38 11889   11900   VM Thread       gc__begin        1

This show partial GCs at 9:30:34 and a full GC at 9:30:38. Note that the JVM Guide documents 
this argument as args[0], however trace(8) numbers them beginning from 1, so it is arg1.

Here is an example with string arguments: the method__compile__begin probe has the compiler 
name, class name, and method name as the first, third, and fifth arguments. This shows the 
method name using trace(8):

# trace -p $(pidof java) 'u:/.../libjvm.so:method__compile__begin "%s", arg5'

PID     TID     COMM            FUNC             -

12600   12617   C1 CompilerThre method__compile__begin getLocationOnScreen

12600   12617   C1 CompilerThre method__compile__begin getAbsoluteX

12600   12617   C1 CompilerThre method__compile__begin getAbsoluteY

12600   12617   C1 CompilerThre method__compile__begin currentSegmentD

12600   12617   C1 CompilerThre method__compile__begin next

12600   12617   C1 CompilerThre method__compile__begin drawJoin

12600   12616   C2 CompilerThre method__compile__begin needsSyncData

12600   12617   C1 CompilerThre method__compile__begin getMouseInfoPeer

12600   12617   C1 CompilerThre method__compile__begin fillPointWithCoords

12600   12616   C2 CompilerThre method__compile__begin isHeldExclusively

12600   12617   C1 CompilerThre method__compile__begin updateChildGraphicsData

Traceback (most recent call last):

  File "_ctypes/callbacks.c", line 315, in 'calling callback function'

  File "/usr/local/lib/python2.7/dist-packages/bcc/table", line 572, in raw_cb_

    callback(cpu, data, size)

  File "/home/bgregg/Build/bcc/tools/trace", line 567, in print_event

    self._display_function(), msg))

UnicodeDecodeError: 'ascii' codec can't decode byte 0xff in position 10: ordinal not 

in range(128)

12600   12616   C2 CompilerThre method__compile__begin getShowingSubPanel%

[...]
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The first 11 lines show the method name as the last column, followed by a Python error about 
decoding a byte as ASCII. The problem is explained in the Java Virtual Machine Guide for these 
probes: the strings are not NULL terminated, and separate lengths are provided as additional 
arguments. To avoid errors like this, your BPF program needs to use the string length from the probe.

Switching to bpftrace, which can use the length argument in its str() built-in:

# bpftrace -p $(pgrep -n java) -e 'U:/.../libjvm.so:method__compile__begin 
{ printf("compiling: %s\n", str(arg4, arg5)); }'

Attaching 1 probe...

compiling: getDisplayedMnemonicIndex

compiling: getMinimumSize

compiling: getBaseline

compiling: fillParallelogram

compiling: preConcatenate

compiling: last

compiling: nextTile

compiling: next

[...]

There are no more errors in the output, which is now printing the strings with their correct lengths. 
Any BCC or bpftrace program that uses these probes needs to use the length argument in this way.

As another example that leads to the next section, the following frequency counts all USDT 
probes beginning with "method":

# funccount -p $(pidof java) 'u:/.../libjvm.so:method*'

Tracing 4 functions for "u:/.../libjvm.so:method*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

method__compile__begin                   2056

method__compile__end                     2056

Detaching...

While tracing, the method_compile__begin and method__compile__end probes fired 2056 times. 
However, the method__entry and method__return probes were not traced. The reason is that they 
are part of the extended USDT probe set, covered next.

Extended Java USDT Probes

Some JVM USDT probes are not used by default: method entry and return, object-alloc, and Java 
monitor probes. This is because they are very high-frequency events, and their not-enabled over-
head incurs a high performance penalty—likely exceeding 10%. This is just the overhead of making 
them available, and when they are not in use! When they are enabled and used, the overhead will 
slow down Java much more, possibly making Java run 10 times slower (10x) or more.

So that Java users do not pay a penalty for something they never use, these probes are not available 
unless Java is run with an option: -XX:+ExtendedDTraceProbes.
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The following shows the Java game freecol with ExtendedDTraceProbes enabled, and frequency 
counting USDT probes beginning with "method" as before:

# funccount -p $(pidof java) 'u:/.../libjvm.so:method*'

Tracing 4 functions for "u:/.../libjvm.so:method*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

method__compile__begin                    357

method__compile__end                      357

method__return                       26762077

method__entry                        26762245

Detaching...

While tracing, there were 26 million calls to method__entry and method__return. The game also 
suffered extreme lag, taking around three seconds for any input to be processed. As a measure of 
before and after, the freecol start to splash screen time was 2 seconds by default, and 22 seconds 
when instrumenting these method probes: a slowdown of over 10x.

These high-frequency probes may be more useful for troubleshooting software issues in a lab 
environment than for the analysis of production workloads.

The sections that follow show different BPF tools for Java observability, now that I have covered 
the necessary background: libjvm, Java symbols, Java stack traces, and Java USDT probes.

12.3.7 profile

The BCC profile(8) tool was covered in Chapter 6. There are many profilers for Java. The 
advantage of BCC profile(8) is that it is efficient, frequency counting stacks in kernel context, 
and complete, showing user- and kernel-mode CPU consumers. Time spent in native libraries 
(e.g., libc), libjvm, Java methods, and the kernel can all be seen via profile(8).

Java Prerequisites

For profile(8) to see the full stack, Java must be running with -XX:+PreserveFramePointer, and 
a supplemental symbol file must be created using perf-map-agent, which profile(8) will make use of 
(see  Section 12.3.4). To translate frames in libjvm.so, symbol tables are needed. These requirements 
were discussed in earlier sections.

CPU Flame Graph

This is an example of using profile(8) with Java to generate a mixed-mode CPU flame graph.

This Java program, freecol, is running with -XX:+PreserveFramePointer, and with an ELF 
symbol table for its libjvm functions. The jmaps utility, introduced earlier, is run immediately 
before the profile(8) tool to minimize symbol churn. This profiles at the default rate (99 Hertz), 
with kernel annotations on symbol names (-a), folded format for flame graphs (-f), for PID 
16914 (-p) and for 10 seconds:

# jmaps; profile -afp 16914 10 > out.profile01.txt

Fetching maps for all java processes...

Mapping PID 16914 (user bgregg):
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wc(1):   9078  28222 572219 /tmp/perf-16914.map

# wc out.profile01.txt

   215   3347 153742 out.profile01.txt

# cat out.profile01.txt

AWT-EventQueue-;start_thread;thread_native_entry(Thread*);Thread::call... 1

[...]

The wc(1) utility is used by jmaps to show the size of the symbol file, which is 9078 lines long, 
and therefore contains 9078 symbols. I’ve also used wc(1) to show the size of the profile file. The 
output of profile(8) in folded mode is one line per stack, semicolon-delimited frames, and a count 
for the number of times the stack was seen. wc(1) reported 215 lines in the profile output, so there 
were 215 unique stack traces collected.

This profile output can be converted into a flame graph using my open source FlameGraph soft-
ware [37] and the command:

flamegraph.pl --color=java --hash < out.profile01.txt > out.profile02.svg

The --color=java option uses a palette that colors code types with different hues: java is green, 
C++ is yellow, user-level native is red, and kernel-level native is orange. The --hash option uses 
consistent coloring based on the function names rather than random saturation levels.

The resulting flame graph SVG file can be opened in a web browser. Figure 12-2 shows a screenshot.

Figure 12-2 CPU flame graph

http://flamegraph.pl
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A mouse-over of each frame provides additional details, such as the percentage it was present in 
the profile. These showed that 55% of CPU time was in the C2 compiler, shown by the large wide 
tower (vertical column of rectangles) in the middle of C++ frames. Only 29% of time was spent in 
the Java freecol game, shown by the towers containing Java frames. 

By clicking on the Java tower on the left, the Java frames can be zoomed in, as shown in Figure 12-3.

Figure 12-3 CPU flame graph zoomed

Now details of the Java freecol game and its methods can be read. Most of this time is in paint 
methods, and where exactly the CPU cycles were spent can be seen as the top edge in the flame graph.

If you were interested in improving the performance of freecol, this CPU flame graph has already 
provided two targets from an initial glance. You could look through the JVM tunables to see what 
options would cause the C2 compiler to consume less CPU time.13 The paint methods can also be 
inspected in detail, with the freecol source, to look for more efficient techniques.

For long profiles (say, over two minutes), the time between the symbol table dump and when 
stack traces are collected can be so large that the C2 compiler has moved some methods in the 
meantime, so the symbol table is no longer accurate. This may be noticed by a code path that 
makes no sense at all, since some frames are mistranslated. A much more common issue with 
unexpected code paths is inlining.

13 Compiler tunables include -XX:CompileThreshold, -XX:MaxInlineSize, -XX:InlineSmallCode, 

and -XX:FreqInlineSize. Using -Xcomp to pre-compile methods may also be an illustrative experiment.
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Inlining

Since this is visualizing the stack trace that is running on-CPU, it is showing Java methods after 
inlining. JVM inlining can be aggressive, inlining as much as two frames out of every three. This 
can make browsing the flame graph a little confusing, as methods appear to be directly calling 
other methods that they do not in the source code.

There is a solution to inlining: the perf-map-agent software supports dumping a symbol table that 
includes all inlined symbols. jmaps will use this capability with -u:

# jmaps -u; profile -afp 16914 10 > out.profile03.txt

Fetching maps for all java processes...

Mapping PID 16914 (user bgregg):

wc(1):    75467   227393 11443144 /tmp/perf-16914.map

The number of symbols has greatly increased, from the 9078 seen earlier to over 75,000. 
(I ran jmaps again, with -u, and it was still around 9000.)

Figure 12-4 shows a flame graph generated with the uninlined frame information.

Figure 12-4 CPU flame graph with uninlining
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The tower in the freecol stack is now much higher, as it includes uninlined frames (colored aqua).

Including inlined frames slows down the jmaps step as it must dump many more symbols, as well 
as the flame graph generation to parse and include them. In practice, this is sometimes necessary. 
Often, a flame graph without inlined frames is sufficient to solve issues because it still shows the 
overall code flow, while bearing in mind that some methods are not visible.

bpftrace

The profile(8) functionality can also be implemented in bpftrace, which has an advantage: the 
jmaps tool can be run in an END clause using the system() function. For example, the following 
one-liner was shown in an earlier section:

bpftrace --unsafe -e 'profile:hz:99 /pid == 4663/ { @[ustack] = count(); } END 

{ system("jmaps"); }'

This samples user-level stack traces for PID 4663 at 99 Hertz across all CPUs that PID is running 
on. It can be adjusted to include the kernel stack and the process name by making the map 
@[kstack, ustack, comm].

12.3.8 offcputime

The BCC offcputime(8) tool was covered in Chapter 6. It collects stacks on CPU blocking events 
(scheduler context switches), and sums the time spent blocked by stack trace. For offcputime(8) to 
work with Java, see Section 12.3.7.

For example, using offcputime(8) on the Java freecol game:

# jmaps; offcputime -p 16914 10

Fetching maps for all java processes...

Mapping PID 16914 (user bgregg):

wc(1):   9863  30589 623898 /tmp/perf-16914.map

 

Tracing off-CPU time (us) of PID 16914 by user + kernel stack for 10 secs.

^C

 

[...]

 

    finish_task_switch

    schedule

    futex_wait_queue_me

    futex_wait

    do_futex

    SyS_futex

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    __lll_lock_wait
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    SafepointSynchronize::block(JavaThread*, bool)

    SafepointMechanism::block_if_requested_slow(JavaThread*)

    JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread*)

    JavaThread::check_special_condition_for_native_trans(JavaThread*)

    Lsun/awt/X11/XlibWrapper;::XEventsQueued

    Lsun/awt/X11/XToolkit;::run

    Interpreter

    Interpreter

    call_stub

    JavaCalls::call_helper(JavaValue*, methodHandle const&, JavaCallArguments*, Th...

    JavaCalls::call_virtual(JavaValue*, Handle, Klass*, Symbol*, Symbol*, Thread*)

    thread_entry(JavaThread*, Thread*)

    JavaThread::thread_main_inner()

    Thread::call_run()

    thread_native_entry(Thread*)

    start_thread

    -                AWT-XAWT (16944)

        5171

 

[...]

 

    finish_task_switch

    schedule

    io_schedule

    bit_wait_io

    __wait_on_bit

    out_of_line_wait_on_bit

    __wait_on_buffer

    ext4_find_entry

    ext4_unlink

    vfs_unlink

    do_unlinkat

    sys_unlink

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    __GI_unlink

    Ljava/io/UnixFileSystem;::delete0

    Ljava/io/File;::delete

    Interpreter

    Interpreter

    Interpreter

    Lnet/sf/freecol/client/control/InGameInputHandler;::handle

    Interpreter
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    Lnet/sf/freecol/client/control/InGameInputHandler;::handle

    Lnet/sf/freecol/common/networking/Connection;::handle

    Interpreter

    call_stub

    JavaCalls::call_helper(JavaValue*, methodHandle const&, JavaCallArguments*, Th...

    JavaCalls::call_virtual(JavaValue*, Handle, Klass*, Symbol*, Symbol*, Thread*)

    thread_entry(JavaThread*, Thread*)

    JavaThread::thread_main_inner()

    Thread::call_run()

    thread_native_entry(Thread*)

    start_thread

    -                FreeColClient:b (8168)

        7679

 

[...]

 

    finish_task_switch

    schedule

    futex_wait_queue_me

    futex_wait

    do_futex

    SyS_futex

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    pthread_cond_timedwait@@GLIBC_2.3.2

    __pthread_cond_timedwait

    os::PlatformEvent::park(long) [clone .part.12]

    Monitor::IWait(Thread*, long)

    Monitor::wait(bool, long, bool)

    WatcherThread::sleep() const

    WatcherThread::run()

    thread_native_entry(Thread*)

    start_thread

    __clone

    -                VM Periodic Tas (22029)

        9970501

The output has been truncated as it was many pages long. A few interesting stacks have been 
included here to discuss.

The first shows Java blocking for 5.1 milliseconds (5717 us) in total on a safepoint, which was 
handled using a futex lock in the kernel. These times are totals, so this 5.1 ms may include multi-
ple blocking events.
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The last stack shows Java blocking in pthread_cond_timedwait() for almost the same 10-second 
duration of the trace: it is a WatcherThread waiting for work, with the thread name "VM Periodic 
Tas" (truncated to appear without the "k"). For some application types that use many threads that 
wait for work, the output of offcputime(8) can be dominated by these waiting stacks, and you 
need to read past them to find the stacks that matter: the wait events during application requests.

The second stack surprised me: it shows Java blocked on an unlink(2) syscall, to delete a file, 
which ended up blocking on disk I/O (io_schedule() etc). What files is freecol deleting during 
gameplay? A bpftrace one-liner to show unlink(2) with the pathname deleted reveals:

# bpftrace -e 't:syscalls:sys_enter_unlink /pid == 16914/ { printf("%s\n",

    str(args->pathname)); }'

Attaching 1 probe...

/home/bgregg/.local/share/freecol/save/autosave/Autosave-before

/home/bgregg/.local/share/freecol/save/autosave/Autosave-before

[...]

freecol is deleting auto savegames.

libpthread Stacks

Since this may be a commonly seen issue, here is how the final stack looked with a default install 
of libpthread:

    finish_task_switch

    schedule

    futex_wait_queue_me

    futex_wait

    do_futex

    SyS_futex

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    pthread_cond_timedwait

    -                VM Periodic Tas (16936)

        9934452

The stack ends at pthread_cond_timedwait(). The current default libpthread that is shipped with 
many Linux distributions has been compiled with -fomit-frame-pointer, a compiler optimization 
that breaks frame pointer–based stack walking. My earlier example used my own compiled version of 
libpthread with -fno-omit-frame-pointer. See Section 2.4 in Chapter 2 for more about this.

Off-CPU Time Flame Graphs

The output of offcputime(8) was hundreds of pages long. To navigate it more quickly, it can be used 
to generate off-CPU time flame graphs. Here is an example using the FlameGraph software [37]:

# jmaps; offcputime -fp 16914 10 > out.offcpu01.txt

Fetching maps for all java processes...

Mapping PID 16914 (user bgregg):
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wc(1):  12015  37080 768710 /tmp/perf-16914.map

# flamegraph.pl --color=java --bgcolor=blue --hash --countname=us --width=800 \

    --title="Off-CPU Time Flame Graph" < out.offcpu01.txt > out.offcpu01.svg

This generated the graph shown in Figure 12-5.

Figure 12-5 Off-CPU time flame graph

The top of this flame graph has been truncated. The width of each frame is relative to the 
blocked off-CPU time. Since offcputime(8) is showing stack traces with their total blocking time 
in microseconds, the --countname=us option to flamegraph.pl is used to match this, which 
changes the information shown for mouse-overs. The background color was also changed to 
blue, as a visual reminder that this is showing blocking stacks. (CPU flame graphs use a yellow 
background.)

This flame graph is dominated by threads waiting for events. Since the thread name is included as 
the first frame in the stack, it groups threads with the same name together as a tower. Each tower 
in this flame graph shows waiting threads.

But I am not interested in threads waiting for events: I am interested in threads waiting during 
an application request. This application was freecol, and using the flame graph search feature for 
"freecol" highlighted those frames in magenta (see Figure 12-6).

http://flamegraph.pl
http://flamegraph.pl
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Figure 12-6 Off-CPU time flame graph, searching for application code

Using click-to-zoom on the narrow third tower showed code during the game (see Figure 12-7).

Figure 12-7 Off-CPU time flame graph zoomed
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The graph shown in Figure 12-7 shows the blocking paths in freecol, providing targets to begin 
optimizing. Many of these frames were still "Interpreter", as the JVM had not executed that 
method enough times to hit the CompileThreshold.

Sometimes the application code paths can be so narrow due to other waiting threads that they 
are elided from the flame graph. One approach to solve this is to use grep(1) at the command line 
to include only the stacks of interest. For example, matching those containing the application 
name "freecol":

# grep freecol out.offcpu01.txt | flamegraph.pl ... > out.offcpu01.svg

It is one of the benefits of the folded-file format for stack traces: it can be easily manipulated as 
needed before generation as a flame graph.

12.3.9 stackcount

The BCC stackcount(8) tool, covered in Chapter 4, can collect stacks on any event, which can 
show the libjvm and Java method code paths that led to the event. For stackcount(8) to work with 
Java, see Section 12.3.7.

For example, using stackcount(8) to show user-level page faults, which is a measure of main 
memory growth:

# stackcount -p 16914 t:exceptions:page_fault_user

Tracing 1 functions for "t:exceptions:page_fault_user"... Hit Ctrl-C to end.

^C

 

[...]

 

  do_page_fault

  page_fault

  Interpreter

  Lnet/sf/freecol/server/control/ChangeSet$MoveChange;::consequences

  [unknown]

  [unknown]

  Lnet/sf/freecol/server/control/InGameController;::move

  Lnet/sf/freecol/common/networking/MoveMessage;::handle

  Lnet/sf/freecol/server/control/InGameInputHandler$37;::handle

  Lnet/sf/freecol/common/networking/CurrentPlayerNetworkRequestHandler;::handle

  [unknown]

  Lnet/sf/freecol/server/ai/AIMessage;::ask

  Lnet/sf/freecol/server/ai/AIMessage;::askHandling

  Lnet/sf/freecol/server/ai/AIUnit;::move

  Lnet/sf/freecol/server/ai/mission/Mission;::moveRandomly

  Lnet/sf/freecol/server/ai/mission/UnitWanderHostileMission;::doMission

  Ljava/awt/Container;::isParentOf

http://flamegraph.pl
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  [unknown]

  Lcom/sun/org/apache/xerces/internal/impl/XMLEntityScanner;::reset

  call_stub

  JavaCalls::call_helper(JavaValue*, methodHandle const&, JavaCallArguments*, Thre...

  JavaCalls::call_virtual(JavaValue*, Handle, Klass*, Symbol*, Symbol*, Thread*)

  thread_entry(JavaThread*, Thread*)

  JavaThread::thread_main_inner()

  Thread::call_run()

  thread_native_entry(Thread*)

  start_thread

    4

 

[...]

 

  do_page_fault

  page_fault

  __memset_avx2_erms

  PhaseChaitin::Register_Allocate()

  Compile::Code_Gen()

  Compile::Compile(ciEnv*, C2Compiler*, ciMethod*, int, bool, bool, bool, Directiv...

  C2Compiler::compile_method(ciEnv*, ciMethod*, int, DirectiveSet*)

  CompileBroker::invoke_compiler_on_method(CompileTask*)

  CompileBroker::compiler_thread_loop()

  JavaThread::thread_main_inner()

  Thread::call_run()

  thread_native_entry(Thread*)

  start_thread

    414

Although many stacks were shown, only two have been included here. The first shows a page fault 
through freecol ai code; the second is from the JVM C2 compiler generating code.

Page Fault Flame Graph

A flame graph can be generated from the stack count output to aid browsing. For example, using 
the FlameGraph software [37]:

# jmaps; stackcount -p 16914 t:exceptions:page_fault_user > out.faults01.txt

Fetching maps for all java processes...

Mapping PID 16914 (user bgregg):

wc(1):  12015  37080 768710 /tmp/perf-16914.map

# stackcollapse.pl < out.faults01.txt | flamegraph.pl --width=800 \

    --color=java --bgcolor=green --title="Page Fault Flame Graph" \

    --countname=pages > out.faults01.svg

http://stackcollapse.pl
http://flamegraph.pl
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This generated the truncated graph shown in Figure 12-8.

Figure 12-8 Page fault flame graph

A green background color was used as a visual reminder that this is a memory-related flame 
graph. In this screenshot I have zoomed to inspect the freecol code paths. This provides one view 
of memory growth by the application, and each path can be quantified (by its width) and studied 
from the flame graph.

bpftrace

The stackcount(8) functionality can be implemented as a bpftrace one-liner, for example:

# bpftrace --unsafe -e 't:exceptions:page_fault_user /pid == 16914/ {

    @[kstack, ustack, comm] = count(); } END { system("jmaps"); }'

Attaching 1 probe...

^C

[...]

 

@[

    do_page_fault+204

    page_fault+69

, 
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    0x7fa369bbef2d

    PhaseChaitin::Register_Allocate()+930

    Compile::Code_Gen()+650

    Compile::Compile(ciEnv*, C2Compiler*, ciMethod*, int, bool, bool, bool, Direct...

    C2Compiler::compile_method(ciEnv*, ciMethod*, int, DirectiveSet*)+188

    CompileBroker::invoke_compiler_on_method(CompileTask*)+1016

    CompileBroker::compiler_thread_loop()+1352

    JavaThread::thread_main_inner()+446

    Thread::call_run()+376

    thread_native_entry(Thread*)+238

    start_thread+219

, C2 CompilerThre]: 3

 

[...]

The execution of the jmaps for Java method symbols has been moved to the END clause, so it is 
run immediately before the stacks are printed out.

12.3.10 javastat

javastat(8)14 is a BCC tool that provides high-level Java and JVM statistics. It refreshes the screen 
similarly to top(1), unless the -C option is used. For example, running javastat(8) for the Java 
freecol game:

# javastat -C

Tracing... Output every 1 secs. Hit Ctrl-C to end

 

14:16:56 loadavg: 0.57 3.66 3.93 2/3152 32738

 

PID    CMDLINE              METHOD/s   GC/s   OBJNEW/s   CLOAD/s  EXC/s  THR/s

32447  /home/bgregg/Build/o 0          0      0          0        169    0

 

14:16:58 loadavg: 0.57 3.66 3.93 8/3157 32744

 

PID    CMDLINE              METHOD/s   GC/s   OBJNEW/s   CLOAD/s  EXC/s  THR/s

32447  /home/bgregg/Build/o 0          1      0          730      522    6

 

14:16:59 loadavg: 0.69 3.64 3.92 2/3155 32747

 

PID    CMDLINE              METHOD/s   GC/s   OBJNEW/s   CLOAD/s  EXC/s  THR/s

32447  /home/bgregg/Build/o 0          2      0          8        484    1

[...]

14 Origin: This was created by Sasha Goldshtein as a wrapper to his ustat(8) tool from 26-Oct-2016. I created a similar 

tool for DTrace called j_stat.d on 9-Sep-2007 to demonstrate these new probes in the DTraceToolkit.
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The columns show:

 ■ PID: Process ID.

 ■ CMDLINE: Process command line. This example has truncated the path to my custom JDK 
build.

 ■ METHOD/s: Method calls per second.

 ■ GC/s: Garbage collection events per second.

 ■ OBJNEW/s: New objects per second.

 ■ CLOAD/s: Class loads per second.

 ■ EXC/s: Exceptions per second.

 ■ THR/s: Threads created per second.

This works by using Java USDT probes. The METHOD/s and OBJNEW/s columns will be zero 
unless the -XX:+ExtendedDTraceProbes option is used, which activates those probes, however, 
with a high overhead cost. As described earlier, an application may run 10 times slower with these 
probes enabled and instrumented.

Command line usage:

javastat [options] [interval [count]]

Options include:

 ■ -C: Don’t clear the screen

javastat(8) is really a wrapper to a ustat(8) tool in BCC’s tools/lib directory, which handles 
multiple languages.

12.3.11 javathreads

javathreads(8)15 is a bpftrace tool to show thread start and stop events. Example output for when 
freecol was started:

# javathreads.bt

Attaching 3 probes...

TIME                     PID/TID   -- THREAD

14:15:00   3892/3904  => Reference Handler

14:15:00   3892/3905  => Finalizer

14:15:00   3892/3906  => Signal Dispatcher

14:15:00   3892/3907  => C2 CompilerThread0

14:15:00   3892/3908  => C1 CompilerThread0

14:15:00   3892/3909  => Sweeper thread

14:15:00   3892/3910  => Common-Cleaner

15 Origin: I created this for this book on 19-Feb-2019.
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14:15:01   3892/3911  => C2 CompilerThread1

14:15:01   3892/3912  => Service Thread

14:15:01   3892/3911  <= C2 CompilerThread1

14:15:01   3892/3917  => Java2D Disposer

14:15:01   3892/3918  => AWT-XAWT

14:15:02   3892/3925  => AWT-Shutdown

14:15:02   3892/3926  => AWT-EventQueue-0

14:15:02   3892/3934  => C2 CompilerThread1

14:15:02   3892/3935  => FreeColClient:-Resource loader

14:15:02   3892/3937  => FreeColClient:Worker

14:15:02   3892/3935  <= FreeColClient:-Resource loader

14:15:02   3892/3938  => FreeColClient:-Resource loader

14:15:02   3892/3939  => Image Fetcher 0

14:15:03   3892/3952  => FreeColClient:-Resource loader

[...]

This shows the creation and execution of threads and also some that were short-lived and 
finished during tracing ("<=").

This tool uses the Java USDT probes. Since the rate of thread creation is low, the overhead of this 
tool should be negligible. Source code:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("%-20s  %6s/%-5s -- %s\n", "TIME", "PID", "TID", "THREAD");

}

 

usdt:/.../libjvm.so:hotspot:thread__start

{

        time("%H:%M:%S ");

        printf("%6d/%-5d => %s\n", pid, tid, str(arg0, arg1));

}

 

usdt:/.../libjvm.so:hotspot:thread__stop

{

        time("%H:%M:%S ");

        printf("%6d/%-5d <= %s\n", pid, tid, str(arg0, arg1));

}

The path to the library has been truncated in this source ("...") but needs to be replaced with your 
libjvm.so library path. In the future bpftrace should also support specifying the library name 
without the path, so that this can simply be written as "libjvm.so".
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12.3.12 javacalls

javacalls(8)16 is a BCC and bpftrace tool that counts Java method calls. For example:

# javacalls 16914

Tracing calls in process 16914 (language: java)... Ctrl-C to quit.

If you do not see any results, make sure you ran java with option -XX:

+ExtendedDTraceProbes

^C

METHOD                                              # CALLS

net/sf/freecol/client/control/InGameInputHandler$$Lambda$443.get$Lambda        1

sun/awt/X11/XWindowPeer.getLocalHostname                  1

net/sf/freecol/common/model/UnitType.getSpace             1

[...]

java/awt/image/Raster.getHeight                      129668

java/lang/Math.min                                   177085

jdk/internal/misc/Unsafe.getByte                     201047

java/lang/AbstractStringBuilder.putStringAt          252367

java/lang/AbstractStringBuilder.getCoder             252367

java/lang/String.getBytes                            253184

java/lang/AbstractStringBuilder.append               258491

java/lang/Object.<init>                              258601

java/lang/AbstractStringBuilder.ensureCapacityInternal   258611

java/lang/String.isLatin1                            265540

java/lang/StringBuilder.append                       286637

jdk/internal/misc/Unsafe.putInt                      361628

java/lang/System.arraycopy                           399118

java/lang/String.length                              427242

jdk/internal/misc/Unsafe.getInt                      700137

java/lang/String.coder                              1268791

The most frequent method while tracing was java/lang/String.code(), which was called 1,268,791 
times.

This works by using Java USDT probes with -XX:+ExtendedDTraceProbes, which comes with 
a high performance cost. As described earlier, an application may run 10 times slower with this 
enabled and instrumented.

BCC

Command line usage:

javacalls [options] pid [interval]

16 Origin: this was created by Sasha Goldshtein as a wrapper to his ucalls(8) tool from 19-Oct-2016, and I wrote the 

bpftrace version for this book on 11-Mar-2019. I created a similar tool for DTrace called j_calls.d on 9-Sep-2007.



ptg30854589

566 Chapter 12  Languages

Options include:

 ■ -L: Show method latency instead of call counts

 ■ -m: Report method latency as milliseconds

javacalls(8) is really a wrapper to a ucalls(8) tool in BCC’s tools/lib directory, which handles multi-
ple languages.

bpftrace

Here is the source for the bpftrace version:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing Java method calls. Ctrl-C to end.\n");

}

 

usdt:/.../libjvm.so:hotspot:method__entry

{

        @[str(arg1, arg2), str(arg3, arg4)] = count();

}

The key to the map is two strings: the class and then the method name. As with the BCC version, 
this tool will only work with -XX:+ExtendedDTraceProbes, and an expected high performance 
cost. Also note that the full path to libjvm.so has been truncated, and will need to be replaced by 
your libjvm.so path.

12.3.13 javaflow

javaflow(8)17 is a BCC tool that shows the flow of Java method calls. For example:

# javaflow 16914

Tracing method calls in java process 16914... Ctrl-C to quit.

CPU PID  TID  TIME(us) METHOD

5   622  652  0.135    -> sun/awt/SunToolkit-.awtUnlock

5   622  652  0.135      -> java/util/concurrent/locks/ReentrantLock.unlock

5   622  652  0.135        -> java/util/concurrent/locks/AbstractQueuedSynchronize...

5   622  652  0.135          -> java/util/concurrent/locks/ReentrantLock$Sync.tryR...

17 Origin: This was created by Sasha Goldshtein as a wrapper to his uflow(8) tool from 27-Oct-2016. I created a similar 

tool for DTrace called j_flowtime.d on 9-Sep-2007.
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5   622  652  0.135            -> java/util/concurrent/locks/AbstractQueuedSynchro...

5   622  652  0.135            <- java/util/concurrent/locks/AbstractQueuedSynchro...

5   622  652  0.135            -> java/lang/Thread.currentThread

5   622  652  0.135            <- java/lang/Thread.currentThread

5   622  652  0.135            -> java/util/concurrent/locks/AbstractOwnableSynchr...

5   622  652  0.135            <- java/util/concurrent/locks/AbstractOwnableSynchr...

5   622  652  0.135            -> java/util/concurrent/locks/AbstractQueuedSynchro...

5   622  652  0.135            <- java/util/concurrent/locks/AbstractQueuedSynchro...

5   622  652  0.135          <- java/util/concurrent/locks/ReentrantLock$Sync.tryR...

5   622  652  0.135        <- java/util/concurrent/locks/AbstractQueuedSynchronize...

5   622  652  0.135      <- java/util/concurrent/locks/ReentrantLock.unlock

5   622  652  0.135    <- sun/awt/SunToolkit-.awtUnlock

5   622  652  0.135  <- sun/awt/X11/XToolkit.getNextTaskTime

5   622  652  0.135  -> sun/awt/X11/XToolkit.waitForEvents

5   622  652  0.135    -> sun/awt/SunToolkit-.awtUnlock

[...]

1   622  654  4.159                              <- sun/java2d/SunGraphics2D.drawI...

Possibly lost 9 samples

1   622  654  4.159                              <- net/sf/freecol/common/model/Ti...

Possibly lost 9 samples

1   622  654  4.159                                  <- java/util/AbstractList.<init>

[...]

This shows the code flow: which method calls which other method and so on. Each child method 
call increases the indentation in the METHOD column.

This works by using Java USDT probes with -XX:+ExtendedDTraceProbes, which comes 
with a high performance cost. As described earlier, an application may run 10 times slower 
with this enabled and instrumented. This example also shows "Possibly lost 9 samples" 
messages: BPF tooling cannot keep up with the events, and as a safety valve is letting 
events be missed rather than blocking the application, while informing the user that this 
happened.

Command line usage:

javaflow [options] pid

Options include:

 ■ -M METHOD: Only trace calls to methods with this prefix

javaflow(8) is really a wrapper to a uflow(8) tool in BCC’s tools/lib directory, which handles 
multiple languages.
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12.3.14 javagc

javagc(8)18 is a BCC tool that shows JVM garbage collection events. For example:

# javagc 16914

Tracing garbage collections in java process 16914... Ctrl-C to quit.

START    TIME(us) DESCRIPTION

5.586    1330.00  None

5.586    1339.00  None

5.586    1340.00  None

5.586    1342.00  None

5.586    1344.00  None

[...]

This shows when the GC event occurred as an offset from when javagc(8) began running (the 
START column, which is in seconds), and then the duration of the GC event (TIME column, in 
microseconds).

This works by using the standard Java USDT probes.

Command line usage:

javagc [options] pid

Options include:

 ■ -m: Report times in milliseconds

javagc(8) is really a wrapper to a ugc(8) tool in BCC’s tools/lib directory, which handles multiple 
languages.

12.3.15 javaobjnew

javaobjnew(8)19 is a BCC tool that counts Java object allocations. For example, running it with 
-C 10 to show the top 10 allocations by count:

# javaobjnew 25102

Tracing allocations in process 25102 (language: java)... Ctrl-C to quit.

^C

NAME/TYPE                      # ALLOCS      # BYTES

java/util/ArrayList              429837            0

[Ljava/lang/Object;              434980            0

java/util/ArrayList$Itr          458430            0

java/util/HashMap$KeySet         545194            0

18 Origin: This was created by Sasha Goldshtein as a wrapper to his ugc(8) tool from 19-Oct-2016.

19 Origin: This was created by Sasha Goldshtein as a wrapper to his uobjnew(8) tool from 25-Oct-2016. I created a 

similar tool for DTrace called j_objnew.d on 9-Sep-2007.
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[B                               550624            0

java/util/HashMap$Node           572089            0

net/sf/freecol/common/model/Map$Position   663721            0

java/util/HashSet                696829            0

java/util/HashMap                714633            0

java/util/HashMap$KeyIterator    904244            0

The most frequent new object while tracing was java/util/HashMap$KeyIterator, which was 
created 904,244 times. The BYTES column is zero as it is not supported for this language type.

This works by using Java USDT probes with -XX:+ExtendedDTraceProbes, which comes with 
a high performance cost. As described earlier, an application may run 10 times slower with this 
enabled and instrumented.

Command line usage:

javaobjnew [options] pid [interval]

Options include:

 ■ -C TOP_COUNT: Show this many objects by count

 ■ -S TOP_SIZE: Show this many objects by size

javaobjnew(8) is really a wrapper to a uobjnew(8) tool in BCC’s tools/lib directory, which handles 
multiple languages (some of which do support the BYTES column).

12.3.16 Java One-Liners

These sections show BCC and bpftrace one-liners. Where possible, the same one-liner is implemented 
using both BCC and bpftrace.

BCC

Count JNI events beginning with "jni_Call":

funccount '/.../libjvm.so:jni_Call*'

Count Java method events:

funccount -p $(pidof java) 'u:/.../libjvm.so:method*'

Profile Java stack traces and thread names at 49 Hertz:

profile -p $(pidof java) -UF 49

bpftrace

Count JNI events beginning with "jni_Call":

bpftrace -e 'u:/.../libjvm.so:jni_Call* { @[probe] = count(); }'
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Count Java method events:

bpftrace -e 'usdt:/.../libjvm.so:method* { @[probe] = count(); }'

Profile Java stack traces and thread names at 49 Hertz:

bpftrace -e 'profile:hz:49 /execname == "java"/ { @[ustack, comm] = count(); }'

Trace method compilation:

bpftrace -p $(pgrep -n java) -e 'U:/.../libjvm.so:method__compile__begin { 

    printf("compiling: %s\n", str(arg4, arg5)); }'

Trace class loads:

bpftrace -p $(pgrep -n java) -e 'U:/.../libjvm.so:class__loaded {

    printf("loaded: %s\n", str(arg0, arg1)); }'

Count object allocation (needs ExtendedDTraceProbes):

bpftrace -p $(pgrep -n java) -e 'U:/.../libjvm.so:object__alloc {

    @[str(arg1, arg2)] = count(); }'

12.4 Bash Shell

The final language example is an interpreted language: the bash shell. Interpreted languages are 
typically much slower than compiled languages, due to the way they run their own functions to 
execute each step of the target program. This makes them an uncommon target for performance 
analysis, since other languages are usually chosen for performance sensitive workloads. BPF 
tracing may be performed, but the need may be for troubleshooting program errors, rather than 
finding performance wins.

How interpreted languages are traced is different for each language, reflecting the internals of 
the software that runs them. This section will show how I approach an unknown interpreted 
language and determine out how to trace it for the first time: an approach that you can follow for 
other languages.

The bash readline() function was traced earlier in this chapter, but I have not traced bash in depth 
beyond that. For this chapter I will determine out how to trace bash function and built-in calls, 
and develop some tools to automate this. See Table 12-4.

Table 12-4 Bash Shell–Related Tools

Tool Source Target Description

bashfunc Book bash Trace bash function calls

bashfunclat Book bash Trace bash function call latency

As mentioned earlier, how bash is built affects the location of symbols. Here is bash on Ubuntu, 
showing its dynamic library usage with the ldd(1) tool:
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$ ldd /bin/bash

        linux-vdso.so.1 (0x00007ffe7197b000)

        libtinfo.so.5 => /lib/x86_64-linux-gnu/libtinfo.so.5 (0x00007f08aeb86000)

        libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f08ae982000)

        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f08ae591000)

        /lib64/ld-linux-x86-64.so.2 (0x00007f08af0ca000)

The targets to trace are /bin/bash and the shared libraries listed above. As an example of how this 
can cause differences: on many distributions, bash uses a readline() function from /bin/bash, but 
some distributions link to libreadline and call it from there.

Preparation

In preparation, I have built the bash software with these steps:

CFLAGS=-fno-omit-frame-pointer ./configure 

make

This honors the frame pointer register so that I can use frame pointer–based stack walking during 
my analysis. It also provides a bash binary with local symbol tables, unlike /bin/bash which has 
been stripped.

Sample Program

The following is a sample bash program I wrote for analysis, welcome.sh:

#!/home/bgregg/Build/bash-4.4.18/bash

 

function welcome {

        echo "Hello, World!"

        echo "Hello, World!"

        echo "Hello, World!"

}

 

welcome

welcome

welcome

welcome

welcome

welcome

welcome

sleep 60

This begins with the path to my bash build. The program makes seven calls to the "welcome" 
function, where each function call makes three calls to echo(1) (which I expect is a bash built-in) 
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for a total of 21 echo(1) calls. I choose these numbers hoping they stand out more from other 
activity while tracing.20

12.4.1 Function Counts

Using funccount(8) from BCC, I will guess that the function call is executed by an internal bash 
function containing the string "func":

# funccount 'p:/home/bgregg/Build/bash-4.4.18/bash:*func*'

Tracing 55 functions for "p:/home/bgregg/Build/bash-4.4.18/bash:*func*"... Hit Ctrl-C 

to end.

^C

FUNC                                    COUNT

copy_function_def                           1

sv_funcnest                                 1

dispose_function_def                        1

bind_function                               1

make_function_def                           1

execute_intern_function                     1

init_funcname_var                           1

bind_function_def                           2

dispose_function_def_contents               2

map_over_funcs                              2

copy_function_def_contents                  2

make_func_export_array                      2

restore_funcarray_state                     7

execute_function                            7

find_function_def                           9

make_funcname_visible                      14

execute_builtin_or_function                28

get_funcname                               29

find_function                              31

Detaching... 

While tracing, I ran the welcome.sh program, which calls the welcome function seven times. 
It looks like my guess was good: there were seven calls to restore_funcarray_state() and 
execute_function(), and the latter sounds most promising, just based on its name.

The name execute_function() gives me an idea: what other calls begin with "execute_"? Checking 
using funccount(8):

20 It would make this example too long, but I often use 23, a prime number.
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# funccount 'p:/home/bgregg/Build/bash-4.4.18/bash:execute_*'

Tracing 29 functions for "p:/home/bgregg/Build/bash-4.4.18/bash:execute_*"... Hit 

Ctrl-C to end.

^C

FUNC                                    COUNT

execute_env_file                            1

execute_intern_function                     1

execute_disk_command                        1

execute_function                            7

execute_connection                         14

execute_builtin                            21

execute_command                            23

execute_builtin_or_function                28

execute_simple_command                     29

execute_command_internal                   51

Detaching...

Some more numbers stand out: this has execute_builtin() 21 times, which equals the calls to 
echo(1). If I want to trace echo(1) and other built-ins, I can start by tracing execute_builtin(). 
There was also execute_command() called 23 times, which may be the echo(1) calls plus the 
function declaration plus the sleep(1) call. It sounds like another promising function to trace for 
understanding bash.

12.4.2 Function Argument Tracing (bashfunc.bt)

Now to trace execute_function() call. I want to know which function, hoping it will show that 
it is executing the "welcome" function. Hopefully this can be found from one of the arguments. 
The bash source has (execute_cmd.c):

static int

execute_function (var, words, flags, fds_to_close, async, subshell)

     SHELL_VAR *var;

     WORD_LIST *words;

     int flags;

     struct fd_bitmap *fds_to_close;

     int async, subshell;

{

  int return_val, result;

[...]

  if (subshell == 0)

    {

      begin_unwind_frame ("function_calling");

      push_context (var->name, subshell, temporary_env);

[...]



ptg30854589

574 Chapter 12  Languages

Browsing this source suggests that var, the first argument, is the executed function. It is of type 
SHELL_VAR, which is struct variable, from variables.h:

typedef struct variable {

  char *name;                   /* Symbol that the user types. */

  char *value;                  /* Value that is returned. */

  char *exportstr;              /* String for the environment. */

  sh_var_value_func_t *dynamic_value;   /* Function called to return a ‘dynamic'

                                   value for a variable, like $SECONDS

                                   or $RANDOM. */

  sh_var_assign_func_t *assign_func; /* Function called when this ‘special

                                   variable' is assigned a value in

                                   bind_variable. */

  int attributes;               /* export, readonly, array, invisible... */

  int context;                  /* Which context this variable belongs to. */

} SHELL_VAR;

char *’s are straightforward to trace. Let’s look at the name member using bpftrace. I can either 
#include this header or declare the struct directly in bpftrace. I’ll show both, starting with the 
header include. Here is bashfunc.bt21:

#!/usr/local/bin/bpftrace

 

#include "/home/bgregg/Build/bash-4.4.18/variables.h"

 

uprobe:/home/bgregg/Build/bash-4.4.18/bash:execute_function

{

        $var = (struct variable *)arg0;

        printf("function: %s\n", str($var->name));

}

Running this:

# ./bashfunc.bt 

/home/bgregg/Build/bash-4.4.18/variables.h:24:10: fatal error: 'stdc.h' file not found

Attaching 1 probe...

function: welcome

function: welcome

function: welcome

function: welcome

21 Origin: I created this for this book on 9-Feb-2019.
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function: welcome

function: welcome

function: welcome

^C

It worked! I can now trace bash function calls.

It also printed a warning about another missing header file. I’ll show the second approach, where 
the struct is declared directly. In fact, since I only need the first member, I’ll only declare that 
member and call it a “partial” struct.

#!/usr/local/bin/bpftrace

 

struct variable_partial {

        char *name;

};

 

uprobe:/home/bgregg/Build/bash-4.4.18/bash:execute_function

{

        $var = (struct variable_partial *)arg0;

        printf("function: %s\n", str($var->name));

}

Using this version of bashfunc.bt:

# ./bashfunc.bt 

Attaching 1 probe...

function: welcome

function: welcome

function: welcome

function: welcome

function: welcome

function: welcome

function: welcome

^C

This works, without the error or the requirement for the bash source.

Note that uprobes are an unstable interface, so this program may stop working if bash changes its 
function names and arguments.
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12.4.3 Function Latency (bashfunclat.bt)

Now that I can trace function calls, let’s look at function latency: the duration of the function.

To start with, I modified welcome.sh so that the function was:

function welcome {

        echo "Hello, World!"

        sleep 0.3

}

This provides a known latency for the function call: 0.3 seconds.

Now I’ll check whether execute_function() waits for the shell function to complete by measuring 
its latency using funclatency(8) from BCC:

# funclatency -m /home/bgregg/Build/bash-4.4.18/bash:execute_function

Tracing 1 functions for "/home/bgregg/Build/bash-4.4.18/bash:execute_function"... Hit 

Ctrl-C to end.

^C

 

Function = execute_function [7083]

     msecs               : count     distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 0        |                                        |

         4 -> 7          : 0        |                                        |

         8 -> 15         : 0        |                                        |

        16 -> 31         : 0        |                                        |

        32 -> 63         : 0        |                                        |

        64 -> 127        : 0        |                                        |

       128 -> 255        : 0        |                                        |

       256 -> 511        : 7        |****************************************|

Detaching...

Its latency was in the 256 to 511 millisecond bucket, which matches our known latency. It looks 
like I can simply time this function for the latency of the shell function.

Turning this into a tool so that shell function latency can be printed as a histogram by shell 
function name, bashfunclat.bt22:

#!/usr/local/bin/bpftrace

 

struct variable_partial {

        char *name;

};

 

22 Origin: I created this for this book on 9-Feb-2019.
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BEGIN

{

        printf("Tracing bash function latency, Ctrl-C to end.\n");

}

 

uprobe:/home/bgregg/Build/bash-4.4.18/bash:execute_function

{

        $var = (struct variable_partial *)arg0;

        @name[tid] = $var->name;

        @start[tid] = nsecs;

}

 

uretprobe:/home/bgregg/Build/bash-4.4.18/bash:execute_function

/@start[tid]/

{

        @ms[str(@name[tid])] = hist((nsecs - @start[tid]) / 1000000);

        delete(@name[tid]);

        delete(@start[tid]);

}

This saves a pointer to a function name, and the timestamp, on the uprobe. On the uretprobe, it 
fetches the name and starting timestamp for creating the histogram.

Output:

# ./bashfunclat.bt 

Attaching 3 probes...

Tracing bash function latency, Ctrl-C to end.

^C

 

@ms[welcome]: 

[256, 512)             7 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

This works. This latency could be presented in different ways if desired: per event or as a linear 
histogram.

12.4.4 /bin/bash

Up until now, tracing bash has been so straightforward that I started worrying it wasn’t represen-
tative of the gritty debugging adventures one normally encounters when tracing interpreters. But 
I needed to look no further than the default /bin/bash to share such an adventure. These earlier 
tools have instrumented my own build of bash, which includes the local symbol table and the 
frame pointer. I modified them and the welcome.sh program to use /bin/bash instead, and found 
that the BPF tools I wrote no longer worked.
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Back to square one. Here’s counting function calls containing "func" in /bin/bash:

# funccount 'p:/bin/bash:*func*'

Tracing 36 functions for "p:/bin/bash:*func*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

copy_function_def                           1

sv_funcnest                                 1

dispose_function_def                        1

bind_function                               1

make_function_def                           1

bind_function_def                           2

dispose_function_def_contents               2

map_over_funcs                              2

copy_function_def_contents                  2

restore_funcarray_state                     7

find_function_def                           9

make_funcname_visible                      14

find_function                              32

Detaching...

The execute_function() symbol is no longer available. Here’s readelf(1) and file(1) highlighting 
our problem:

$ readelf --syms --dyn-syms /home/bgregg/Build/bash-4.4.18/bash

[...]

  2324: 000000000004cc49   195 FUNC    GLOBAL DEFAULT   14 restore_funcarray_state

[...]

   298: 000000000004cd0c  2326 FUNC    LOCAL  DEFAULT   14 execute_function

[...]

$ file /bin/bash /home/bgregg/Build/bash-4.4.18/bash

/bin/bash:                           ELF 64-bit LSB ..., stripped

/home/bgregg/Build/bash-4.4.18/bash: ELF 64-bit LSB ..., not stripped

execute_function() is a local symbol, and those have been stripped from /bin/bash to reduce the 
file size.

Fortunately, I still have a lead: the funccount(8) output showed that restore_funcarray_state() was 
called seven times, equal to our known workload. To check if it is related to function calls, I’ll use 
stackcount(8) from BCC to show its stack trace:
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# stackcount -P /bin/bash:restore_funcarray_state

Tracing 1 functions for "/bin/bash:restore_funcarray_state"... Hit Ctrl-C to end.

^C

  [unknown]

  [unknown]

    welcome0.sh [8514]

    7

 

Detaching...

The stack is broken: I wanted to include this to show what /bin/bash stacks look like by default. 
It’s one of the reasons I compiled my own bash with frame pointers. Switching to that to investi-
gate this function:

# stackcount -P /home/bgregg/Build/bash-4.4.18/bash:restore_funcarray_state

Tracing 1 functions for

"/home/bgregg/Build/bash-4.4.18/bash:restore_funcarray_state"... Hit Ctrl-C to end.

^C

  restore_funcarray_state

  without_interrupts

  run_unwind_frame

  execute_function

  execute_builtin_or_function

  execute_simple_command

  execute_command_internal

  execute_command

  reader_loop

  main

  __libc_start_main

  [unknown]

    welcome.sh [8542]

    7

 

Detaching...

This shows that restore_funcarray_state() is called as a child of execute_function(), so it is indeed 
related to the shell function calls.

The function is in execute_cmd.c:

void

restore_funcarray_state (fa)

     struct func_array_state *fa;

{
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The struct func_array_state is, from execute_cmd.h:

struct func_array_state

  {

    ARRAY *funcname_a;

    SHELL_VAR *funcname_v;

    ARRAY *source_a;

    SHELL_VAR *source_v;

    ARRAY *lineno_a;

    SHELL_VAR *lineno_v;

  };

This seems to be used for creating local contexts while running functions. I guessed that 
funcname_a or funcname_v might contain what I am after: the name of the called function, so I 
declared structs and printed strings in a similar fashion to my earlier bashfunc.bt to find it. But I 
was unable to find the function name.

There are many paths forward, and given that I am using an unstable interface (uprobes), there 
isn’t necessarily a right way to do this (the right way is USDT). Example next steps:

 ■ funccount(8) also showed a few other interesting sounding functions: find_function(), 
make_funcname_visible(), and find_function_def(), all called more times than our known 
function. Perhaps the function name is in their arguments or return value, and I can cache 
it for later lookup in  restore_funcarray_state().

 ■ stackcount(8) showed higher level functions: Are any of these symbols still present in 
/bin/bash, and may they provide another path to tracing the function?

Here’s a look at that second approach, by checking what "execute" functions are visible in /bin/bash:

# funccount '/bin/bash:execute_*'

Tracing 4 functions for "/bin/bash:execute_*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

execute_command                            24

execute_command_internal                   52

Detaching...

The source code shows that execute_command() runs many things, including functions, and they 
can be identified by a type number from the first argument. This would be one path forward: filter 
for just function calls, and explore the other arguments to find the function name.
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I found the first approach worked immediately: find_function() has the name as its argument, 
which I could cache for later lookup. An updated bashfunc.bt:

#!/usr/local/bin/bpftrace

 

uprobe:/bin/bash:find_function_def

{

        @currfunc[tid] = arg0;

}

 

uprobe:/bin/bash:restore_funcarray_state

{

        printf("function: %s\n", str(@currfunc[tid]));

        delete(@currfunc[tid]);

}

Output:

# bashfunc.bt

Attaching 2 probes...

function: welcome

function: welcome

function: welcome

function: welcome

function: welcome

function: welcome

function: welcome

While this works, this is tied to this version of bash and its implementation.

12.4.5 /bin/bash USDT

For tracing bash not to run into issues as bash internals change, USDT probes can be added to the 
code. For example, imagine USDT probes with the following format:

bash:execute__function__entry(char *name, char **args, char *file, int linenum)

bash:execute__function__return(char *name, int retval, char *file, int linenum)

Then printing the function name, as well as showing the arguments, return value, latency, source 
file, and line number, would all be straightforward.
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As an example of instrumenting the shell, USDT probes were added to the Bourne shell for Solaris 
systems [139], with the following probe definitions:

provider sh {

    probe function-entry(file, function, lineno);

    probe function-return(file, function, rval);

    probe builtin-entry(file, function, lineno);

    probe builtin-return(file, function, rval);

    probe command-entry(file, function, lineno);

    probe command-return(file, function, rval);

    probe script-start(file);

    probe script-done(file, rval);

    probe subshell-entry(file, childpid);

    probe subshell-return(file, rval);

    probe line(file, lineno);

    probe variable-set(file, variable, value);

    probe variable-unset(file, variable);

};

This should also provide ideas for future bash shell USDT probes.

12.4.6 bash One-Liners

These sections show BCC and bpftrace one-liners for bash shell analysis.

BCC

Count execution types (requires symbols):

funccount '/bin/bash:execute_*'

Trace interactive command input:

trace 'r:/bin/bash:readline "%s", retval'

bpftrace

Count execution types (requires symbols):

bpftrace -e 'uprobe:/bin/bash:execute_* { @[probe] = count(); }'

Trace interactive command input:

bpftrace -e 'ur:/bin/bash:readline { printf("read: %s\n", str(retval)); }'
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12.5 Other Languages

There are many more programming languages and runtimes, and more will be created. To 
instrument them, first identify how they are implemented: are they compiled into binaries, JIT 
compiled, interpreted, or some combination of these? Studying the relevant previous section on 
C (for compiled), Java (for JIT compiled), and the bash shell (for interpreted), will give you a head 
start on the approach and challenges involved.

On this book’s website [140] I will link to articles about using BPF to instrument other languages 
as they are written. The following are tips for other languages that I have previously traced using 
BPF: JavaScript (Node.js), C++, and GoLang.

12.5.1 JavaScript (Node.js)

BPF tracing is similar to Java. The current runtime used by Node.js is v8, developed by Google for 
the Chrome web browser. v8 can run Java functions interpreted, or JIT compile them for native 
execution. The runtime also manages memory, and has a garbage collection routine.

The following summarizes Node.js USDT probes, stack walking, symbols, and function tracing.

USDT Probes

There are built-in USDT probes and a node-usdt library for adding dynamic USDT probes to 
the JavaScript code [141]. The Linux distribution currently does not ship with the USDT probes 
enabled: to use them, you must recompile Node.js from source with the --with-dtrace option. 
Example steps:

$ wget https://nodejs.org/dist/v12.4.0/node-v12.4.0.tar.gz

$ tar xf node-v12.4.0.tar.gz

$ cd node-v12.4.0

$ ./configure --with-dtrace

$ make 

Listing USDT probes using bpftrace:

# bpftrace -l 'usdt:/usr/local/bin/node'

usdt:/usr/local/bin/node:node:gc__start

usdt:/usr/local/bin/node:node:gc__done

usdt:/usr/local/bin/node:node:http__server__response

usdt:/usr/local/bin/node:node:net__stream__end

usdt:/usr/local/bin/node:node:net__server__connection

usdt:/usr/local/bin/node:node:http__client__response

usdt:/usr/local/bin/node:node:http__client__request

usdt:/usr/local/bin/node:node:http__server__request

[...]
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These show USDT probes for garbage collection, HTTP requests, and network events. For more on 
Node.js USDT, see my blog post “Linux bcc/BPF Node.js USDT Tracing” [142].

Stack Walking

Stack walking should work (frame pointer based), although translation of JITed JavaScript func-
tions into symbols requires an extra step (explained next).

Symbols

As with Java, supplemental symbol files in /tmp are required to translate JITted function addresses 
to function names. If you are using Node.js v10.x or above, there are two ways to create these 
symbol files:

 1. Using the v8 flags --perf_basic_prof or --perf_basic_prof_only_functions. These 
will create a rolling symbol logs that are continually updated, unlike Java which dumps 
snapshots of the symbol state. Since these rolling logs cannot be disabled while the process 
is running, over time it can lead to extremely large map files (Gbytes) containing mostly 
stale symbols.

 2. The linux-perf module [143], which is a combination of how the flags work and how Java’s 
perf-map-agent work: it will capture all functions on the heap and write to the map file, 
and then it will continue to write to the file while new functions are compiled. It’s possible 
to start capturing new functions at any time. This method is recommended.

Using both approaches, I’ve needed to post-process the supplemental symbol files to remove stale 
entries.23

Another recommended flag is --interpreted-frames-native-stack (also available for 
Node.js v10.x and above). With this flag, Linux perf and BPF tools will be able to translate 
interpreted JavaScript functions into their actual names (instead of showing "Interpreter" frames 
on the stack).

A common use case that requires external Node.js symbols is CPU profiling and CPU flame graphs 
[144]. These can be generated using perf(1) or BPF tools.

Function Tracing

There are not currently USDT probes for tracing JavaScript functions, and due to V8’s architec-
ture, it would be challenging to add them. Even if someone adds it, as I discussed with Java, the 
overhead can be extreme: slowing applications by 10x while in use.

The JavaScript functions are visible in user-level stack traces, which can be collected on kernel 
events such as timed sampling, disk I/O, TCP events, and context switches. This provides many 
insights into Node.js performance, including with function context, without the penalty of 
tracing functions directly.

23 You might assume that tools like perf(1) would read the symbol file backwards and use the most recent mappings 

for a given address. I’ve found that not to be the case, and an older mapping is used when there is a newer mapping in 

the log. This is why I’ve needed to post process these logs: only retaining the newest mappings for addresses.
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12.5.2 C++

C++ can be traced much the same as C, with uprobes for function entry, uprobes for function 
returns, and frame pointer–based stacks if the compiler has honored the frame pointer. There are 
a couple of differences:

 ■ Symbol names are C++ signatures. Instead of ClassLoader::initialize(), that symbol may 
be traced as _ZN11ClassLoader10initializeEv. The BCC and bpftrace tools use demangling 
when printing symbols.

 ■ Function arguments may not accommodate the processor ABI for support of objects and 
the self object.

Counting function calls, measuring function latency, and showing stack traces should all be 
straightforward. It may help to use wildcards to match function names from their signatures 
when possible (e.g., uprobe:/path:*ClassLoader*initialize*).

Inspecting arguments will require more work. Sometimes they are simply offset by one to accom-
modate a self object as the first argument. Strings are often not native C strings, but C++ objects, 
and can’t simply be dereferenced. Objects need structs to be declared in the BPF program so that 
BPF can dereference members.

This may all become much easier with BTF, introduced in Chapter 2, which may provide the 
locations of arguments and object members. 

12.5.3 Golang

Golang compiles to binaries, and tracing them is similar to tracing C binaries, but there are some 
important differences with its function calling conventions, goroutines, and dynamic stack 
management. Due to the latter, uretprobes are currently unsafe to use on Golang as they can 
crash the target program. There are also differences between the compiler used: by default Go gc 
emits statically linked binaries, whereas gccgo emits dynamically linked binaries. These topics are 
discussed in the following sections.

Note that there are already other ways to debug and trace Go programs that you should be aware 
of, including gdb’s Go runtime support, the go execution tracer [145], and GODEBUG with 
gctrace and schedtrace.

Stack Walking and Symbols

Both Go gc and gccgo honor the frame pointer by default (Go since version 1.7) and include 
symbols in the resulting binaries. This means that stack traces that include Go functions can 
always be collected, from either user- or kernel-level events, and profiling via timed sampling will 
also work immediately.
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Function Entry Tracing

The entry to functions can be traced with uprobes. For example, using bpftrace to count function 
calls that begin with "fmt" in a "Hello, World!" Golang program named "hello", which was 
compiled using Go gc:

# bpftrace -e 'uprobe:/home/bgregg/hello:fmt* { @[probe] = count(); }'

Attaching 42 probes...

^C

 

@[uprobe:/home/bgregg/hello:fmt.(*fmt).fmt_s]: 1

@[uprobe:/home/bgregg/hello:fmt.newPrinter]: 1

@[uprobe:/home/bgregg/hello:fmt.Fprintln]: 1

@[uprobe:/home/bgregg/hello:fmt.(*pp).fmtString]: 1

@[uprobe:/home/bgregg/hello:fmt.glob..func1]: 1

@[uprobe:/home/bgregg/hello:fmt.(*pp).printArg]: 1

@[uprobe:/home/bgregg/hello:fmt.(*pp).free]: 1

@[uprobe:/home/bgregg/hello:fmt.Println]: 1

@[uprobe:/home/bgregg/hello:fmt.init]: 1

@[uprobe:/home/bgregg/hello:fmt.(*pp).doPrintln]: 1

@[uprobe:/home/bgregg/hello:fmt.(*fmt).padString]: 1

@[uprobe:/home/bgregg/hello:fmt.(*fmt).truncate]: 1

While tracing I ran the hello program once. The output shows that various fmt functions were 
called once, including fmt.Println(), which I suspect is printing "Hello, World!".

Now counting the same functions from a gccgo binary. In this case, those functions are in the 
libgo library, and that location must be traced:

# bpftrace -e 'uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt* { @[probe] = 
count(); }'

Attaching 143 probes...

^C

 

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.fmt.clearflags]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.fmt.truncate]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.Println]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.newPrinter]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.buffer.WriteByte]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.pp.printArg]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.pp.fmtString]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.fmt.fmt_s]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.pp.free]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.fmt.init]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.buffer.WriteString]: 1
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@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.pp.doPrintln]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.fmt.padString]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt.Fprintln]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt..import]: 1

@[uprobe:/usr/lib/x86_64-linux-gnu/libgo.so.13:fmt..go..func1]: 1

The naming convention for the functions is a little different. The output includes fmt.Println(), as 
seen earlier.

These functions can also be counted using the funccount(8) tool from BCC. The commands for 
the Go gc version and then the gccgo version are:

funccount '/home/bgregg/hello:fmt.*'

funccount 'go:fmt.*'

Function Entry Arguments

Go’s gc compiler and gccgo use different function-calling conventions: gccgo uses the standard 
AMD64 ABI, whereas Go’s gc compiler uses Plan 9’s stack-passing approach. This means that 
fetching function arguments differs: with gccgo, the usual approach (e.g., via bpftrace arg0...
argN) will work, but it will not with Go gc: custom code will need to be used to get it from the 
stack (see [146][147]). 

For example, consider the add(x int, y int) function from the Golang tutorial [148], which is 
called with the arguments 42 and 13. To instrument its arguments on a gccgo binary:

# bpftrace -e 'uprobe:/home/bgregg/func:main*add { printf("%d %d\n", arg0, arg1); }'

Attaching 1 probe...

42 13

The arg0 and arg1 built-ins work. Note that I needed to compile using gccgo -O0 so that the add() 
function wasn’t inlined by the compiler.

Now instrumenting its arguments on a Go gc binary:

# bpftrace -e 'uprobe:/home/bgregg/Lang/go/func:main*add { printf("%d %d\n", 

    *(reg("sp") + 8), *(reg("sp") + 16)); }'

Attaching 1 probe...

42 13

This time the arguments needed to be read from their offsets the stack, accessed via reg("sp"). 
A future version of bpftrace may support these as aliases, such as sarg0, sarg1 [149], short for 
"stack argument". Note that I needed to compile this using go build -gcflags '-N -l' ... so 
that the add() function wasn’t inlined by the compiler.
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Function Returns

Unfortunately, uretprobe tracing is not safe with the current implementation of uretprobes. 
The Go compiler can modify the stack at any time, unaware that the kernel has added a uretprobe 
trampoline handler to the stack.24 This can cause memory corruption: once the uretprobe is 
deactivated, the kernel will return those bytes to normal, however, those bytes may now contain 
other Golang program data, and will be corrupted by the kernel. This can cause Golang to crash 
(if you are lucky) or continue running with corrupt data (if you are unlucky).

Gianluca Borello has experimented with a solution that involves using uprobes on the return 
locations of functions rather than uretprobes. This involves disassembling a function to find the 
return points, and then placing a uretprobe on them (see [150]).

Another problem is goroutines: these can be scheduled between different OS threads as they are 
running, so the usual method of timing function latency by using a timestamp keyed on thread 
ID (e.g., with bpftrace: @start[tid] = nsecs) is no longer reliable.

USDT

The Salp library provides dynamic USDT probes via libstapsdt [151]. This allows static probe 
points to be placed in your Go code.

12.6 Summary

Whether your programming language of interest is compiled, JIT compiled, or interpreted, there 
is likely a way to analyze it with BPF. In this chapter I discussed these three types and then showed 
how to trace an example from each: C, Java, and the bash shell. With tracing it should be possible 
to examine their function or method calls, examining their arguments and return value, function 
or method latency, and also show stack traces from other events. Tips for other languages were 
also included for JavaScript, C++, and Golang.

24 Thanks Suresh Kumar for helping explain this problem; see his comment in [146].
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The applications running on a system can be studied directly using static and dynamic 
instrumentation, which provides important application context for understanding other events. 
Previous chapters studied applications via the resources they used: CPUs, memory, disks, and 
networking. This resource-based approach can solve many issues, but it may miss clues from the 
application, such as details about the requests it is currently servicing. To complete your observa-
tion of an application, you need both resource analysis and application-level analysis. With BPF 
tracing, this allows you to study the flow from the application and its code and context, through 
libraries and syscalls, kernel services, and device drivers.

I will use the MySQL database as a case study in this chapter. MySQL database queries are an 
example of application context. Imagine taking the various ways disk I/O was instrumented in 
Chapter 9 and adding query string as another dimension for breakdowns. Now you can see which 
queries are causing the most disk I/O, and their latencies and patterns, and so on.

Learning Objectives:

 ■ Discover issues of excessive process and thread creation

 ■ Solve CPU usage issues using profi ling

 ■ Solve off -CPU blocking issues using scheduler tracing

 ■ Solve excessive I/O issues by showing I/O stack traces

 ■ Trace application context using USDT probes and uprobes

 ■ Investigate code paths responsible for lock contention

 ■ Identify explicit application sleeps

This chapter is supplemental to the prior resource-oriented chapters; for full visibility of the soft-
ware stack also see:

 ■ Chapter 6, “CPUs”

 ■ Chapter 7, “Memory”

 ■ Chapter 8, “File Systems”

 ■ Chapter 9, “Disk I/O”

 ■ Chapter 10, “Networking”

Application behavior not covered in those other chapters is covered here: fetching application 
context, thread management, signals, locks, and sleeps.
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13.1 Background

An application may be a service that responds to network requests, a program that responds to 
direct user input, or a program that runs on data from a database or a filesystem, or something 
else. Applications are typically implemented as user-mode software, visible as processes, and 
access resources via the syscall interface (or memory mappings).

13.1.1 Application Fundamentals

Thread Management

For multi-CPU systems, the operating system construct called threads allows applications to 
efficiently execute work across multiple CPUs in parallel, while sharing the same process address 
space. Applications can make use of threads in different ways, including:

 ■ Service thread pool: A pool of threads services network requests, where each thread 
services one client connection and request at a time. If the request needs to block on a 
resource, including synchronization locks with other threads in the pool, the thread sleeps. 
The application may have a fixed number of threads in the pool, or it may increase and 
decrease them based on client demand. An example is the MySQL database server.

 ■ CPU thread pool: The application creates one thread per CPU for executing work across 
them. This is commonly used for batch processing applications, which process one or more 
queued requests, continuously and without further input, whether that takes minutes, 
hours, or days. An example is video encoding.

 ■ Event worker thread: Either one or multiple threads are event workers, processing a queue 
of client work until the queue is empty and the thread sleeps. Each thread services multiple 
clients concurrently, piecemeal: executing a part of a client request until it blocks on a later 
event, then switching to the next client event in the queue to process. Applications that use 
a single event worker thread may avoid the need for synchronization locks, but they risk 
becoming single-threaded bound under load. Node.js uses a single event worker thread and 
benefits from it in this way.

 ■ Staged Event-Driven Architecture (SEDA): SEDA decomposes application requests into 
stages, which may be processed by pools of one or more threads [Welsh 01].

Locks

Locks are synchronization primitives for multi-threaded applications; they police access to 
memory from threads running in parallel, similarly to the way traffic lights regulate access to an 
intersection. And, like traffic lights, they can halt the flow of traffic, causing wait time (latency). 
On Linux, applications commonly use locks via the libpthread library, which provides different 
lock types, including mutual exclusive (mutex), reader-writer, and spin locks.

While locks protect memory, they can become a source of performance issues. Lock contention 
occurs when where multiple threads are competing to use one lock, and blocking while waiting 
their turn.
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Sleeps

Applications can deliberately sleep for a period of time. Such sleeps may make sense (depending 
on the reason), or may not—and may therefore be opportunities for optimization. If you have 
ever developed applications there may be a time where you’ve thought: “I’ll just add a sleep one 
second here so that the events I’m waiting for have completed; we can delete this sleep later and 
make it event-based.” However, that later never comes, and now end users are wondering why 
some requests take at least one second.

13.1.2 Application Example: MySQL Server

As an example application to analyze in this chapter, I’ll look at the MySQL database server. This 
service responds to network requests using a service thread pool. Depending on the size of the 
data frequently accessed, it is expected that MySQL will either be disk bound for large working 
sets or CPU bound for small working sets where queries return from its memory cache.

MySQL server is written in C++ and has embedded USDT probes for queries, commands, filesort, 
inserts, updates, network I/O, and other events. Table 13-1 provides some examples.

Table 13-1 MySQL Probe Examples

USDT Probe Arguments

connection__start unsigned long connection_id, char *user, char *host

connection__done int status, unsigned long connection_id

command__start unsigned long connection_id, int command, char *user, char *host

command__done int status

query__start char *query, unsigned long connection_id, char *db_name, char *user, 
char *host

query__done int status

filesort__start char *db_name, char *table

filesort__done int status, unsigned long rows

net__write__start unsigned long bytes

net__write__done int status

See “mysqld DTrace Probe Reference” in the MySQL Reference Manual for the full list of 
probes [152]. These MySQL USDT probes are only available when MySQL is compiled with 
-DENABLE_DTRACE=1 as a parameter to cmake(1) during the build process. The current 
mysql-server package for Linux does not do this, so you will need to build your own MySQL server 
software to use USDT probes or ask the package maintainers to include this setting.

Since there are many scenarios where USDT probes may not be available for your application, this 
chapter includes MySQL tools that instrument the server using uprobes instead.
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13.1.3 BPF Capabilities

BPF tracing tools can provide additional insight beyond application-provided metrics, with 
custom workload and latency metrics, latency histograms, and visibility of resource usage from 
within the kernel. These capabilities can answer:

 ■ What are the application requests? What is their latency?

 ■ Where is the time spent during application requests?

 ■ Why is the application on CPU?

 ■ Why does the application block and switch off CPU?

 ■ What I/O is the application performing, and why (code path)?

 ■ What locks is the application blocking on, and for how long?

 ■ What other kernel resources is the application using, and why?

These can be answered by instrumenting the application using USDT and probes for request 
context, kernel resources and blocking events via tracepoints (including syscalls) and kprobes, 
and via timed sampling of on-CPU stack traces.

Overhead

The overhead application tracing depends on the rate of traced events. Typically, tracing the 
requests themselves costs negligible overhead, whereas tracing lock contention, off-CPU events, 
and syscalls can cost noticeable overhead for busy workloads.

13.1.4 Strategy

Here is a suggested overall strategy you can follow for application analysis. The next sections 
explain these tools in more detail.

 1. Learn what the application does: what is its unit of work? It may already expose its unit 
of work in application metrics and logs. Also determine what would it mean to improve 
its performance: higher throughput, lower latency, or lower resource usage (or some 
combination)?

 2. See if any documentation exists to describe application internals: major components such 
as libraries and caches, its API, and how it services requests: thread pools, event worker 
threads, or something else.

 3. Apart from the application’s main unit of work, find out if it uses any background periodic 
tasks that could impact performance (e.g., a disk flush event that happens every 30 
seconds).

 4. Check whether USDT probes are available for the application or its programming language.

 5. Perform on-CPU analysis to understand CPU consumption and look for inefficiencies 
(e.g., using BCC profile(8)).
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 6. Perform off-CPU analysis to understand why the application is blocking and look for areas 
to optimize (e.g., BCC offcputime(8), wakeuptime(8), offwaketime(8)). Focus on blocking 
time during application requests.

 7. Profile syscalls to understand an application’s use of resources (e.g., BCC syscount(8)).

 8. Browse and execute the BPF tools listed in Chapters 6–10.

 9. Use uprobes to explore application internals: the previous on-CPU and off-CPU analysis 
stack traces should have identified many functions to begin tracing.

 10. For distributed computing, consider tracing both server side and client side. For example, 
with MySQL it may be possible to trace the server as well as clients making requests by 
tracing the MySQL client library.

It may already be known whether the application is CPU bound, disk bound, or network bound, 
based on the resource it spends most of its time waiting for. After confirming that this assumption 
is true, the limiting resource can be investigated from the appropriate resource chapter in this 
book.

If you wish to write BPF programs to trace application requests, you need to take into account 
how requests are processed. Because service thread pools process a request entirely from the same 
thread, the thread ID (task ID) can be used to associate events from different sources, provided 
they are asynchronous. For example, when a database begins processing a query, the query string 
can be stored in a BPF map keyed on the thread ID. This query string could later be read when disk 
I/O is first initialized, so that disk I/O can be associated with the query that caused it. Other appli-
cation architectures such as event worker threads require a different approach, since one thread 
processes different requests concurrently, and the thread ID is not unique to one request.

13.2 BPF Tools

This section covers the BPF tools you can use for application performance analysis and trouble-
shooting. These are shown in Figure 13-1.

Figure 13-1 BPF tools for application analysis
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These tools are either from the BCC and bpftrace repositories covered in Chapters 4 and 5 or were 
created for this book. Some tools appear in both BCC and bpftrace. Table 13-2 lists the origins of 
the tools covered in this section (BT is short for bpftrace).

Table 13-2 Application-Related Tools

Tool Source Target Description

execsnoop BCC/BT Sched List new process execution

threadsnoop Book pthread List new thread creation

profile BCC CPUs Sample on-CPU stack traces

threaded Book CPUs Sample on-CPU threads

offcputime BCC Sched Show off-CPU time with stack traces

offcpuhist Book Sched Show off-CPU stacks with time histograms

syscount BCC Syscalls Count syscalls by type

ioprofile Book I/O Count stacks on I/O

mysqld_qslower BCC/book MySQL server Show MySQL queries slower than a threshold

mysqld_clat Book MySQL server Show MySQL command latency as a histogram

signals Book Signals Summarize sent signals by target process

killsnoop BCC/BT Syscalls Show kill(2) syscalls with sender details

pmlock Book Locks Show pthread mutex lock times and user stacks

pmheld Book Locks Show pthread mutex held times and user stacks

naptime Book Syscalls Show voluntary sleep calls

For the tools from BCC and bpftrace, see their repositories for full and updated lists of tool 
options and capabilities. A selection of the most important capabilities are summarized here.

These tools can be grouped into the following topics:

 ■ CPU-analysis: profile(8), threaded(8), and syscount(8)

 ■ Off-CPU analysis: offcputime(8), offcpuhist(8), and ioprofile(8)

 ■ Application context: mysqld_slower(8) and mysqld_clat(8)

 ■ Thread execution: execsnoop(8), threadsnoop(8), and threaded(8)

 ■ Lock analysis: rmlock(8) and pmheld(8)

 ■ Signals: signals(8) and killsnoop(8)

 ■ Sleep analysis: naptime(8)

There are also one-liners at the end of this chapter. The following tool sections also include a 
section on libc frame pointers, as a follow-on from ioprofile(8).
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13.2.1 execsnoop

execsnoop(8), introduced in Chapter 6, is a BCC and bpftrace tool to trace new processes, and can 
identify if applications are using short-lived processes. Example output from an idle server:

# execsnoop

PCOMM          PID    PPID   RET ARGS

sh             17788  17787    0 /bin/sh -c /usr/lib/sysstat/sa1 1 1 -S ALL

sa1            17789  17788    0 /usr/lib/sysstat/sa1 1 1 -S ALL

sadc           17789  17788    0 /usr/lib/sysstat/sadc -F -L -S DISK 1 1 -S ALL /var/

log/sysstat

[...]

This shows that the server was not so idle: it has caught an invocation of the system activ-
ity recorder. execsnoop(8) is useful for catching unexpected process usage by applications. 
Sometimes applications call shell scripts for functionality, maybe as a temporary workaround 
until it can be coded properly within the application, causing inefficiencies.

See Chapter 6 for more about execsnoop(8).

13.2.2 threadsnoop

threadsnoop(8)1 traces thread creation via the pthread_create() library call. For example, during 
MySQL server startup:

# threadsnoop.bt 

Attaching 3 probes...

TIME(ms)   PID    COMM             FUNC

2049       14456  mysqld           timer_notify_thread_func

2234       14460  mysqld           pfs_spawn_thread

2243       14460  mysqld           io_handler_thread

2243       14460  mysqld           io_handler_thread

2243       14460  mysqld           io_handler_thread

2243       14460  mysqld           io_handler_thread

2243       14460  mysqld           io_handler_thread

2243       14460  mysqld           io_handler_thread

2243       14460  mysqld           io_handler_thread

2243       14460  mysqld           io_handler_thread

2243       14460  mysqld           io_handler_thread

2243       14460  mysqld           io_handler_thread

2243       14460  mysqld           buf_flush_page_cleaner_coordinator

2274       14460  mysqld           trx_rollback_or_clean_all_recovered

2296       14460  mysqld           lock_wait_timeout_thread

1 Origin: I created it for this book on 15-Feb-2019, inspired by my own execsnoop.
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2296       14460  mysqld           srv_error_monitor_thread

2296       14460  mysqld           srv_monitor_thread

2296       14460  mysqld           srv_master_thread

2296       14460  mysqld           srv_purge_coordinator_thread

2297       14460  mysqld           srv_worker_thread

2297       14460  mysqld           srv_worker_thread

2297       14460  mysqld           srv_worker_thread

2298       14460  mysqld           buf_dump_thread

2298       14460  mysqld           dict_stats_thread

2298       14460  mysqld           _Z19fts_optimize_threadPv

2298       14460  mysqld           buf_resize_thread

2381       14460  mysqld           pfs_spawn_thread

2381       14460  mysqld           pfs_spawn_thread

This shows the rate of thread creation by examining the TIME(ms) column, as well as who is 
creating the thread (PID, COMM), and the starting function for the thread (FUNC). This output 
shows MySQL creating its pools of server worker threads (srv_worker_thread()), I/O handler 
threads (io_handler_thread()), and other threads for running the database.

This works by tracing the pthread_create() library call, which is expected to be relatively infre-
quent, such that the overhead of this tool should be negligible.

The source to threadsnoop(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("%-10s %-6s %-16s %s\n", "TIME(ms)", "PID", "COMM", "FUNC");

}

 

uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_create

{

        printf("%-10u %-6d %-16s %s\n", elapsed / 1000000, pid, comm,

            usym(arg2));

}

The path to your libpthread library may need adjusting in this source.

The output line can also be adjusted. For example, to include the user-level stack trace:

        printf("%-10u %-6d %-16s %s%s\n", elapsed / 1000000, pid, comm,

            usym(arg2), ustack);



ptg30854589

59713.2 BPF Tools

This produces:

# ./threadsnoop-ustack.bt 

Attaching 3 probes...

TIME(ms)   PID    COMM             FUNC

1555       14976  mysqld           timer_notify_thread_func

        0x7fb5ced4b9b0

        0x55f6255756b7

        0x55f625577145

        0x7fb5ce035b97

        0x2246258d4c544155

 

1729       14981  mysqld           pfs_spawn_thread

        __pthread_create_2_1+0

        my_timer_initialize+156

        init_server_components()+87

        mysqld_main(int, char**)+1941

        __libc_start_main+231

        0x2246258d4c544155

 

1739       14981  mysqld           io_handler_thread

        __pthread_create_2_1+0

        innobase_start_or_create_for_mysql()+6648

        innobase_init(void*)+3044

        ha_initialize_handlerton(st_plugin_int*)+79

        plugin_initialize(st_plugin_int*)+101

        plugin_register_builtin_and_init_core_se(int*, char**)+485

        init_server_components()+960

        mysqld_main(int, char**)+1941

        __libc_start_main+231

        0x2246258d4c544155

[...]

This shows the code path that led to the thread’s creation. For MySQL, the role of the threads was 
already apparent from the starting functions, but this won’t always be the case with all applica-
tions, and the stack trace may be needed to identify what the new threads are for.



ptg30854589

598 Chapter 13  Applications

13.2.3 profile

profile(8), introduced in Chapter 6, is a BCC tool that does timed sampling of on-CPU stack traces 
and is a cheap and coarse way to show which code paths are consuming CPU resources. It was 
introduced in Chapter 6. For example, using profile(8) to profile a MySQL server:

# profile -d -p $(pgrep mysqld)

Sampling at 49 Hertz of PID 9908 by user + kernel stack... Hit Ctrl-C to end.

 

[...]

 

    my_hash_sort_simple

    hp_rec_hashnr

    hp_write_key

    heap_write

    ha_heap::write_row(unsigned char*)

    handler::ha_write_row(unsigned char*)

    end_write(JOIN*, QEP_TAB*, bool)

    evaluate_join_record(JOIN*, QEP_TAB*)

    sub_select(JOIN*, QEP_TAB*, bool)

    JOIN::exec()

    handle_query(THD*, LEX*, Query_result*, unsigned long long, unsigned long long)

    execute_sqlcom_select(THD*, TABLE_LIST*)

    mysql_execute_command(THD*, bool)

    Prepared_statement::execute(String*, bool)

    Prepared_statement::execute_loop(String*, bool, unsigned char*, unsigned char*)

    mysqld_stmt_execute(THD*, unsigned long, unsigned long, unsigned char*, unsign...

    dispatch_command(THD*, COM_DATA const*, enum_server_command)

    do_command(THD*)

    handle_connection

    pfs_spawn_thread

    start_thread

    -                mysqld (9908)

        14

 

[...]

 

    ut_delay(unsigned long)

    srv_worker_thread

    start_thread

    -                mysqld (9908)

        16
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    _raw_spin_unlock_irqrestore

    _raw_spin_unlock_irqrestore

    __wake_up_common_lock

    __wake_up_sync_key

    sock_def_readable

    unix_stream_sendmsg

    sock_sendmsg

    SYSC_sendto

    SyS_sendto

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    --

    __send

    vio_write

    net_write_packet

    net_flush

    net_send_ok(THD*, unsigned int, unsigned int, unsigned long long, unsigned lon...

    Protocol_classic::send_ok(unsigned int, unsigned int, unsigned long long, unsi...

    THD::send_statement_status()

    dispatch_command(THD*, COM_DATA const*, enum_server_command)

    do_command(THD*)

    handle_connection

    pfs_spawn_thread

    start_thread

    __clone

    -                mysqld (9908)

        17

The output was hundreds of stack traces and their frequency counts. Only three have 
been included here. The first stack shows MySQL statement becoming a join and finally a 
my_hash_sort_simple() on CPU. The last stack shows a socket send in the kernel: this stack 
has a delimiter between the kernel and user stacks ("–"), which was included due to the profile(8) 
-d option.

Since the output was hundreds of stack traces, it can be helpful to visualize it as a flame graph. 
profile(8) can generate folded format output (-f) for input by the flame graph software. For 
example, with a 30-second profile:

# profile -p $(pgrep mysqld) -f 30 > out.profile01.txt

# flamegraph.pl --width=800 --title="CPU Flame Graph" < out.profile01.txt \

    > out.profile01.svg

Figure 13-2 shows the same workload as a flame graph.

http://flamegraph.pl
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Figure 13-2 MySQL server CPU flame graph

The flame graph shows where the bulk of the CPU time is spent by the widest frames: in the 
middle, dispatch_command() was present in 69% of samples, and JOIN::exec() was present in 
19%. These numbers are shown with a mouse-over of each frame, and frames can be clicked to 
zoom in on more details.

Apart from explaining CPU consumption, CPU flame graphs also show which functions are 
executing, which can become possible targets for BPF tracing. This flame graph showed functions 
such as do_command(), mysqld_stmt_execute(), JOIN::exec(), and JOIN::optimize(): these can all 
be instrumented directly using uprobes, and their arguments and latency studied.

This is only working because I’m profiling a MySQL server that has been compiled with frame 
pointers, with libc and libpthread versions that also have frame pointers. Without this, BPF would 
be unable to walk the stacks properly. This is discussed in Section 13.2.9.

See Chapter 6 for more about profile(8) and CPU flame graphs.
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13.2.4 threaded

threaded(8)2 samples on-CPU threads for a given process and shows how often they were on-CPU, 
for verifying how well they are multi-threaded. For example, for MySQL server:

# threaded.bt $(pgrep mysqld)

Attaching 3 probes...

Sampling PID 2274 threads at 99 Hertz. Ctrl-C to end.

23:47:13

@[mysqld, 2317]: 1

@[mysqld, 2319]: 2

@[mysqld, 2318]: 3

@[mysqld, 2316]: 4

@[mysqld, 2534]: 55

 

23:47:14

@[mysqld, 2319]: 2

@[mysqld, 2316]: 4

@[mysqld, 2317]: 5

@[mysqld, 2534]: 51

 

[...]

This tool prints per-second output, and for this MySQL server workload, it shows that only one 
thread (thread ID 2534) was significantly on CPU.

This is intended to characterize how well multi-threaded applications are spreading work across 
their threads. Since it uses timed sampling, it may miss short wakeups by threads that occur 
between the samples.

Some applications change the thread names. For example, using threaded(8) on the freecol Java 
application from the previous chapter:

# threaded.bt $(pgrep java)

Attaching 3 probes...

Sampling PID 32584 threads at 99 Hertz. Ctrl-C to end.

23:52:12

@[GC Thread#0, 32591]: 1

@[VM Thread, 32611]: 1

@[FreeColClient:b, 32657]: 6

@[AWT-EventQueue-, 32629]: 6

@[FreeColServer:-, 974]: 8

2 Origin: I created the first version as threaded.d on 25-Jul-2005 and used it during my performance classes where 

I wrote two sample applications with pools of worker threads, one that included a lock contention issue, and used 

threaded.d to show how other threads were unable to run with the issue. I also developed this version for this book.
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@[FreeColServer:A, 977]: 11

@[FreeColServer:A, 975]: 26

@[C1 CompilerThre, 32618]: 29

@[C2 CompilerThre, 32617]: 44

@[C2 CompilerThre, 32616]: 44

@[C2 CompilerThre, 32615]: 48

 

[...]

This makes it clear that the CPU time consumed by this application is mostly spent in the 
compiler threads.

threaded(8) works by using timed sampling. The overhead should be negligible at this low 
frequency.

The source to threaded(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        if ($1 == 0) {

                printf("USAGE: threaded.bt PID\n");

                exit();

        }

        printf("Sampling PID %d threads at 99 Hertz. Ctrl-C to end.\n", $1);

}

 

profile:hz:99

/pid == $1/

{

        @[comm, tid] = count();

}

 

interval:s:1

{

        time();

        print(@);

        clear(@);

}

This tool requires a PID as an argument, and exits if none was provided ($1 defaults to zero).
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13.2.5 offcputime

offcputime(8), introduced in Chapter 6, is a BCC tool that traces when threads block and leave 
the CPUs, and records the duration they were off-CPU with the stack trace. Example output for 
MySQL server:

# offcputime -d -p $(pgrep mysqld)

Tracing off-CPU time (us) of PID 9908 by user + kernel stack... Hit Ctrl-C to end.

 

[...]

 

    finish_task_switch

    schedule

    jbd2_log_wait_commit

    jbd2_complete_transaction

    ext4_sync_file

    vfs_fsync_range

    do_fsync

    sys_fsync

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    --

    fsync

    fil_flush(unsigned long)

    log_write_up_to(unsigned long, bool) [clone .part.56]

    trx_commit_complete_for_mysql(trx_t*)

    innobase_commit(handlerton*, THD*, bool)

    ha_commit_low(THD*, bool, bool)

    TC_LOG_DUMMY::commit(THD*, bool)

    ha_commit_trans(THD*, bool, bool)

    trans_commit(THD*)

    mysql_execute_command(THD*, bool)

    Prepared_statement::execute(String*, bool)

    Prepared_statement::execute_loop(String*, bool, unsigned char*, unsigned char*)

    mysqld_stmt_execute(THD*, unsigned long, unsigned long, unsigned char*, unsign...

    dispatch_command(THD*, COM_DATA const*, enum_server_command)

    do_command(THD*)

    handle_connection

    pfs_spawn_thread

    start_thread

    -                mysqld (9962)

        2458362
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[...]

 

    finish_task_switch

    schedule

    futex_wait_queue_me

    futex_wait

    do_futex

    SyS_futex

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    --

    pthread_cond_timedwait@@GLIBC_2.3.2

    __pthread_cond_timedwait

    os_event::timed_wait(timespec const*)

    os_event_wait_time_low(os_event*, unsigned long, long)

    lock_wait_timeout_thread

    start_thread

    __clone

    -                mysqld (2311)

        10000904

 

    finish_task_switch

    schedule

    do_nanosleep

    hrtimer_nanosleep

    sys_nanosleep

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    --

    __nanosleep

    os_thread_sleep(unsigned long)

    srv_master_thread

    start_thread

    __clone

    -                mysqld (2315)

        10001003

The output was hundreds of stacks; only a few have been selected for this example. The first 
shows a MySQL statement becoming a commit, a log write, and then an fsync(). Then the code 
path crosses into the kernel ("--") with ext4 handling the fsync, and the thread finally blocks on 
a jbd2_log_wait_commit() function. The duration mysqld was blocked in this stack while tracing 
was 2458362 microseconds (2.45 seconds): this is the total across all threads.
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The last two stacks show a lock_wait_timeout_thread() waiting for events via pthread_cond_timewait(), 
and the srv_master_thread() sleeping. The output of offcputime(8) can often be dominated by 
such waiting and sleeping threads, which are usually normal behavior and not a performance 
issue. Your task is to find the stacks that are blocking during application requests, which are the 
issue. 

Off-CPU Time Flame Graph

Creating an off-CPU time flame graph provides a way to quickly focus on the blocked stacks of 
interest. The following commands capture 10 seconds of off-CPU stacks and then use my flame 
graph software to generate the flame graph:

# offcputime -f -p $(pgrep mysqld) 10 > out.offcputime01.txt

# flamegraph.pl --width=800 --color=io --title="Off-CPU Time Flame Graph" \

    --countname=us < out.offcputime01.txt > out.offcputime01.svg

This produced the flame graph shown in Figure 13-3, where I have used the search feature to high-
light frames containing "do_command" in magenta: these are the code paths for MySQL requests 
and are what the clients are blocking on.

Figure 13-3 Off-CPU time flame graph for MySQL server, highlighting do_command

http://flamegraph.pl
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Most of the flame graph in Figure 13-3 is dominated by thread pools waiting for work. The time 
blocked in server commands is shown by the narrow tower that includes the do_command() 
frame, highlighted in magenta. Fortunately, flame graphs are interactive, and this tower can be 
clicked for zoom. This is shown in Figure 13-4.

Figure 13-4 Off-CPU time flame graph zoomed to show server commands

The mouse pointer is over ext4_sync_file() to show the time spent in this path at the bottom: 
3.95 seconds in total. This is the bulk of the blocking time in do_command(), and shows the 
target to optimize to improve server performance.

bpftrace

I wrote a bpftrace version of offcputime(8); see the next section on offcpuhist(8) for the source code.

Final Notes

This off-CPU analysis capability is the companion to CPU analysis by profile(8), and between 
them, these tools can shed light on a wide range of performance issues.

The performance overhead of offcputime(8) can be significant, exceeding 5%, depending on 
the rate of context switches. This is at least manageable: it could be run for short periods in 
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production as needed. Prior to BPF, performing off-CPU analysis involved dumping all stacks to 
user-space for post processing, and the overhead was usually prohibitive for production use.

As with profile(8), this is only producing full stacks for all code because I’ve recompiled MySQL 
server and system libraries with frame pointers. See Section 13.2.9 for more about this.

See Chapter 6 for more about offcputime(8). Chapter 14 covers additional tools for off-CPU 
analysis: wakeuptime(8) and offwaketime(8).

13.2.6 offcpuhist

offcpuhist(8)3 is similar to offcputime(8). It traces scheduler events to record off-CPU time with 
stack traces, but it shows the time as histograms instead of sums. Some example output from 
MySQL server:

# offcpuhist.bt $(pgrep mysqld)

Attaching 3 probes...

Tracing nanosecond time in off-CPU stacks. Ctrl-C to end.

 

[...]

 

@[

    finish_task_switch+1

    schedule+44

    futex_wait_queue_me+196

    futex_wait+266

    do_futex+805

    SyS_futex+315

    do_syscall_64+115

    entry_SYSCALL_64_after_hwframe+61

, 

    __pthread_cond_wait+432

    pthread_cond_wait@@GLIBC_2.3.2+36

    os_event_wait_low(os_event*, long)+64

    srv_worker_thread+503

    start_thread+208

    __clone+63

, mysqld]: 

[2K, 4K)             134 |@@@@@@@                                             |

[4K, 8K)             293 |@@@@@@@@@@@@@@@@@                                   |

[8K, 16K)            886 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16K, 32K)           493 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@                        |

3 Origin: I created it for this book on 16-Feb-2019, inspired by my uoffcpu.d tool from the 2011 DTrace book [Gregg 11] 

that displayed user off-CPU stack traces with histograms. This is the first off-CPU analysis tool written for bpftrace.
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[32K, 64K)           447 |@@@@@@@@@@@@@@@@@@@@@@@@@@                          |

[64K, 128K)          263 |@@@@@@@@@@@@@@@                                     |

[128K, 256K)          85 |@@@@                                                |

[256K, 512K)           7 |                                                    |

[512K, 1M)             0 |                                                    |

[1M, 2M)               0 |                                                    |

[2M, 4M)               0 |                                                    |

[4M, 8M)             306 |@@@@@@@@@@@@@@@@@                                   |

[8M, 16M)            747 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@         |

 

@[

    finish_task_switch+1

    schedule+44

    schedule_hrtimeout_range_clock+185

    schedule_hrtimeout_range+19

    poll_schedule_timeout+69

    do_sys_poll+960

    sys_poll+155

    do_syscall_64+115

    entry_SYSCALL_64_after_hwframe+61

, 

    __GI___poll+110

    vio_io_wait+141

    vio_socket_io_wait+24

    vio_read+226

    net_read_packet(st_net*, unsigned long*)+141

    my_net_read+412

    Protocol_classic::get_command(COM_DATA*, enum_server_command*)+60

    do_command(THD*)+192

    handle_connection+680

    pfs_spawn_thread+337

    start_thread+208

    __clone+63

, mysqld]: 

[2K, 4K)             753 |@@@@@@                                              |

[4K, 8K)            2081 |@@@@@@@@@@@@@@@@@@                                  |

[8K, 16K)           5759 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16K, 32K)          3595 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                    |

[32K, 64K)          4045 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                |

[64K, 128K)         3830 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                  |

[128K, 256K)         751 |@@@@@@                                              |

[256K, 512K)          48 |                                                    |
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[512K, 1M)            16 |                                                    |

[1M, 2M)               0 |                                                    |

[2M, 4M)               7 |                                                    |

The output has been truncated to show just the last two stack traces. The first shows a bi-modal 
latency distribution as the srv_worker_thread() threads wait for work: the output ranges are 
in nanoseconds, and show one mode around 16 microseconds and another between 8 and 
16 milliseconds (labeled "[8M, 16M)"). The second stack shows many shorter waits in a 
net_read_packet() code path, usually taking less than 128 microseconds.

This works by tracing scheduler events using kprobes. The overhead, like with offcputime(8), can 
be significant, and it is only intended to be run for short durations.

The source to offcpuhist(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/sched.h>

 

BEGIN

{

        printf("Tracing nanosecond time in off-CPU stacks. Ctrl-C to end.\n");

}

 

kprobe:finish_task_switch

{

        // record previous thread sleep time

        $prev = (struct task_struct *)arg0;

        if ($1 == 0 || $prev->tgid == $1) {

                @start[$prev->pid] = nsecs;

        }

 

        // get the current thread start time

        $last = @start[tid];

        if ($last != 0) {

                @[kstack, ustack, comm, tid] = hist(nsecs - $last);

                delete(@start[tid]);

        }

}

 

END

{

        clear(@start);

}
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This records a timestamp for the thread that is leaving the CPU and also records a histogram for 
the thread that is starting on the CPU, in the one finish_task_switch() kprobe.

13.2.7 syscount

syscount(8)4 is a BCC tool for counting syscalls, which provides a view of resource usage by 
applications. It can be run system wide, or on individual processes. For example, on MySQL 
server, with per-second output (-i 1):

# syscount -i 1 -p $(pgrep mysqld)

Tracing syscalls, printing top 10... Ctrl+C to quit.

[11:49:25]

SYSCALL                   COUNT

sched_yield               10848

recvfrom                   6576

futex                      3977

sendto                     2193

poll                       2187

pwrite                      128

fsync                       115

nanosleep                     1

 

[11:49:26]

SYSCALL                   COUNT

sched_yield               10918

recvfrom                   6957

futex                      4165

sendto                     2314

poll                       2309

pwrite                      131

fsync                       118

setsockopt                    2

close                         2

accept                        1

 

[...]

This shows that the sched_yield() syscall was most frequent, called over 10,000 times per second. 
The most frequent syscalls can be explored with tracepoints for the syscall and using this and 
other tools. For example, BCC stackcount(8) can show the stack traces that led to it, and BCC 

4 Origin: This was created by Sasha Goldshtein on 15-Feb-2017. I developed the first syscount tool using perf(1) on 
7-Jul-2014, intended as a cheaper version of strace -c and with modes to count by process. It is loosely inspired by 
my procsystime tool from 22-Sep-2005.
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argdist(8) can summarize its arguments. There should also be a man page for each syscall, to 
explain its purpose, arguments, and return value.

syscount(8) also can show the total time in syscalls with the -L option, For example, tracing 
for 10 seconds (-d 10) and summarizing in milliseconds (-m):

# syscount -mL -d 10 -p $(pgrep mysqld)

Tracing syscalls, printing top 10... Ctrl+C to quit.

[11:51:40]

SYSCALL                   COUNT        TIME (ms)

futex                     42158    108139.607626

nanosleep                     9      9000.992135

fsync                      1176      4393.483111

poll                      22700      1237.244061

sendto                    22795       276.383209

recvfrom                  68311       275.933806

sched_yield               79759       141.347616

pwrite                     1352        53.346773

shutdown                      1         0.015088

openat                        1         0.013794

 

Detaching...

While tracing, the time in futex(2) was over 108 seconds in total for this 10-second trace: this is 
possible due to multiple threads calling it in parallel. The arguments and code paths will need to 
be inspected to understand the function of futex(2): it is likely called so often as a mechanism to 
wait for work, as was found with the prior offcputime(8) tool.

From top down, the most interesting syscall in this output is fsync(2), with 4393 milliseconds in 
total. This suggests one target for optimization: the file system and storage devices.

See Chapter 6 for more about syscount(8).

13.2.8 ioprofile

ioprofile(8)5 traces I/O-related syscalls—reads, writes, sends, and receives—and shows their counts 
with calling user-level stack traces. For example, on MySQL server:

# ioprofile.bt $(pgrep mysqld)

Attaching 24 probes...

Tracing I/O syscall user stacks. Ctrl-C to end.

^C

5 Origin: I created it for this book on 15-Feb-2019, intending to use it as a new flame graph type in the Vector 

software at my employer. More than any other tool, it exposed how painful it was to not have frame pointers in libc 

and libpthread, and this may inspire a change in the Netflix BaseAMI libraries.
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[...]

 

@[tracepoint:syscalls:sys_enter_pwrite64, 

    pwrite64+114

    os_file_io(IORequest const&, int, void*, unsigned long, unsigned long, dberr_t...

    os_file_write_page(IORequest&, char const*, int, unsigned char const*, unsigne...

    fil_io(IORequest const&, bool, page_id_t const&, page_size_t const&, unsigned ...

    log_write_up_to(unsigned long, bool) [clone .part.56]+2426

    trx_commit_complete_for_mysql(trx_t*)+108

    innobase_commit(handlerton*, THD*, bool)+727

    ha_commit_low(THD*, bool, bool)+372

    TC_LOG_DUMMY::commit(THD*, bool)+20

    ha_commit_trans(THD*, bool, bool)+703

    trans_commit(THD*)+57

    mysql_execute_command(THD*, bool)+6651

    Prepared_statement::execute(String*, bool)+1410

    Prepared_statement::execute_loop(String*, bool, unsigned char*, unsigned char*...

    mysqld_stmt_execute(THD*, unsigned long, unsigned long, unsigned char*, unsign...

    dispatch_command(THD*, COM_DATA const*, enum_server_command)+5582

    do_command(THD*)+544

    handle_connection+680

    pfs_spawn_thread+337

    start_thread+208

    __clone+63

, mysqld]: 636

 

[...]

 

@[tracepoint:syscalls:sys_enter_recvfrom, 

    __GI___recv+152

    vio_read+167

    net_read_packet(st_net*, unsigned long*)+141

    my_net_read+412

    Protocol_classic::get_command(COM_DATA*, enum_server_command*)+60

    do_command(THD*)+192

    handle_connection+680

    pfs_spawn_thread+337

    start_thread+208

    __clone+63

, mysqld]: 24255
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The output was hundreds of stacks long, and only a couple have been included here. The first 
stack shows mysqld calling pwrite64(2) from a transaction write and file write code path. The 
second stack shows mysqld reading a packet via recvfrom(2).

An application performing too many I/O or unnecessary I/O is a commonly found performance 
issue. This may be due to log writes that can be disabled, small I/O sizes that should be increased, 
and so on. This tool can help identify these types of issues.

This works by tracing the tracepoints for the syscalls. The overhead may be noticeable as these 
syscalls can be frequent.

The source to ioprofile(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing I/O syscall user stacks. Ctrl-C to end.\n");

}

 

tracepoint:syscalls:sys_enter_*read*,

tracepoint:syscalls:sys_enter_*write*,

tracepoint:syscalls:sys_enter_*send*,

tracepoint:syscalls:sys_enter_*recv*

/$1 == 0 || pid == $1/

{

        @[probe, ustack, comm] = count();

}

An optional PID argument can be provided. Without it, the tool traces the entire system.

13.2.9 libc Frame Pointers

As an important aside, the ioprofile(8) tool output only contains full stacks because this MySQL 
server is running with a libc that has been compiled with frame pointers. Applications often make 
I/O via libc calls, and libc is often compiled without frame pointers. This means stack walking 
from the kernel back to the application often stops at libc. While this problem is present with 
other tools, it is most noticeable with ioprofile(8), and also brkstack(8) from Chapter 7.

Here is how the problem looks: this MySQL server has frame pointers, but is using the standard 
packaged libc:

# ioprofile.bt $(pgrep mysqld)

[...]

@[tracepoint:syscalls:sys_enter_pwrite64, 

    __pwrite+79



ptg30854589

614 Chapter 13  Applications

    0x2ffffffdc020000

, mysqld]: 5

[...]

@[tracepoint:syscalls:sys_enter_recvfrom, 

    __libc_recv+94

, mysqld]: 22526

The stack traces are incomplete, stopping after one or two frames. Ways to fix this include:

 ■ Recompiling libc with -fno-omit-frame-pointer.

 ■ Tracing libc interface functions before the frame pointer register has been reused.

 ■ Tracing the MySQL server functions such as os_file_io(). This is an application-specific 
approach.

 ■ Using a different stack walker. See Section 2.4 in Chapter 2  for a summary of other 
approaches.

libc is in the glibc package [153], which also provides libpthread and other libraries. It has been 
previously suggested that Debian provide an alternate libc package with frame pointers [154].

For more discussion on broken stacks, see Section 2.4 in Chapter 2 and Section 18.8 in Chapter18.

13.2.10 mysqld_qslower

mysqld_qslower(8)6 is a BCC and bpftrace tool to trace MySQL queries on the server that were 
slower than a threshold. This is also an example of a tool that shows application context: the 
query string. Example output from the BCC version:

# mysqld_qslower $(pgrep mysqld) 

Tracing MySQL server queries for PID 9908 slower than 1 ms...

TIME(s)    PID        MS QUERY

0.000000   9962  169.032 SELECT * FROM words WHERE word REGEXP '^bre.*n$'

1.962227   9962  205.787 SELECT * FROM words WHERE word REGEXP '^bpf.tools$'

9.043242   9962   95.276 SELECT COUNT(*) FROM words

23.723025  9962  186.680 SELECT count(*) AS count FROM words WHERE word REGEXP 

'^bre.*n$'

30.343233  9962  181.494 SELECT * FROM words WHERE word REGEXP '^bre.*n$' ORDER BY 

word

[...]

This output shows a time offset for the query, the MySQL server PID, the duration of the query in 
milliseconds, and the query string. Similar functionality is already available from MySQL’s slow 

6 Origin: I created it for this book on 15-Feb-2019, based on my earlier mysqld_qslower.d tool from the 2011 DTrace 

book [Gregg 11].
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query log; with BPF, this tool can be customized to include details not present in that query log, 
such as disk I/O and other resource usage by the query.

This works by using the MySQL USDT probes: mysql:query__start and mysql:query__done. The 
overhead of this tool is expected to be small to negligible, due to the relative low rate of server 
queries.

BCC

Command line usage:

mysqld_qslower PID [min_ms]

A minimum millisecond threshold can be provided; otherwise, a default of one millisecond is 
used. If zero is provided, all queries are printed.

bpftrace

The following is the code for the bpftrace version, developed for this book:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing mysqld queries slower than %d ms. Ctrl-C to end.\n",

            $1);

        printf("%-10s %-6s %6s %s\n", "TIME(ms)", "PID", "MS", "QUERY");

}

 

usdt:/usr/sbin/mysqld:mysql:query__start

{

        @query[tid] = str(arg0);

        @start[tid] = nsecs;

}

 

usdt:/usr/sbin/mysqld:mysql:query__done

/@start[tid]/

{

        $dur = (nsecs - @start[tid]) / 1000000;

        if ($dur > $1) {

                printf("%-10u %-6d %6d %s\n", elapsed / 1000000,

                    pid, $dur, @query[tid]);

        }

        delete(@query[tid]);

        delete(@start[tid]);

}
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This program uses a positional parameter, $1, for the millisecond latency threshold. If it is not 
provided, the tool defaults to zero, so all queries are printed.

Since MySQL server uses a service thread pool, and the same thread will process the entire 
request, so I can use the thread ID as a unique ID for the request. This is used with the @query and 
@start maps, so that I can save the query string pointer and start timestamp for each request, and 
then fetch them when the request completes.

Some example output:

# mysqld_qslower.bt -p $(pgrep mysqld)

Attaching 4 probes...

Tracing mysqld queries slower than 0 ms. Ctrl-C to end.

TIME(ms)   PID        MS QUERY

984        9908       87 select * from words where word like 'perf%'

[...]

A -p must be used during execution to enable the USDT probes, just as a PID was required with 
the BCC version. This makes the command line usage:

mysqld_qslower.bt -p PID [min_ms]

bpftrace: uprobes

If your mysqld does not have USDT probes compiled in, it is possible to implement a similar tool 
using uprobes of internal functions. The stack traces seen by previous commands show several 
possible functions to instrument; for example, from the earlier profile(8) output:

    handle_query(THD*, LEX*, Query_result*, unsigned long long, unsigned long long)

    execute_sqlcom_select(THD*, TABLE_LIST*)

    mysql_execute_command(THD*, bool)

    Prepared_statement::execute(String*, bool)

    Prepared_statement::execute_loop(String*, bool, unsigned char*, unsigned char*)

    mysqld_stmt_execute(THD*, unsigned long, unsigned long, unsigned char*, unsign...

    dispatch_command(THD*, COM_DATA const*, enum_server_command)

    do_command(THD*)

The following tool, mysqld_qslower-uprobes.bt, has traced dispatch_command():

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing mysqld queries slower than %d ms. Ctrl-C to end.\n",

            $1);

        printf("%-10s %-6s %6s %s\n", "TIME(ms)", "PID", "MS", "QUERY");
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}

 

uprobe:/usr/sbin/mysqld:*dispatch_command*

{

        $COM_QUERY = 3;                // see include/my_command.h

        if (arg2 == $COM_QUERY) {

                @query[tid] = str(*arg1);

                @start[tid] = nsecs;

        }

}

 

uretprobe:/usr/sbin/mysqld:*dispatch_command*

/@start[tid]/

{

        $dur = (nsecs - @start[tid]) / 1000000;

        if ($dur > $1) {

                printf("%-10u %-6d %6d %s\n", elapsed / 1000000,

                    pid, $dur, @query[tid]);

        }

        delete(@query[tid]);

        delete(@start[tid]);

}

Since dispatch_command() traces more than just queries, this tool ensures that the command 
type is COM_QUERY. The query string is fetched from the COM_DATA argument, where the 
string is the first struct member for queries.

As is the case with uprobes, the traced function names, the arguments, and the logic, are all 
dependent on the version of MySQL (this is tracing 5.7), and this tool may not work on other 
versions if any of these details change. This is why USDT probes are preferred.

13.2.11 mysqld_clat

mysqld_clat(8)7 is a bpftrace tool I developed for this book. It traces MySQL command latency 
and shows histograms for each command type. For example:

# mysqld_clat.bt

Attaching 4 probes...

Tracing mysqld command latencies. Ctrl-C to end.

^C

 

7 Origin: I created it for this book on 15-Feb-2019. It’s similar to my mysqld_command.d that I wrote on 25-Jun-2013, 

although this tool is improved: it uses system-wide summaries and command names.
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@us[COM_QUIT]: 

[4, 8)                 1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@us[COM_STMT_CLOSE]: 

[4, 8)                 1 |@@@@@@                                              |

[8, 16)                8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16, 32)               1 |@@@@@@                                              |

 

@us[COM_STMT_PREPARE]: 

[32, 64)               6 |@@@@@@@@@@@@@@@@@@@@@@@@                            |

[64, 128)             13 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[128, 256)             3 |@@@@@@@@@@@@                                        |

 

@us[COM_QUERY]: 

[8, 16)               33 |@                                                   |

[16, 32)             185 |@@@@@@@@                                            |

[32, 64)            1128 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[64, 128)            300 |@@@@@@@@@@@@@                                       |

[128, 256)             2 |                                                    |

 

@us[COM_STMT_EXECUTE]: 

[16, 32)            1410 |@@@@@@                                              |

[32, 64)            1654 |@@@@@@@                                             |

[64, 128)          11212 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[128, 256)          8899 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@           |

[256, 512)          5000 |@@@@@@@@@@@@@@@@@@@@@@@                             |

[512, 1K)           1478 |@@@@@@                                              |

[1K, 2K)               5 |                                                    |

[2K, 4K)            1504 |@@@@@@                                              |

[4K, 8K)             141 |                                                    |

[8K, 16K)              7 |                                                    |

[16K, 32K)             1 |                                                    |

This shows that queries took between 8 and 256 microseconds and that statement execution was 
bimodal, with modes of different latencies.

This works by instrumenting time (latency) between the USDT probes mysql:command__start 
and mysql:command__done, and reading the command type from the start probe. The over-
head should be negligible, as the rate of commands is typically low (less than a thousand 
per second).
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The source to mysqld_clat(8) is:

#!/usr/local/bin/bpftrace

 

 

BEGIN

{

        printf("Tracing mysqld command latencies. Ctrl-C to end.\n");

 

        // from include/my_command.h:

        @com[0] = "COM_SLEEP";

        @com[1] = "COM_QUIT";

        @com[2] = "COM_INIT_DB";

        @com[3] = "COM_QUERY";

        @com[4] = "COM_FIELD_LIST";

        @com[5] = "COM_CREATE_DB";

        @com[6] = "COM_DROP_DB";

        @com[7] = "COM_REFRESH";

        @com[8] = "COM_SHUTDOWN";

        @com[9] = "COM_STATISTICS";

        @com[10] = "COM_PROCESS_INFO";

        @com[11] = "COM_CONNECT";

        @com[12] = "COM_PROCESS_KILL";

        @com[13] = "COM_DEBUG";

        @com[14] = "COM_PING";

        @com[15] = "COM_TIME";

        @com[16] = "COM_DELAYED_INSERT";

        @com[17] = "COM_CHANGE_USER";

        @com[18] = "COM_BINLOG_DUMP";

        @com[19] = "COM_TABLE_DUMP";

        @com[20] = "COM_CONNECT_OUT";

        @com[21] = "COM_REGISTER_SLAVE";

        @com[22] = "COM_STMT_PREPARE";

        @com[23] = "COM_STMT_EXECUTE";

        @com[24] = "COM_STMT_SEND_LONG_DATA";

        @com[25] = "COM_STMT_CLOSE";

        @com[26] = "COM_STMT_RESET";

        @com[27] = "COM_SET_OPTION";

        @com[28] = "COM_STMT_FETCH";

        @com[29] = "COM_DAEMON";

        @com[30] = "COM_BINLOG_DUMP_GTID";

        @com[31] = "COM_RESET_CONNECTION";

}
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usdt:/usr/sbin/mysqld:mysql:command__start

{

        @command[tid] = arg1;

        @start[tid] = nsecs;

}

 

usdt:/usr/sbin/mysqld:mysql:command__done

/@start[tid]/

{

        $dur = (nsecs - @start[tid]) / 1000;

        @us[@com[@command[tid]]] = hist($dur);

        delete(@command[tid]);

        delete(@start[tid]);

}

 

END

{

        clear(@com);

}

This includes a lookup table to convert from a command ID integer to a human-readable string: 
the command name. These names are from the MySQL server source in include/my_command.h 
and are also documented in the USDT probe reference [155].

If USDT probes are not available, this tool can be rewritten to use uprobes of the dispatch_
command() function. Instead of reproducing the entire tool, here is a diff that highlights the 
required changes:

$ diff mysqld_clat.bt mysqld_clat_uprobes.bt 

42c42

< usdt:/usr/sbin/mysqld:mysql:command__start

---

> uprobe:/usr/sbin/mysqld:*dispatch_command*

44c44

<      @command[tid] = arg1;

---

>      @command[tid] = arg2;

48c48

< usdt:/usr/sbin/mysqld:mysql:command__done

---

> uretprobe:/usr/sbin/mysqld:*dispatch_command*

The command is fetched from a different argument and uprobes are used instead, but the rest of 
the tool is the same.
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13.2.12 signals

signals(8)8 traces process signals and shows a summary distribution of the signal and target 
process. This is a useful troubleshooting tool for investigating why applications may be terminat-
ing unexpectedly, which may be because they were sent a signal. Example output:

# signals.bt

Attaching 3 probes...

Counting signals. Hit Ctrl-C to end.

^C

@[SIGNAL, PID, COMM] = COUNT

 

@[SIGKILL, 3022, sleep]: 1

@[SIGINT, 2997, signals.bt]: 1

@[SIGCHLD, 21086, bash]: 1

@[SIGSYS, 3014, ServiceWorker t]: 4

@[SIGALRM, 2903, mpstat]: 6

@[SIGALRM, 1882, Xorg]: 87

This output showed that a SIGKILL was sent to the sleep process with PID 3022 once (it only 
needs to be sent once), while SIGALRM was sent to Xorg PID 1882 a total of 87 times while 
tracing.

It works by tracing the signal:signal_generate tracepoint. Since these are infrequent, the overhead 
is expected to be negligible.

The source to signals(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Counting signals. Hit Ctrl-C to end.\n");

 

        // from /usr/include/asm-generic/signal.h:

        @sig[0] = "0";

        @sig[1] = "SIGHUP";

        @sig[2] = "SIGINT";

        @sig[3] = "SIGQUIT";

        @sig[4] = "SIGILL";

        @sig[5] = "SIGTRAP";

        @sig[6] = "SIGABRT";

8 Origin: I created this for this book on 16-Feb-2019, plus earlier versions for other tracers. These were inspired by 

sig.d from the Dynamic Tracing Guide, Jan 2005 [Sun 05].
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        @sig[7] = "SIGBUS";

        @sig[8] = "SIGFPE";

        @sig[9] = "SIGKILL";

        @sig[10] = "SIGUSR1";

        @sig[11] = "SIGSEGV";

        @sig[12] = "SIGUSR2";

        @sig[13] = "SIGPIPE";

        @sig[14] = "SIGALRM";

        @sig[15] = "SIGTERM";

        @sig[16] = "SIGSTKFLT";

        @sig[17] = "SIGCHLD";

        @sig[18] = "SIGCONT";

        @sig[19] = "SIGSTOP";

        @sig[20] = "SIGTSTP";

        @sig[21] = "SIGTTIN";

        @sig[22] = "SIGTTOU";

        @sig[23] = "SIGURG";

        @sig[24] = "SIGXCPU";

        @sig[25] = "SIGXFSZ";

        @sig[26] = "SIGVTALRM";

        @sig[27] = "SIGPROF";

        @sig[28] = "SIGWINCH";

        @sig[29] = "SIGIO";

        @sig[30] = "SIGPWR";

        @sig[31] = "SIGSYS";

}

 

tracepoint:signal:signal_generate

{

        @[@sig[args->sig], args->pid, args->comm] = count();

}

 

END

{

        printf("\n@[SIGNAL, PID, COMM] = COUNT");

        clear(@sig);

}

This uses a lookup table to convert the signal number to a readable code. In the kernel source, 
there is no name for signal number zero; however, it is used for health checks to determine if the 
target PID is still running.



ptg30854589

62313.2 BPF Tools

13.2.13 killsnoop

killsnoop(8)9 is a BCC and bpftrace tool to trace signals sent via the kill(2) syscall. This can show 
who is sending signals but, unlike signals(8), does not trace all signals sent on the system, only 
those sent via kill(2). Example output:

# killsnoop

TIME      PID    COMM             SIG  TPID   RESULT

00:28:00  21086  bash             9    3593   0

[...]

This output shows the bash shell sent a signal 9 (KILL) to PID 3593. 

This works by tracing the syscalls:sys_enter_kill and syscalls:sys_exit_kill tracepoints. The 
overhead should be negligible.

BCC

Command line usage:

killsnoop [options]

Options include:

 ■ -x: Only show failed kill syscalls

 ■ -p PID: Measure this process only

bpftrace

The following is the code for the bpftrace version, which summarizes its core functionality. 
This version does not support options.

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing kill() signals... Hit Ctrl-C to end.\n");

        printf("%-9s %-6s %-16s %-4s %-6s %s\n", "TIME", "PID", "COMM", "SIG",

            "TPID", "RESULT");

}

 

tracepoint:syscalls:sys_enter_kill

{

        @tpid[tid] = args->pid;

9 Origin: I created the first version as kill.d on 9-May-2004 to debug a case of mysterious application terminations. 

I also wrote the BCC version on 20-Sep-2015 and the bpftrace version on 7-Sep-2018.
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        @tsig[tid] = args->sig;

}

 

tracepoint:syscalls:sys_exit_kill

/@tpid[tid]/

{

        time("%H:%M:%S  ");

        printf("%-6d %-16s %-4d %-6d %d\n", pid, comm, @tsig[tid], @tpid[tid],

            args->ret);

        delete(@tpid[tid]);

        delete(@tsig[tid]);

}

The program stores the target PID and signal on the entry to the syscall, so they can be referenced and 
printed on the exit. This could be enhanced like signals(8) to include a lookup table of signal names.

13.2.14 pmlock and pmheld

The pmlock(8)10 and pmheld(8) bpftrace tools record libpthread mutex lock latency and held 
times as histograms, with user-level stacks. pmlock(8) can be used to identify an issue of lock 
contention, and then pmheld(8) can show the cause: which code path is responsible. Starting 
with pmlock(8) on MySQL server:

# pmlock.bt $(pgrep mysqld)

Attaching 4 probes...

Tracing libpthread mutex lock latency, Ctrl-C to end.

^C

[...]

 

@lock_latency_ns[0x7f3728001a50, 

    pthread_mutex_lock+36

    THD::Query_plan::set_query_plan(enum_sql_command, LEX*, bool)+121

    mysql_execute_command(THD*, bool)+15991

    Prepared_statement::execute(String*, bool)+1410

    Prepared_statement::execute_loop(String*, bool, unsigned char*, unsigned char*...

, mysqld]: 

[1K, 2K)             123 |                                                    |

[2K, 4K)            1203 |@@@@@@@@@                                           |

[4K, 8K)            6576 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[8K, 16K)           2077 |@@@@@@@@@@@@@@@@                                    |

 

10 Origin: I created these tools for this book on 17-Feb-2019, inspired by the Solaris lockstat(1M) tool, which also 

showed various lock times with latency histograms and partial stack traces.
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@lock_latency_ns[0x7f37280019f0, 

    pthread_mutex_lock+36

    THD::set_query(st_mysql_const_lex_string const&)+94

    Prepared_statement::execute(String*, bool)+336

    Prepared_statement::execute_loop(String*, bool, unsigned char*, unsigned char*...

    mysqld_stmt_execute(THD*, unsigned long, unsigned long, unsigned char*, unsign...

, mysqld]: 

[1K, 2K)              47 |                                                    |

[2K, 4K)             945 |@@@@@@@@                                            |

[4K, 8K)            3290 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                      |

[8K, 16K)           5702 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@lock_latency_ns[0x7f37280019f0, 

    pthread_mutex_lock+36

    THD::set_query(st_mysql_const_lex_string const&)+94

    dispatch_command(THD*, COM_DATA const*, enum_server_command)+1045

    do_command(THD*)+544

    handle_connection+680

, mysqld]: 

[1K, 2K)              65 |                                                    |

[2K, 4K)            1198 |@@@@@@@@@@@                                         |

[4K, 8K)            5283 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[8K, 16K)           3966 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@             |

The last two stacks show latency on lock address 0x7f37280019f0, from code paths involving 
THD::set_query(), and with times usually in the 4 to 16-microsecond range.

Now running pmheld(8):

# pmheld.bt $(pgrep mysqld)

Attaching 5 probes...

Tracing libpthread mutex held times, Ctrl-C to end.

^C

[...]

 

@held_time_ns[0x7f37280019c0, 

    __pthread_mutex_unlock+0

    close_thread_table(THD*, TABLE**)+169

    close_thread_tables(THD*)+923

    mysql_execute_command(THD*, bool)+887

    Prepared_statement::execute(String*, bool)+1410

, mysqld]: 

[2K, 4K)            3311 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@              |

[4K, 8K)            4523 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
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@held_time_ns[0x7f37280019f0, 

    __pthread_mutex_unlock+0

    THD::set_query(st_mysql_const_lex_string const&)+147

    dispatch_command(THD*, COM_DATA const*, enum_server_command)+1045

    do_command(THD*)+544

    handle_connection+680

, mysqld]: 

[2K, 4K)            3848 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@             |

[4K, 8K)            5038 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[8K, 16K)              0 |                                                    |

[16K, 32K)             0 |                                                    |

[32K, 64K)             1 |                                                    |

 

@held_time_ns[0x7f37280019c0, 

    __pthread_mutex_unlock+0

    Prepared_statement::execute(String*, bool)+321

    Prepared_statement::execute_loop(String*, bool, unsigned char*, unsigned char*...

    mysqld_stmt_execute(THD*, unsigned long, unsigned long, unsigned char*, unsign...

    dispatch_command(THD*, COM_DATA const*, enum_server_command)+5582

, mysqld]: 

[1K, 2K)            2204 |@@@@@@@@@@@@@@@@@@@@@@@                             |

[2K, 4K)            4803 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[4K, 8K)            2845 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                      |

[8K, 16K)              0 |                                                    |

[16K, 32K)            11 |                                                    |

This shows paths that were holding the same lock and the duration it was held, as a histogram.

There are various courses of action given all this data: the size of thread pools could be tuned to 
reduce lock contention, and a developer could look at the holding code paths to optimize them 
to hold the lock for shorter durations.

It is recommended to output these tools to files for later analysis. For example:

 # pmlock.bt PID > out.pmlock01.txt 

 # pmheld.bt PID > out.pmheld01.txt

An optional PID can be provided to only trace that process ID, which is also recommended to 
reduce the overhead on the system. Without it, all pthread lock events system-wide are recorded.

These tools work by instrumenting libpthread functions using uprobes and uretprobes: 
pthread_mutex_lock() and pthread_mutex_unlock(). The overhead can be significant, as 
these lock events can be very extremely frequent. For example, timing them using BCC 
funccount for one second:
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# funccount -d 1 '/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_*lock'

Tracing 4 functions for 

"/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_*lock"... Hit Ctrl-C to end.

 

FUNC                                    COUNT

pthread_mutex_trylock                    4525

pthread_mutex_lock                      44726

pthread_mutex_unlock                    49132

At such rates, adding a tiny amount of overhead to each call will add up.

pmlock

The source to pmlock(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing libpthread mutex lock latency, Ctrl-C to end.\n");

}

 

uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_lock

/$1 == 0 || pid == $1/

{

        @lock_start[tid] = nsecs;

        @lock_addr[tid] = arg0;

}

 

uretprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_lock

/($1 == 0 || pid == $1) && @lock_start[tid]/

{

        @lock_latency_ns[usym(@lock_addr[tid]), ustack(5), comm] =

            hist(nsecs - @lock_start[tid]);

        delete(@lock_start[tid]);

        delete(@lock_addr[tid]);

}

 

END

{

        clear(@lock_start);

        clear(@lock_addr);

}
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This records a timestamp and the lock address when pthread_mutex_lock() begins, then fetches 
these when it ends to calculate the latency and save it with the lock address and stack trace. The 
ustack(5) can be adjusted to record as many frames as you wish.

The path to /lib/x86_64-linux-gnu/libpthread.so.0 may need to be adjusted to match your system. 
Stack traces may not work without frame pointers in the calling software, and libpthread as well. 
(It may work without libpthread frame pointers since it’s tracing the entry point to the library, 
and the frame pointer register may not have been reused yet.)

The latency to pthread_mutex_trylock() is not traced as it is assumed to be fast, as is the purpose 
of the try-lock call. (This can be verified with BCC funclatency(8).)

pmheld

The source code to pmheld(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing libpthread mutex held times, Ctrl-C to end.\n");

}

 

uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_lock,

uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_trylock

/$1 == 0 || pid == $1/

{

        @lock_addr[tid] = arg0;

}

 

uretprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_lock

/($1 == 0 || pid == $1) && @lock_addr[tid]/

{

        @held_start[pid, @lock_addr[tid]] = nsecs;

        delete(@lock_addr[tid]);

}

 

uretprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_trylock

/retval == 0 && ($1 == 0 || pid == $1) && @lock_addr[tid]/

{

        @held_start[pid, @lock_addr[tid]] = nsecs;

        delete(@lock_addr[tid]);

}
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uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_unlock

/($1 == 0 || pid == $1) && @held_start[pid, arg0]/

{

        @held_time_ns[usym(arg0), ustack(5), comm] =

            hist(nsecs - @held_start[pid, arg0]);

        delete(@held_start[pid, arg0]);

}

 

END

{

        clear(@lock_addr);

        clear(@held_start);

}

The time is now measured from when the pthread_mutex_lock() or pthread_mutex_trylock() 
function returns—and hence the caller holds the lock—to when it calls unlock().

These tools used uprobes, but libpthread has USDT probes as well, so these tools could be rewrit-
ten to use them.

13.2.15 naptime

naptime(8)11 traces the nanosleep(2) syscall and shows who is calling it and for what sleep dura-
tion. I wrote this tool to debug a slow internal build process that would take minutes without 
seemingly doing anything, and I suspected it included voluntary sleeps. The output:

# naptime.bt

Attaching 2 probes...

Tracing sleeps. Hit Ctrl-C to end.

TIME     PPID   PCOMM            PID    COMM             SECONDS

19:09:19 1      systemd          1975   iscsid           1.000

19:09:20 1      systemd          2274   mysqld           1.000

19:09:20 1      systemd          1975   iscsid           1.000

19:09:21 2998   build-init       25137  sleep            30.000

19:09:21 1      systemd          2274   mysqld           1.000

19:09:21 1      systemd          1975   iscsid           1.000

19:09:22 1      systemd          2421   irqbalance       9.999

[...]

This has caught a sleep for 30 seconds by build-init. I was able to track down that program and 
“tune” this sleep, making my build 10 times faster. This output also shows mysqld and iscsid 

11 Origin: I created it for this book on 16-Feb-2019, inspired by Sasha Goldsthein’s SyS_nanosleep() example from 

trace(8), and to debug the slow build described here. The build was of an internal nflx-bpftrace package I was developing.
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threads sleeping for one second every second. (We’ve seen that mysqld sleep in earlier tool outputs.) 
Sometimes applications can call sleep as a workaround for other issues, and the workaround can 
stay in the code for years, causing performance problems. This tool can help detect this issue.

This works by tracing the syscalls:sys_enter_nanosleep tracepoint, and the overhead is expected to 
be negligible.

The source to naptime(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/time.h>

#include <linux/sched.h>

 

BEGIN

{

        printf("Tracing sleeps. Hit Ctrl-C to end.\n");

        printf("%-8s %-6s %-16s %-6s %-16s %s\n", "TIME", "PPID", "PCOMM",

            "PID", "COMM", "SECONDS");

}

 

tracepoint:syscalls:sys_enter_nanosleep

/args->rqtp->tv_sec + args->rqtp->tv_nsec/

{

        $task = (struct task_struct *)curtask;

        time("%H:%M:%S ");

        printf("%-6d %-16s %-6d %-16s %d.%03d\n", $task->real_parent->pid,

            $task->real_parent->comm, pid, comm,

            args->rqtp->tv_sec, args->rqtp->tv_nsec / 1000000);

}

Parent process details are fetched from the task_struct, but this method is unstable and may 
require updates if that task_struct changes.

This tool can be enhanced: the user-level stack trace could be printed out as well to show the code 
path that led to the sleep (provided that the code path was compiled with frame pointers so that 
the stack can be walked by BPF).

13.2.16 Other Tools

Another BPF tool is deadlock(8),12 from BCC, which detects potential deadlocks with mutex usage 
of the form of lock order inversions. It builds a directed graph representing the mutex usage for 
detecting deadlocks. While the overhead of this tool can be high, it helps debug a difficult issue.

12 deadlock(8) was developed by Kenny Yu on 01-Feb-2017.
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13.3 BPF One-Liners

These sections show BCC and bpftrace one-liners. Where possible, the same one-liner is imple-
mented using both BCC and bpftrace.

13.3.1 BCC

New processes with arguments:

execsnoop

Syscall count by process:

syscount -P

Syscall count by syscall name:

syscount

Sample user-level stacks at 49 Hertz, for PID 189:

profile -U -F 49 -p 189

Count off-CPU user stack traces:

stackcount -U t:sched:sched_switch

Sample all stack traces and process names:

profile

Count libpthread mutex lock functions for one second:

funccount -d 1 '/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_*lock'

Count libpthread conditional variable functions for one second:

funccount -d 1 '/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_*'

13.3.2 bpftrace

New processes with arguments:

bpftrace -e 'tracepoint:syscalls:sys_enter_execve { join(args->argv); }'

Syscall count by process:

bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[pid, comm] = count(); }'

Syscall count by syscall name:

bpftrace -e 'tracepoint:syscalls:sys_enter_* { @[probe] = count(); }'

Sample user-level stacks at 49 Hertz, for PID 189:

bpftrace -e 'profile:hz:49 /pid == 189/ { @[ustack] = count(); }'
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Sample user-level stacks at 49 Hertz, for processes named "mysqld":

bpftrace -e 'profile:hz:49 /comm == "mysqld"/ { @[ustack] = count(); }'

Count off-CPU user stack traces:

bpftrace -e 'tracepoint:sched:sched_switch { @[ustack] = count(); }'

Sample all stack traces and process names:

bpftrace -e 'profile:hz:49 { @[ustack, stack, comm] = count(); }'

Sum malloc() requested bytes by user stack trace (high overhead):

bpftrace -e 'u:/lib/x86_64-linux-gnu/libc-2.27.so:malloc { @[ustack(5)] =

    sum(arg0); }'

Trace kill() signals showing sender process name, target PID, and signal number:

bpftrace -e 't:syscalls:sys_enter_kill { printf("%s -> PID %d SIG %d\n", comm,

    args->pid, args->sig); }'

Count libpthread mutex lock functions for one second:

bpftrace -e 'u:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_*lock {

    @[probe] = count(); } interval:s:1 { exit(); }'

Count libpthread conditional variable functions for one second:

bpftrace -e 'u:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_* {

    @[probe] = count(); } interval:s:1 { exit(); }'

Count LLC misses by process name:

bpftrace -e 'hardware:cache-misses: { @[comm] = count(); }'

13.4 BPF One-Liners Examples

Including some sample output, as was done for each tool, is also useful for illustrating one-liners. 
Here is a selected one-liner with example output.

13.4.1 Counting libpthread Conditional Variable Functions for One 

Second

# bpftrace -e 'u:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_* {

    @[probe] = count(); } interval:s:1 { exit(); }'

Attaching 19 probes...

@[uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_wait@@GLIBC_2.3.2]: 70

@[uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_wait]: 70

@[uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_init@@GLIBC_2.3.2]: 573

@[uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_timedwait@@GLIBC_2.3.2]: 673
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@[uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_destroy@@GLIBC_2.3.2]: 939

@[uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_broadcast@@GLIBC_2.3.2]: 1796

@[uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_broadcast]: 1796

@[uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_signal]: 4600

@[uprobe:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_signal@@GLIBC_2.3.2]: 4602

These pthread functions can be frequently called, so to minimize performance overhead only one 
second is traced. These counts show how conditional variables (CVs) are in use: there are timed 
waits for threads waiting on a CV and other threads sending signals or broadcasts to wake them up.

This one-liner can be modified to analyze these further: including the process name, stack traces, 
timed wait durations, and other details.

13.5 Summary

In this chapter I showed additional BPF tools beyond the prior resource-oriented chapters for 
application analysis, covering application context, thread usage, signals, locks, and sleeps. I used 
MySQL server as an example target application, and read its query context from BPF using both 
USDT probes and uprobes. On-CPU and off-CPU analysis using BPF tools was covered again for 
this example application due to its importance.
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Chapter 14
Kernel

The kernel is the heart of the system; it is also a complex body of software. The Linux kernel 
employs many different strategies for improving CPU scheduling, memory placement, disk 
I/O performance, and TCP performance. As with any software, sometimes things go wrong. 
Previous chapters instrumented the kernel to help understand application behavior. This 
chapter uses kernel instrumentation to understand kernel software, and will be of use for kernel 
troubleshooting and to aid in kernel development.

Learning Objectives:

 ■ Continue off -CPU analysis by tracing wakeups

 ■ Identify kernel memory consumers

 ■ Analyze kernel mutex lock contention

 ■ Show activity of work queue events

If you are working on a particular subsystem, you should first browse the tools in the relevant 
previous chapters. By Linux subsystem name, these are:

 ■ sched: Chapter 6 

 ■ mm: Chapter 7 

 ■ fs: Chapter 8 

 ■ block: Chapter 9 

 ■ net: Chapter 10 

Chapter 2 also covers tracing technologies, including BPF, tracepoints, and kprobes. This chapter 
focuses on studying the kernel rather than the resources, and includes additional kernel topics 
beyond the previous chapters. I begin with background discussion, then BPF capabilities, kernel 
analysis strategy, traditional tools including Ftrace, and BPF tools for additional analysis: wakeups, 
kernel memory allocation, kernel locks, tasklets, and work queues.
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14.1 Background

The kernel manages access to resources and schedules processes on the CPUs. Previous chapters 
have already introduced many kernel topics. In particular, see:

 ■ Section 6.1.1 for the CPU Modes and the CPU Scheduler sections

 ■ Section 7.1.1 for the Memory Allocators, Memory Pages and Swapping, Page-Out Daemon, 
and File System Caching and Buffering sections

 ■ Section 8.1.1 for the I/O Stack and File System Caches sections

 ■ Section 9.1.1 for the Block I/O Stack and I/O Schedulers sections

 ■ Section 10.1.1 for the Network Stack, Scaling, and TCP sections

Additional topics for kernel analysis are explored in this chapter.

14.1.1 Kernel Fundamentals

Wakeups

When threads block and go off CPU to wait for an event, they usually return to the CPU when 
triggered by a wakeup event. An example is disk I/O: a thread may block on a file system read that 
issues a disk I/O and is later woken up by a worker thread that processes the completion interrupt.

In some cases, there is a dependency chain of wakeups: one thread wakes up another, and that 
thread wakes up another, until it wakes up the blocked application.

Figure 14-1 shows how an application thread can block and go off CPU for a syscall, to be later 
woken up by a resource thread with possible dependency threads.

Figure 14-1 Off-CPU and wakeups

Tracing the wakeups can reveal more information about the duration of the off-CPU event.



ptg30854589

63714.1 Background

Kernel Memory Allocation

Two main allocators in the kernel are the:

 ■ slab allocator: A general-purpose memory allocator for objects of fixed sizes, which 
supports caching allocations and recycling them for efficiency. In Linux this is now the 
slub allocator: it is based on the slab allocator paper [Bonwick 94], but with reduced 
complexity.

 ■ page allocator: For allocating memory pages. It uses a buddy algorithm, which refers to 
finding neighboring pages of free memory so that they can be allocated together. This is 
also NUMA aware.

These allocators were mentioned in Chapter 7 as background for application memory usage 
analysis. This chapter focuses on kernel memory usage analysis.

The API calls for kernel memory allocation include kmalloc(), kzalloc(), and kmem_cache_alloc() 
(slab allocation) for small chunks, vmalloc() and vzalloc() for large areas, and alloc_pages() for 
pages [156].

Kernel Locks

User-level locks were covered in Chapter 13. The kernel supports locks of different types: spin 
locks, mutex locks, and reader-writer locks. Since locks block threads, they are a source of 
performance issues.

Linux kernel mutex locks are a hybrid with three acquisition paths, tried in the following 
order [157]:

 1. fastpath: Using a compare-and-swap instruction (cmpxchg)

 2. midpath: Optimistically spinning first if the lock holder is running in case it is about to be 
released

 3. slowpath: Blocking until the lock is available

There is also the read-copy-update (RCU) synchronization mechanism that allows multiple 
reads to occur concurrently with updates, improving performance and scalability for data that is 
mostly read.

Tasklets and Work Queues

For Linux, device drivers are modeled as two halves, with the top half handling the interrupt 
quickly and scheduling work to a bottom half to be processed later [Corbet 05]. Handling the 
interrupt quickly is important because the top half runs in interrupt-disabled mode to postpone 
the delivery of new interrupts, which can cause latency problems if it runs for too long. The 
bottom half can be either tasklets or work queues; the latter are threads that can be scheduled by 
the kernel and can sleep when necessary. This is pictured in Figure 14-2.
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Figure 14-2 Tasklets and work queues 

14.1.2 BPF Capabilities

BPF tracing tools can provide additional insight beyond kernel metrics, including answering such 
questions as:

 ■ Why are threads leaving the CPU, and how long are they off CPU?

 ■ What events did off-CPU threads wait for?

 ■ Who is currently using the kernel slab allocator?

 ■ Is the kernel moving pages to balance NUMA?

 ■ What work queue events are occurring? With what latencies?

 ■ For kernel developers: which of my functions are called? With what arguments and return 
value? With what latency?

These can be answered by instrumenting tracepoints and kernel functions to measure their 
latency, arguments, and stack traces. Timed sampling of stack traces can also be used to provide 
a view of on-CPU code paths, which usually works because the kernel is typically compiled with 
stack support (either frame pointers or ORC).

Event Sources

Kernel event types are listed in Table 14-1, along with instrumentation sources.

Table 14-1 Kernel Event Types and Instrumentation Sources

Event Type Event Source

Kernel function execution kprobes

Scheduler events sched tracepoints

System calls syscalls and raw_syscalls tracepoints
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Event Type Event Source

Kernel memory allocation kmem tracepoints

Page out daemon scanning vmscan tracepoints

Interrupts irq and irq_vectors tracepoints

Workqueue execution workqueue tracepoints

Timers timer tracepoints

IRQ and preemption disabled preemptirq traceponts1

Check your kernel version to see what other tracepoints exist, such as by using bpftrace:

bpftrace -l 'tracepoint:*'

Or using perf(1):

perf list tracepoint

Prior chapters covered resource events, including block and network I/O.

14.2 Strategy

If you are new to kernel performance analysis, here is a suggested overall strategy that you can 
follow. The next sections explain the tools involved in more detail.

 1. If possible, create a workload that triggers the events of interest, ideally a known number of 
times. This might involve writing a short C program.

 2. Check for the existence of tracepoints that instrument the event or existing tools 
(including those in this chapter).

 3. If the event can be called frequently so that it consumes significant CPU resources (>5%), 
CPU profiling can be a quick way to show the kernel functions involved. If not, a longer 
profile may be used to capture enough samples for study (e.g., using perf(1) or BCC 
profile(8), with CPU flame graphs). CPU profiling will also reveal the use of spin locks, and 
mutex locks during optimistic spin.

 4. As another way to find related kernel functions, count function calls that likely match the 
event. For example, if analyzing ext4 file system events, you could try counting all calls that 
matched "ext4_*" (using BCC funccount(8)).

 5. Count stack traces from kernel functions to understand the code path (using BCC 
stackcount(8)). These code paths should already be known if profiling was used.

 6. Trace function call flow through its child events (using perf-tools Ftrace-based funcgraph(8)).

 7. Inspect function arguments (using BCC trace(8) and argdist(8), or bpftrace).

 8. Measure function latency (using BCC funclatency(8) or bpftrace).

 9. Write a custom tool to instrument the events and print or summarize them.

1 Requires CONFIG_PREEMPTIRQ_EVENTS.
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The following section shows some of these steps using traditional tools, which you can try before 
turning to BPF tools.

14.3 Traditional Tools

Many traditional tools were covered in prior chapters. Some additional tools that can be used for 
kernel analysis are included here and listed in Table 14-2.

Table 14-2 Traditional Tools

Tool Type Description

Ftrace Tracing Linux built-in tracer

perf sched Tracing Linux official profiler: scheduler analysis subcommand

slabtop Kernel statistics Kernel slab cache usage

14.3.1 Ftrace

Ftrace2 was created by Steven Rostedt and added to Linux 2.6.27 in 2008. Like perf(1), Ftrace is a 
multi-tool with many capabilities. There are at least four ways to use Ftrace:

 A.  Via the /sys/kernel/debug/tracing files, controlled using cat(1) and echo(1) or a higher-level 
language. This usage is documented in the kernel source under Documentation/trace/
ftrace.rst [158].

 B.  Via the trace-cmd front-end by Steven Rostedt [159][160].

 C.  Via the KernelShark GUI by Steven Rostedt and others [161].

 D.  Via the tools in the perf-tools collection by myself [78]. These are shell wrappers to the /sys 
/kernel/debug/tracing files.

I will demonstrate Ftrace capabilities using perf-tools, but any of these methods can be used.

Function Counting

Let’s say I wanted to analyze file system read-ahead in the kernel. I can begin by counting all func-
tions containing "readahead" using funccount(8) (from perf-tools) while generating a workload 
that is expected to trigger it:

# funccount '*readahead*'

Tracing "*readahead*"... Ctrl-C to end.

^C

FUNC                              COUNT

page_cache_async_readahead           12

2 It is often written as "ftrace"; however, Steven would like to standardize on "Ftrace." (I asked for this book.)
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__breadahead                         33

page_cache_sync_readahead            69

ondemand_readahead                   81

__do_page_cache_readahead            83

 

Ending tracing...

This shows five functions that were called, with their frequency.

Stack Traces

The next step is to learn more about these functions. Ftrace can collect stack traces on events, 
which show why the function was called—their parent functions. Analyzing the first one from 
the previous output using kprobe(8):

# kprobe -Hs 'p:page_cache_async_readahead'

Tracing kprobe page_cache_async_readahead. Ctrl-C to end.

# tracer: nop

#

#                              _-----=> irqs-off

#                             / _----=> need-resched

#                            | / _---=> hardirq/softirq

#                            || / _--=> preempt-depth

#                            ||| /     delay

#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION

#              | |       |   ||||       |         |

           cksum-32372 [006] .... 1952191.125801: page_cache_async_readahead: 

(page_cache_async_readahead+0x0/0x80)

           cksum-32372 [006] .... 1952191.125822: <stack trace>

 => page_cache_async_readahead

 => ext4_file_read_iter

 => new_sync_read

 => __vfs_read

 => vfs_read

 => SyS_read

 => do_syscall_64

 => entry_SYSCALL_64_after_hwframe

           cksum-32372 [006] .... 1952191.126704: page_cache_async_readahead: 

(page_cache_async_readahead+0x0/0x80)

           cksum-32372 [006] .... 1952191.126722: <stack trace>

 => page_cache_async_readahead

 => ext4_file_read_iter

[...]
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This prints a stack trace per event, showing that it was triggered during a read() syscall. kprobe(8) 
also allows function arguments and the return value to be inspected.

For efficiency, these stack traces can be frequency counted in kernel context rather than printed 
one by one. This requires a newer Ftrace feature, hist triggers, short for histogram triggers. 
Example:

# cd /sys/kernel/debug/tracing/

# echo 'p:kprobes/myprobe page_cache_async_readahead' > kprobe_events 

# echo 'hist:key=stacktrace' > events/kprobes/myprobe/trigger 

# cat events/kprobes/myprobe/hist 

# event histogram

#

# trigger info: hist:keys=stacktrace:vals=hitcount:sort=hitcount:size=2048 [active]

#

 

{ stacktrace:

         ftrace_ops_assist_func+0x61/0xf0

         0xffffffffc0e1b0d5

         page_cache_async_readahead+0x5/0x80

         generic_file_read_iter+0x784/0xbf0

         ext4_file_read_iter+0x56/0x100

         new_sync_read+0xe4/0x130

         __vfs_read+0x29/0x40

         vfs_read+0x8e/0x130

         SyS_read+0x55/0xc0

         do_syscall_64+0x73/0x130

         entry_SYSCALL_64_after_hwframe+0x3d/0xa2

} hitcount:        235

 

Totals:

    Hits: 235

    Entries: 1

    Dropped: 0

[...steps to undo the tracing state...]

This output shows that this stack trace path was taken 235 times during tracing.

Function Graphing

Finally, funcgraph(8) can show the child functions called:



ptg30854589

64314.3 Traditional Tools

# funcgraph page_cache_async_readahead

Tracing "page_cache_async_readahead"... Ctrl-C to end.

 3)               |  page_cache_async_readahead() {

 3)               |    inode_congested() {

 3)               |      dm_any_congested() {

 3)   0.582 us    |        dm_request_based();

 3)               |        dm_table_any_congested() {

 3)               |          dm_any_congested() {

 3)   0.267 us    |            dm_request_based();

 3)   1.824 us    |            dm_table_any_congested();

 3)   4.604 us    |          }

 3)   7.589 us    |        }

 3) + 11.634 us   |      }

 3) + 13.127 us   |    }

 3)               |    ondemand_readahead() {

 3)               |      __do_page_cache_readahead() {

 3)               |        __page_cache_alloc() {

 3)               |          alloc_pages_current() {

 3)   0.234 us    |            get_task_policy.part.30();

 3)   0.124 us    |            policy_nodemask();

[...]

This reveals not just the code path taken but, as with stack traces, these functions can also be 
traced for more information arguments and return values.

14.3.2 perf sched

The perf(1) command is another multi-tool, and Chapter 6 summarized its use with PMCs, profil-
ing, and tracing. It also has a sched subcommand for scheduler analysis. For example:

# perf sched record

# perf sched timehist

 

Samples do not have callchains.

           time    cpu  task name           wait time  sch delay   run time

                        [tid/pid]              (msec)     (msec)     (msec)

--------------- ------  ------------------  ---------  ---------  ---------

  991962.879971 [0005]  perf[16984]             0.000      0.000      0.000 

  991962.880070 [0007]  :17008[17008]           0.000      0.000      0.000 

  991962.880070 [0002]  cc1[16880]              0.000      0.000      0.000 

  991962.880078 [0000]  cc1[16881]              0.000      0.000      0.000 

  991962.880081 [0003]  cc1[16945]              0.000      0.000      0.000 

  991962.880093 [0003]  ksoftirqd/3[28]         0.000      0.007      0.012 

  991962.880108 [0000]  ksoftirqd/0[6]          0.000      0.007      0.030  

[...]
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This output shows per-scheduling event metrics of the time spent blocked and waiting for a 
wakeup ("wait time"), the scheduler delay (aka run queue latency, "sch delay"), and the on-CPU 
run time ("run time").

14.3.3 slabtop

The slabtop(1) tool shows the current sizes of the kernel slab allocation caches. For example, from 
a large production system, sorting by cache size (-s c):

# slabtop -s c

 Active / Total Objects (% used)    : 1232426 / 1290213 (95.5%)

 Active / Total Slabs (% used)      : 29225 / 29225 (100.0%)

 Active / Total Caches (% used)     : 85 / 135 (63.0%)

 Active / Total Size (% used)       : 288336.64K / 306847.48K (94.0%)

 Minimum / Average / Maximum Object : 0.01K / 0.24K / 16.00K

 

  OBJS ACTIVE  USE OBJ SIZE  SLABS OBJ/SLAB CACHE SIZE NAME

 76412  69196   0%    0.57K   2729       28     43664K radix_tree_node

313599 313599 100%    0.10K   8041       39     32164K buffer_head

  3732   3717   0%    7.44K    933        4     29856K task_struct

 11776   8795   0%    2.00K    736       16     23552K TCP

 33168  32277   0%    0.66K    691       48     22112K proc_inode_cache

 86100  79990   0%    0.19K   2050       42     16400K dentry

 25864  24679   0%    0.59K    488       53     15616K inode_cache

[...]

This output shows around 43 Mbytes in the radix_tree_node cache and around 23 Mbytes in the 
TCP cache. For a system with a total of 180 Gbytes of main memory, these kernel caches are rela-
tively tiny.

This is a useful tool for troubleshooting memory pressure problems, to check whether some 
kernel component is unexpectedly consuming significant memory.

14.3.4 Other Tools

/proc/lock_stat shows various statistics on kernel locks but is only available if 
CONFIG_LOCK_STAT is set.

/proc/sched_debug provides many metrics to aid scheduler development.

14.4 BPF Tools

This section covers additional BPF tools you can use for kernel analysis and troubleshooting. 
They are shown in Figure 14-3.
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Figure 14-3 Additional BPF tools for kernel analysis

These tools are either from the BCC and bpftrace repositories covered in Chapters 4 and 5 or were 
created for this book. Some tools appear in both BCC and bpftrace. Table 14-3 lists the tool origins 
(BT is short for bpftrace).

Table 14-3 Kernel-Related Tools

Tool Source Target Description

loads BT CPUs Show load averages

offcputime BCC/book Sched Summarize off-CPU stack traces and times

wakeuptime BCC Sched Summarize waker stack traces and blocked times

offwaketime BCC Sched Summarize waker with off-CPU stack traces

mlock Book Mutexes Show mutex lock times and kernel stacks

mheld Book Mutexes Show mutex held times and kernel stacks

kmem Book Memory Summarize kernel memory allocations

kpages Book Pages Summarize kernel page allocations

memleak BCC Memory Show possible memory leak code paths

slabratetop BCC/book Slab Show kernel slab allocation rates by cache

numamove Book NUMA Show NUMA page migration statistics

workq Book Work queues Show work queue function execution times

For the tools from BCC and bpftrace, see their repositories for full and updated lists of tool 
options and capabilities.

See the previous chapters for more tools for kernel analysis, including for system calls, network-
ing, and block I/O.

The following tool summaries include a discussion on instrumenting spin locks and tasklets.
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14.4.1 loads

loads(8)3 is a bpftrace tool to print the system load averages every second:

# loads.bt 

Attaching 2 probes...

Reading load averages... Hit Ctrl-C to end.

18:49:16 load averages: 1.983 1.151 0.931

18:49:17 load averages: 1.824 1.132 0.926

18:49:18 load averages: 1.824 1.132 0.926

[...]

As discussed in Chapter 6, these load averages are not very useful, and you should  quickly move 
on to deeper metrics. The loads(8) tool may be more useful as an example of fetching and printing 
a kernel variable, in this case avenrun:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Reading load averages... Hit Ctrl-C to end.\n");

}

 

interval:s:1

{

        /*

         * See fs/proc/loadavg.c and include/linux/sched/loadavg.h for the

         * following calculations.

         */

        $avenrun = kaddr("avenrun");

        $load1 = *$avenrun;

        $load5 = *($avenrun + 8);

        $load15 = *($avenrun + 16);

        time("%H:%M:%S ");

        printf("load averages: %d.%03d %d.%03d %d.%03d\n",

            ($load1 >> 11), (($load1 & ((1 << 11) - 1)) * 1000) >> 11,

            ($load5 >> 11), (($load5 & ((1 << 11) - 1)) * 1000) >> 11,

            ($load15 >> 11), (($load15 & ((1 << 11) - 1)) * 1000) >> 11

        );

}

3 Origin: I created this as loads.d for DTrace on 10-Jun-2005 and the bpftrace version on 10-Sep-2018.



ptg30854589

64714.4 BPF Tools

The kaddr() built-in is used to fetch the address of the avenrun kernel symbol, which is then 
dereferenced. Other kernel variables can be fetched in the same way.

14.4.2 offcputime

offcputime(8) was introduced in Chapter 6. In this section, I will look at its ability to examine a 
task state, and also problems that led to the creation of additional tools included in this chapter.

Non-interruptible I/O

Matching on the TASK_UNINTERRUPTIBLE thread state can shed light on time that applications 
were blocked waiting for a resource. This helps exclude time that applications spend sleeping in 
between work, which can otherwise drown out the real performance issues in an offcputime(8) 
profile. This TASK_UNINTERRUPTIBLE time is also included in the system load averages on Linux, 
leading to much confusion when people expect them to reflect only CPU time.

Measuring this thread state (2) for user-level process and kernel stacks only:

# offcputime -uK --state 2

Tracing off-CPU time (us) of user threads by kernel stack... Hit Ctrl-C to end.

[...]

 

    finish_task_switch

    __schedule

    schedule

    io_schedule

    generic_file_read_iter

    xfs_file_buffered_aio_read

    xfs_file_read_iter

    __vfs_read

    vfs_read

    ksys_read

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    -                tar (7034)

        1088682

Only the last stack has been included, which shows a tar(1) process waiting on storage I/O via the 
XFS file system. This command has filtered out other thread states, including:

 ■ TASK_RUNNING (0): Threads can block in this state due to involuntary context switches, 
as the CPUs are running at saturation. In such a case, the stack trace that was interrupted is 
not very interesting, as it does not show why the thread moved off-CPU.

 ■ TASK_INTERRUPTIBLE (1): This normally pollutes the output with many off-CPU stacks 
in sleeping and waiting for work code paths.
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Filtering these out helps focus the output to show the stacks that are blocking during application 
requests, which have more impact on performance.

Inconclusive Stacks

Many stack traces printed by offcputime(8) are inconclusive, showing a blocking path but not its 
cause. Here is an example that traces off-CPU kernel stacks for five seconds for a gzip(1) process:

# offcputime -Kp $(pgrep -n gzip) 5

Tracing off-CPU time (us) of PID 5028 by kernel stack for 5 secs.

 

    finish_task_switch

    __schedule

    schedule

    exit_to_usermode_loop

    prepare_exit_to_usermode

    swapgs_restore_regs_and_return_to_usermode

    -                gzip (5028)

        21

 

    finish_task_switch

    __schedule

    schedule

    pipe_wait

    pipe_read

    __vfs_read

    vfs_read

    ksys_read

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    -                gzip (5028)

        4404219

The output shows that 4.4 seconds out of five were in pipe_read(), but you can’t tell from the 
output what was on the other end of the pipe that gzip was waiting for or why it took so long. 
The stack just tells us that it is waiting on someone else.

Such inconclusive off-CPU stack traces are common—not just with pipes but also with I/O and 
lock contention. You may see threads blocked waiting for a lock, but you can’t see why the lock 
was unavailable (e.g., who was the holder and what they were doing).

Examining wakeup stacks using wakeuptime(8) can often reveal what is on the other side of the wait.

See Chapter 6 for more about offcputime(8).
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14.4.3 wakeuptime

wakeuptime(8)4 is a BCC tool that shows the stack traces from threads performing scheduler 
wakeups and the time that the target was blocked. This can be used to further explore off-CPU 
time. Continuing the previous example:

# wakeuptime -p $(pgrep -n gzip) 5

Tracing blocked time (us) by kernel stack for 5 secs.

 

    target:          gzip

    ffffffff94000088 entry_SYSCALL_64_after_hwframe

    ffffffff93604175 do_syscall_64

    ffffffff93874d72 ksys_write

    ffffffff93874af3 vfs_write

    ffffffff938748c2 __vfs_write

    ffffffff9387d50e pipe_write

    ffffffff936cb11c __wake_up_common_lock

    ffffffff936caffc __wake_up_common

    ffffffff936cb65e autoremove_wake_function

    waker:           tar

        4551336

 

Detaching...

This output shows that the gzip(1) process was blocked on the tar(1) process doing a vfs_write(). 
Now I’ll reveal the command that caused this workload:

tar cf - /mnt/data | gzip - > /mnt/backup.tar.gz

From this one-liner, it may be obvious that gzip(1) spends much of its time waiting for data from 
tar(1). tar(1) in turn spends much of its time waiting for data from disk, which can be shown by 
offcputime(8):

# offcputime -Kp $(pgrep -n tar) 5

Tracing off-CPU time (us) of PID 5570 by kernel stack for 5 secs.

[...]

 

    finish_task_switch

    __schedule

    schedule

4 Origin: I developed wakeuptime tracing using DTrace and visualized it with flame graphs on 7-Nov-2013. This started 

out as part of a 45-minute talk on flame graphs that I had to develop at the last minute for the USENIX LISA conference 

[Gregg 13a] when the talk I had originally planned suddenly became impossible to do. Then I was asked to also fill in 

for another speaker who had become ill, so I ended up giving this as part two of a 90-minute plenary on flame graphs. 

I created the BCC tool on 14-Jan-2016.
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    io_schedule

    generic_file_read_iter

    xfs_file_buffered_aio_read

    xfs_file_read_iter

    __vfs_read

    vfs_read

    ksys_read

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    -                tar (5570)

        4204994

This stack shows tar(1) blocked on io_schedule(): block device I/O. Given the output of both 
offcputime(8) and wakeuptime(8), you can see why an application was blocked (offcputime(8) 
output) and then the reason the application was woken up (wakeuptime(8) output). Sometimes 
the wakeup reason better identifies the source of issues than the blocked reason.

To keep these examples short, I’m using -p to match on a PID. You can trace system-wide instead 
by not specifying -p.

This tool works by tracing scheduler functions schedule() and try_to_wake_up(). These can be 
very frequent on busy systems, so the overhead may be significant.

Command line usage:

wakeuptime [options] [duration]

Options include:

 ■ -f: Output in folded format, for generating a wakeup time flame graph

 ■ -p PID: This process only

As with offcputime(8), if it is run without -p, it will trace system-wide—and likely produce 
hundreds of pages of output. A flame graph will help you navigate this output quickly.

14.4.4 offwaketime

offwaketime(8)5 is a BCC tool that combines offcputime(8) and wakeuptime(8). Continuing the 
previous example:

# offwaketime -Kp $(pgrep -n gzip) 5

Tracing blocked time (us) by kernel off-CPU and waker stack for 5 secs.

5 Origin: I developed this initially as chain graphs for the USENIX LISA 2013 conference on 7-Nov-2013 [Gregg 13a], 

where I walked multiple wakeups and showed the output as a flame graph. That version used DTrace, and since DTrace 

can’t save and retrieve stacks I needed to dump all events and post-process, which was too expensive for real produc-

tion use. BPF allows saving and retrieving stack traces (which I used when creating this BCC tool on 13-Jan-2016), 

as well as limiting it to one wakeup level. Alexei Starovoitov added a version to the kernel source, under 

samples/bpf/offwaketime_*.c.
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[...]

 

    waker:           tar 5852

    entry_SYSCALL_64_after_hwframe

    do_syscall_64

    ksys_write

    vfs_write

    __vfs_write

    pipe_write

    __wake_up_common_lock

    __wake_up_common

    autoremove_wake_function

    --               --

    finish_task_switch

    __schedule

    schedule

    pipe_wait

    pipe_read

    __vfs_read

    vfs_read

    ksys_read

    do_syscall_64

    entry_SYSCALL_64_after_hwframe

    target:          gzip 5851

        4490207

This output shows tar(1) waking up gzip(1), which was blocked in this path for 4.49 seconds. Both 
stack traces are shown, delimited by "--", and the top waker stack has been inverted. This way, 
the stack traces meet in the middle at the point where the waker stack (top) is waking the blocked 
stack (bottom).

This tool works by tracing scheduler functions schedule() and try_to_wake_up(), and saves the 
waker stack trace in a BPF stack map for later lookup by the blocked  thread so that they can be 
summarized together in kernel context. These can be very frequent on busy systems, so the over-
head may be significant.

Command line usage:

offwaketime [options] [duration]

Options include:

 ■ -f: Output in folded format, for generating an off-wake time flame graph

 ■ -p PID: This process only

 ■ -K: Only kernel stack traces

 ■ -U: Only user-level stack traces
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Without -p, it will trace system-wide, likely producing hundreds of pages of output. The use of 
options such as -p, -K, and -U will help reduce overhead.

Off-Wake Time Flame Graphs

The folded output (using -f) can be visualized as a flame graph using the same orientation: waker 
stack on the top, inverted, and blocked stack on the bottom. An example is shown in Figure 14-4.

Figure 14-4 Off-wake time flame graph

14.4.5 mlock and mheld

The mlock(8)6 and mheld(8) tools trace the kernel mutex lock latency and held times as 
histograms, with kernel-level stacks. mlock(8) can be used to identify issues of lock contention, 
and then mheld(8) can show the cause: which code path is responsible for hogging the lock. 
Starting with mlock(8):

# mlock.bt

Attaching 6 probes...

Tracing mutex_lock() latency, Ctrl-C to end.

6 Origin: I created these tools for this book on 14-Mar-2019. This approach is inspired by the Solaris lockstat(1M) tool 

by Jeff Bonwick, which also showed partial stacks with latency histograms for lock and held times.
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^C

[...]

 

@lock_latency_ns[0xffff9d015738c6e0,

    kretprobe_trampoline+0

    unix_stream_recvmsg+81

    sock_recvmsg+67

    ___sys_recvmsg+245

    __sys_recvmsg+81

, chrome]:

[512, 1K)           5859 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                |

[1K, 2K)            8303 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[2K, 4K)            1689 |@@@@@@@@@@                                          |

[4K, 8K)             476 |@@                                                  |

[8K, 16K)            101 |                                                    |

The output included many stack traces and locks, only one of which has been included here. It 
shows the address of the lock (0xffff9d015738c6e0), the stack trace to mutex_lock(), the process 
name ("chrome"), and the latency of mutex_lock(). This lock was acquired thousands of times 
while tracing, although it was usually fast: for example, the histogram shows that 8303 times it 
took between 1024 and 2048 nanoseconds (roughly one to two microseconds).

Now running mheld(8):

# mheld.bt

Attaching 9 probes...

Tracing mutex_lock() held times, Ctrl-C to end.

^C

[...]

 

@held_time_ns[0xffff9d015738c6e0,

    mutex_unlock+1

    unix_stream_recvmsg+81

    sock_recvmsg+67

    ___sys_recvmsg+245

    __sys_recvmsg+81

, chrome]:

[512, 1K)          16459 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[1K, 2K)            7427 |@@@@@@@@@@@@@@@@@@@@@@@                             |

This shows that the same process and stack trace was the holder for this lock.

These tools work by tracing the mutex_lock(), mutex_lock_interruptible(), and mutex_trylock() 
kernel functions because mutex tracepoints do not yet exist. Since these can be frequent, the over-
head while tracing may become significant for busy workloads.
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mlock

The source to mlock(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing mutex_lock() latency, Ctrl-C to end.\n");

}

 

kprobe:mutex_lock,

kprobe:mutex_lock_interruptible

/$1 == 0 || pid == $1/

{

        @lock_start[tid] = nsecs;

        @lock_addr[tid] = arg0;

}

 

kretprobe:mutex_lock

/($1 == 0 || pid == $1) && @lock_start[tid]/

{

        @lock_latency_ns[ksym(@lock_addr[tid]), kstack(5), comm] =

            hist(nsecs - @lock_start[tid]);

        delete(@lock_start[tid]);

        delete(@lock_addr[tid]);

}

 

kretprobe:mutex_lock_interruptible

/retval == 0 && ($1 == 0 || pid == $1) && @lock_start[tid]/

{

        @lock_latency_ns[ksym(@lock_addr[tid]), kstack(5), comm] =

            hist(nsecs - @lock_start[tid]);

        delete(@lock_start[tid]);

        delete(@lock_addr[tid]);

}

 

END

{

        clear(@lock_start);

        clear(@lock_addr);

}
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This times the duration of mutex_lock(), and also mutex_lock_interruptible() only if it returned 
successfully. mutex_trylock() is not traced, as it is assumed to have no latency. An optional argument 
to mlock(8) can be provided to specify the process ID to trace; without it, the entire system is traced.

mheld

The source to mheld(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing mutex_lock() held times, Ctrl-C to end.\n");

}

 

kprobe:mutex_lock,

kprobe:mutex_trylock,

kprobe:mutex_lock_interruptible

/$1 == 0 || pid == $1/

{

        @lock_addr[tid] = arg0;

}

 

kretprobe:mutex_lock

/($1 == 0 || pid == $1) && @lock_addr[tid]/

{

        @held_start[@lock_addr[tid]] = nsecs;

        delete(@lock_addr[tid]);

}

 

kretprobe:mutex_trylock,

kretprobe:mutex_lock_interruptible

/retval == 0 && ($1 == 0 || pid == $1) && @lock_addr[tid]/

{

        @held_start[@lock_addr[tid]] = nsecs;

        delete(@lock_addr[tid]);

}

 

kprobe:mutex_unlock

/($1 == 0 || pid == $1) && @held_start[arg0]/

{

        @held_time_ns[ksym(arg0), kstack(5), comm] =

            hist(nsecs - @held_start[arg0]);

        delete(@held_start[arg0]);

}
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END

{

        clear(@lock_addr);

        clear(@held_start);

}

This traces the held duration from the different mutex functions. As with mlock(8), an optional 
process ID argument can be provided.

14.4.6 Spin Locks

As with mutex locks traced previously, there are not yet tracepoints for tracing spin locks. 
Note that there are several types of spin locks, including spin_lock_bh(), spin_lock(), 
spin_lock_irq(), and spin_lock_irqsave() [162]. They are defined as follows in 
include/linux/spinlock.h:

#define spin_lock_irqsave(lock, flags)                          \

do {                                                            \

        raw_spin_lock_irqsave(spinlock_check(lock), flags);     \

} while (0)

[...]

#define raw_spin_lock_irqsave(lock, flags)                      \

        do {                                            \

                typecheck(unsigned long, flags);        \

                flags = _raw_spin_lock_irqsave(lock);   \

        } while (0)

You can see them using funccount(8):

# funccount '*spin_lock*'

Tracing 16 functions for "*spin_lock*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

_raw_spin_lock_bh                        7092

native_queued_spin_lock_slowpath         7227

_raw_spin_lock_irq                     261538

_raw_spin_lock                        1215218

_raw_spin_lock_irqsave                1582755

Detaching...
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funccount(8) is instrumenting the entry of these functions using kprobes. The return of these 
functions cannot be traced using kretprobes,7 so it’s not possible to time their duration directly 
from these functions. Look higher in the stack for functions that can be traced, e.g., by using 
stackcount(8) on the kprobe to see the call stack.

I usually debug spin lock performance issues using CPU profiling and flame graphs, since they 
appear as CPU-consuming functions.

14.4.7 kmem

kmem(8)8 is a bpftrace tool to trace kernel memory allocations by stack trace and prints statis-
tics on the number of allocations, the average allocation size, and the total bytes allocated. For 
example:

# kmem.bt

Attaching 3 probes...

Tracing kmem allocation stacks (kmalloc, kmem_cache_alloc). Hit Ctrl-C to end.

^C

[...]

@bytes[

    kmem_cache_alloc+288

    getname_flags+79

    getname+18

    do_sys_open+285

    SyS_openat+20

, Xorg]: count 44, average 4096, total 180224

@bytes[

    __kmalloc_track_caller+368

    kmemdup+27

    intel_crtc_duplicate_state+37

    drm_atomic_get_crtc_state+119

    page_flip_common+51

, Xorg]: count 120, average 2048, total 245760

This output has been truncated to show only the last two stacks. The first one shows an 
open(2) syscall that led to a slab allocation (kmem_cache_alloc()) during getname_flags() by the 
Xorg process. That allocation occurred 44 times while tracing, allocating an average of 4096 bytes, 
for a total of 180,224 bytes.

7 It was found that instrumenting these using kretprobes could deadlock the system [163], so BCC has added a 

section for banned kretprobes. There are other functions that are banned in the kernel using NOKPROBE_SYMBOL; 

I hope these are not included, as it may break kprobes for these functions as well, and kprobes have many uses even 

without the kretprobes.

8 Origin: I created it for this book on 15-Mar-2019.
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This works by tracing kmem tracepoints. Since allocations can be frequent, the overhead may 
become measurable on busy systems.

The source to kmem(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing kmem allocation stacks (kmalloc, kmem_cache_alloc). ");

        printf("Hit Ctrl-C to end.\n");

}

 

tracepoint:kmem:kmalloc,

tracepoint:kmem:kmem_cache_alloc

{

        @bytes[kstack(5), comm] = stats(args->bytes_alloc);

}

This uses the stats() built-in to print the triplet: count of allocations, average bytes, and total 
bytes. This can be switched to hist() for printing histograms if desired.

14.4.8 kpages

kpages(8)9 is a bpftrace tool that traces the other type of kernel memory allocation, alloc_pages(), 
via the kmem:mm_page_alloc tracepoint. Example output:

# kpages.bt 

Attaching 2 probes...

Tracing page allocation stacks. Hit Ctrl-C to end.

^C

[...]

@pages[

    __alloc_pages_nodemask+521

    alloc_pages_vma+136

    handle_pte_fault+959

    __handle_mm_fault+1144

    handle_mm_fault+177

, chrome]: 11733

The output has been truncated to show only one stack; this one shows Chrome processes allocating 
11,733 pages while tracing during page faults. This tool works by tracing kmem tracepoints. Since 
allocations can be frequent, the overhead may become measurable on busy systems.

9 Origin: I created it on 15-Mar-2019 for this book.
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The source to kpages(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing page allocation stacks. Hit Ctrl-C to end.\n");

}

 

tracepoint:kmem:mm_page_alloc

{

        @pages[kstack(5), comm] = count();

}

This can be implemented as a one-liner, but, to ensure that it isn’t overlooked, I’ve created it as the 
kpages(8) tool.

14.4.9 memleak

memleak(8) was introduced in Chapter 7: it is a BCC tool that shows allocations that were not 
freed while tracing, which can identify memory growth or leaks. By default it traces kernel 
allocations, for example:

# memleak

Attaching to kernel allocators, Ctrl+C to quit.

 

[13:46:02] Top 10 stacks with outstanding allocations:

[...]

        6922240 bytes in 1690 allocations from stack

                __alloc_pages_nodemask+0x209 [kernel]

                alloc_pages_current+0x6a [kernel]

                __page_cache_alloc+0x81 [kernel]

                pagecache_get_page+0x9b [kernel]

                grab_cache_page_write_begin+0x26 [kernel]

                ext4_da_write_begin+0xcb [kernel]

                generic_perform_write+0xb3 [kernel]

                __generic_file_write_iter+0x1aa [kernel]

                ext4_file_write_iter+0x203 [kernel]

                new_sync_write+0xe7 [kernel]

                __vfs_write+0x29 [kernel]

                vfs_write+0xb1 [kernel]

                sys_pwrite64+0x95 [kernel]

                do_syscall_64+0x73 [kernel]

                entry_SYSCALL_64_after_hwframe+0x3d [kernel]
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Just one stack has been included here, showing allocations via ext4 writes. See Chapter 7 for more 
about memleak(8).

14.4.10 slabratetop

slabratetop(8)10 is a BCC and bpftrace tool that shows the rate of kernel slab allocations by slab 
cache name, by tracing kmem_cache_alloc() directly. This is a companion to slabtop(1), which 
shows the volume of the slab caches (via /proc/slabinfo). For example, from a 48-CPU production 
instance:

# slabratetop

 

09:48:29 loadavg: 6.30 5.45 5.46 4/3377 29884

 

CACHE                            ALLOCS      BYTES

kmalloc-4096                        654    2678784

kmalloc-256                        2637     674816

filp                                392     100352

sock_inode_cache                     94      66176

TCP                                  31      63488

kmalloc-1024                         58      59392

proc_inode_cache                     69      46920

eventpoll_epi                       354      45312

sigqueue                            227      36320

dentry                              165      31680

[...]

This output shows that the kmalloc-4096 cache had the most bytes allocated in that output 
interval. As with slabtop(1), this tool can be used when troubleshooting unexpected memory 
pressure.

This works by using kprobes to trace the kmem_cache_alloc() kernel function. Since this function 
can be called somewhat frequently, the overhead of this tool might become noticeable on very 
busy systems.

BCC

Command line usage:

slabratetop [options] [interval [count]]

Options:

 ■ -C: Don’t clear the screen

10 Origin: I created it on 15-Oct-2016 for BCC, and I wrote the bpftrace version for this book on 26-Jan-2019.
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bpftrace

This version only counts allocations by cache name, printing output each second with a 
timestamp:

#!/usr/local/bin/bpftrace

 

#include <linux/mm.h>

#include <linux/slab.h>

#ifdef CONFIG_SLUB

#include <linux/slub_def.h>

#else

#include <linux/slab_def.h>

#endif

 

kprobe:kmem_cache_alloc

{

        $cachep = (struct kmem_cache *)arg0;

        @[str($cachep->name)] = count();

}

 

interval:s:1

{

        time();

        print(@);

        clear(@);

}

A check for the kernel compile option CONFIG_SLUB is needed so that the correct version of the 
slab allocator header files are included.

14.4.11 numamove

numamove(8)11 traces page migrations of type “NUMA misplaced.” These pages are moved to 
different NUMA nodes to improve memory locality and overall system performance. I’ve encoun-
tered production issues where up to 40% of CPU time was spent doing such NUMA page migra-
tions; this performance loss outweighed the benefits of NUMA page balancing. This tool helps me 
keep an eye on NUMA page migrations in case the problem returns. Example output:

# numamove.bt

Attaching 4 probes...

TIME          NUMA_migrations NUMA_migrations_ms

22:48:45                    0                  0

11 Origin: I created it for this book on 26-Jan-2019 and to use to check for recurrence of an issue.
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22:48:46                    0                  0

22:48:47                  308                 29

22:48:48                    2                  0

22:48:49                    0                  0

22:48:50                    1                  0

22:48:51                    1                  0

[...]

This output caught a burst of NUMA page migrations at 22:48:47: 208 migrations, taking 
29 milliseconds in total. The columns show the per-second rate of migrations and the time spent 
doing migrations in milliseconds. Note that NUMA balancing must be enabled (sysctl kernel.
numa_balancing=1) for this activity to occur.

The source to numamove(8) is:

#!/usr/local/bin/bpftrace

 

kprobe:migrate_misplaced_page { @start[tid] = nsecs; }

 

kretprobe:migrate_misplaced_page /@start[tid]/

{

        $dur = nsecs - @start[tid];

        @ns += $dur;

        @num++;

        delete(@start[tid]);

}

 

BEGIN

{

        printf("%-10s %18s %18s\n", "TIME",

            "NUMA_migrations", "NUMA_migrations_ms");

}

 

interval:s:1

{

        time("%H:%M:%S");

        printf("   %18d %18d\n", @num, @ns / 1000000);

        delete(@num);

        delete(@ns);

}

This uses a kprobe and kretprobe to trace the start and end of the kernel function 
migrate_misplaced_page(), and an interval probe to print out the statistics. 
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14.4.12 workq

workq(8)12 traces workqueue requests and times their latency. For example:

# workq.bt 

Attaching 4 probes...

Tracing workqueue request latencies. Ctrl-C to end.

^C

[...]

 

@us[intel_atomic_commit_work]: 

[1K, 2K)               7 |                                                    |

[2K, 4K)               9 |                                                    |

[4K, 8K)             132 |@@@@                                                |

[8K, 16K)           1524 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16K, 32K)          1019 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                  |

[32K, 64K)             2 |                                                    |

 

@us[kcryptd_crypt]: 

[2, 4)                 2 |                                                    |

[4, 8)              4864 |@@@@@@@@@@@@@@@@@@@@@@@                             |

[8, 16)            10746 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16, 32)            2887 |@@@@@@@@@@@@@                                       |

[32, 64)             456 |@@                                                  |

[64, 128)            250 |@                                                   |

[128, 256)           190 |                                                    |

[256, 512)            29 |                                                    |

[512, 1K)             14 |                                                    |

[1K, 2K)               2 |                                                    |

This output shows that the kcryptd_crypt() workqueue function was called frequently, 
usually taking between four and 32 microseconds.

This works by tracing the workqueue:workqueue_execute_start and 
workqueue:workqueue_execute_end tracepoints.

The source to workq(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing workqueue request latencies. Ctrl-C to end.\n");

}

12 Origin: I created it for this book on 14-Mar-2019.
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tracepoint:workqueue:workqueue_execute_start

{

        @start[tid] = nsecs;

        @wqfunc[tid] = args->function;

}

 

tracepoint:workqueue:workqueue_execute_end

/@start[tid]/

{

        $dur = (nsecs - @start[tid]) / 1000;

        @us[ksym(@wqfunc[tid])] = hist($dur);

        delete(@start[tid]);

        delete(@wqfunc[tid]);

}

 

END

{

        clear(@start);

        clear(@wqfunc);

}

This measures the time from execute start to end and saves it as a histogram keyed on the 
function name.

14.4.13 Tasklets

In 2009, a patch to add tasklet tracepoints was proposed by Anton Blanchard, but these are not in 
the kernel as of today [164]. The tasklet functions, initialized in tasklet_init(), can be traced using 
kprobes. For example, in net/ipv4/tcp_output.c:

[...]

                tasklet_init(&tsq->tasklet,

                             tcp_tasklet_func,

                             (unsigned long)tsq);

[...]

This creates a tasklet to call the tcp_tasklet_func() function. Tracing its latency using BCC 
funclatency(8):
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# funclatency -u tcp_tasklet_func

Tracing 1 functions for "tcp_tasklet_func"... Hit Ctrl-C to end.

^C

     usecs               : count     distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 0        |                                        |

         4 -> 7          : 3        |*                                       |

         8 -> 15         : 10       |****                                    |

        16 -> 31         : 22       |********                                |

        32 -> 63         : 100      |****************************************|

        64 -> 127        : 61       |************************                |

Detaching...

Custom tools can be created using bpftrace and kprobes for tasklet functions as desired.

14.4.14 Other Tools

Other tools worth mentioning for kernel analysis:

 ■ runqlat(8): Summarizes CPU run queue latency (Chapter 6).

 ■ syscount(8): Summarizes system calls by type and process (Chapter 6).

 ■ hardirq(8): Summarizes hard interrupt time (Chapter 6).

 ■ softirq(8): Summarizes soft interrupt time (Chapter 6).

 ■ xcalls(8): Times CPU cross calls (Chapter 6).

 ■ vmscan(8): Measures VM scanner shrink and reclaim times (Chapter 7).

 ■ vfsstat(8): Counts common VFS operation statistics (Chapter 8).

 ■ cachestat(8): Shows page cache statistics (Chapter 8).

 ■ biostacks(8): Shows block I/O initialization stacks with latency (Chapter 9).

 ■ skblife(8): Measures sk_buff lifespans (Chapter 10).

 ■ inject(8): Uses bpf_override_return() to modify kernel functions to return errors, for testing 
error paths. A BCC tool.

 ■ criticalstat(8)13: Measures atomic critical sections in the kernel, showing durations 
and stack traces. By default, it shows IRQ-disabled paths that lasted longer than 100 
microseconds. This is a BCC tool that can help you locate a source of latency in the kernel. 
It requires CONFIG_DEBUG_PREEMPT and CONFIG_PREEMPTIRQ_EVENTS.

Kernel analysis often involves custom instrumentation beyond the tools, and one-liners are a way 
to begin developing custom programs.

13 Origin: It was developed by Joel Fernandes on 18-Jun-2018.



ptg30854589

666 Chapter 14  Kernel

14.5 BPF One-Liners

These sections show BCC and bpftrace one-liners. Where possible, the same one-liner is 
implemented using both BCC and bpftrace.

14.5.1 BCC

Count system calls by process:

syscount -P

Count system calls by syscall name:

syscount

Count kernel function calls starting with "attach":

funccount 'attach*'

Time the kernel function vfs_read() and summarize as a histogram:

funclatency vfs_read

Frequency count the first integer argument to kernel function "func1":

argdist -C 'p::func1(int a):int:a'

Frequency count the return value from kernel function "func1":

argdist -C 'r::func1():int:$retval'

Cast the first argument as a sk_buff and frequency count the len member:

argdist -C 'p::func1(struct sk_buff *skb):unsigned int:skb->len'

Sample kernel-level stacks at 99 Hertz:

profile -K -F99

Count context switch stack traces:

stackcount -p 123 t:sched:sched_switch

14.5.2 bpftrace

Count system calls by process:

bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[pid, comm] = count(); }'

Count system calls by syscall probe name:

bpftrace -e 'tracepoint:syscalls:sys_enter_* { @[probe] = count(); }'

Count system calls by syscall function:

bpftrace -e 'tracepoint:raw_syscalls:sys_enter {

    @[ksym(*(kaddr("sys_call_table") + args->id * 8))] = count(); }'
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Count kernel function calls starting with "attach":

bpftrace -e 'kprobe:attach* { @[probe] = count(); }'

Time the kernel function vfs_read() and summarize as a histogram:

bpftrace -e 'k:vfs_read { @ts[tid] = nsecs; } kr:vfs_read /@ts[tid]/ {

    @ = hist(nsecs - @ts[tid]); delete(@ts[tid]); }'

Frequency count the first integer argument to kernel function "func1":

bpftrace -e 'kprobe:func1 { @[arg0] = count(); }'

Frequency count the return value from kernel function "func1":

bpftrace -e 'kretprobe:func1 { @[retval] = count(); }'

Sample kernel-level stacks at 99 Hertz, excluding idle:

bpftrace -e 'profile:hz:99 /pid/ { @[kstack] = count(); }'

Sample on-CPU kernel function at 99 Hertz:

bpftrace -e 'profile:hz:99 { @[kstack(1)] = count(); }'

Count context switch stack traces:

bpftrace -e 't:sched:sched_switch { @[kstack, ustack, comm] = count(); }'

Count workqueue requests by kernel function:

bpftrace -e 't:workqueue:workqueue_execute_start { @[ksym(args->function)] =

    count() }'

Count hrtimer starts by kernel function:

bpftrace -e 't:timer:hrtimer_start { @[ksym(args->function)] = count(); }'

14.6 BPF One-Liners Examples

Including some sample output, as was done for each tool, is also useful for illustrating one-liners.

14.6.1 Counting System Calls by Syscall Function

# bpftrace -e 'tracepoint:raw_syscalls:sys_enter {

    @[ksym(*(kaddr("sys_call_table") + args->id * 8))] = count(); }'

Attaching 1 probe...

^C

[...]

@[sys_writev]: 5214

@[sys_sendto]: 5515

@[SyS_read]: 6047

@[sys_epoll_wait]: 13232

@[sys_poll]: 15275
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@[SyS_ioctl]: 19010

@[sys_futex]: 20383

@[SyS_write]: 26907

@[sys_gettid]: 27254

@[sys_recvmsg]: 51683

This output shows that the sys_recvmsg() function, likely for the recvmsg(2) syscall, was called 
the most while tracing: 51,683 times.

This one-liner uses the single raw_syscalls:sys_enter tracepoint, rather than matching all the 
syscalls:sys_enter_* tracepoints, making it much faster to initialize and terminate. However, the 
raw_syscall tracepoint only provides an ID number for the syscall; this one-liner translates it into 
the syscall function by looking up its entry in the kernel sys_call_table.

14.6.2 Counting hrtimer Starts by Kernel Function

# bpftrace -e 't:timer:hrtimer_start { @[ksym(args->function)] = count(); }'

Attaching 1 probe...

^C

 

@[timerfd_tmrproc]: 2

@[sched_rt_period_timer]: 2

@[watchdog_timer_fn]: 8

@[intel_uncore_fw_release_timer]: 63

@[it_real_fn]: 78

@[perf_swevent_hrtimer]: 3521

@[hrtimer_wakeup]: 6156

@[tick_sched_timer]: 13514

This shows the timer functions in use; the output caught perf_swevent_hrtimer() as perf(1) was 
doing a software-based CPU profile. I wrote this one-liner to check which CPU profile mode was 
in use (cpu-clock versus cycles events), since the software version uses timers.

14.7 Challenges

Some challenges when tracing kernel functions:

 ■ Some kernel functions are inlined by the compiler. This can make them invisible to 
BPF tracing. One workaround is to trace a parent or child function that isn’t inlined to 
accomplish the same task (perhaps requiring a filter). Another is to use kprobe instruction 
offset tracing.
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 ■ Some kernel functions are unsafe to trace as they run in special modes, such as interrupts 
disabled, or are part of the tracing framework itself. These are blacklisted by the kernel to 
make them unavailable to trace.

 ■ Any kprobe-based tool will need maintenance to match changes to the kernel. Several BCC 
tools have already broken and required fixes to span newer kernels. The long-term solution 
is to use tracepoints instead where possible.

14.8 Summary

This chapter focused on kernel analysis, as supplemental material beyond the prior resource-
oriented chapters. Traditional tools including Ftrace were summarized, then off-CPU analysis was 
explored in more detail with BPF, as well as kernel memory allocation, wakeups, and work queue 
requests.
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Chapter 15
Containers

Containers have become a commonly used method for deploying services on Linux, providing 
security isolation, application startup times, resource controls, and ease of deployment. This 
chapter covers how to use BPF tools in container environments and covers some differences in 
tools and methods for analysis that are specific to containers.

Learning Objectives:

 ■ Understand the makeup of containers and their targets for tracing

 ■ Understand challenges with privileges, container IDs, and FaaS

 ■ Quantify CPU sharing between containers

 ■ Measure blk cgroup I/O throttling

 ■ Measure the performance of overlay FS

This chapter begins with the necessary background for container analysis, then describes BPF 
capabilities. Various BPF tools and one-liners are then introduced.

The knowledge and tools you need to analyze the performance of applications in containers is 
mostly covered in prior chapters: with containers, CPUs are still CPUs, file systems are still file 
systems, and disks are still disks. This chapter focuses on the container-specific differences, such 
as namespaces and cgroups.

15.1 Background

Containers allow multiple instances of an operating system to execute on a single host. There are 
two main ways containers can be implemented:

 ■ OS virtualization: This involves partitioning the system using namespaces on Linux 
and is usually combined with cgroups for resource controls. A single kernel is running, 
shared between all containers. This is the approach used by Docker, Kubernetes, and other 
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container environments.

 ■ Hardware (HW) virtualization: This involves running lightweight virtual machines, each 
with its own kernel. This approach is used by Intel Clear Containers (now Kata Containers 
[165]) and Firecracker from AWS [166].

Chapter 16 provides some insights for the analysis of HW-virtualized containers. This chapter 
covers OS-virtualized containers.

A typical Linux container implementation is pictured in Figure 15-1.

Figure 15-1 Linux OS-virtualized containers

A namespace restricts the view of the system. Namespaces include cgroup, ipc, mnt, net, pid, 
user, and uts. A pid namespace restricts the container’s processes view of /proc to see only the 
container’s own processes; an mnt namespace restricts the file system mounts that can be seen; 
the uts1 namespace isolates details returned from the uname(2) syscall, and so on.

The control group (cgroup) restricts usage of resources. There are two versions of cgroups in 
the Linux kernel, v1 and v2; many projects such as Kubernetes are still using v1. cgroups for v1 
include blkio, cpu, cpuacct, cpuset, devices, hugetlb, memory, net_cls, net_prio, pids, and rmda. 
These can be configured to limit resource contention between containers, for example by putting 
a hard limit on CPU and memory usage, or softer limits (share-based) for CPU and disk usage. 
There can also be a hierarchy of cgroups, including system cgroups that are shared between the 
containers, as pictured in Figure 15-1.2

1 Named after the utsname structure from the uname(2) syscall, which itself is named after UNIX Time-sharing System 

[167].

2 I also used parallelograms for cgroups, to imply a range of usage between soft and hard limits, rather than the ridged 
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cgroups v2 solves various shortcomings of v1, and it is expected that container technologies will 
migrate to v2 in the coming years, with v1 eventually being deprecated.

A common concern for container performance analysis is the possible presence of “noisy 
neighbors”: container tenants that are aggressively consuming resources and causing access 
contention for others. Since these container processes are all under one kernel and can be 
analyzed simultaneously from the host, this is not dissimilar to traditional performance analysis 
of multiple applications running on one time-sharing system. The main difference is that cgroups 
may impose additional software limits for resources that are encountered before the hardware 
limits. Monitoring tools that have not been updated to support containers may be blind to these 
soft limits and the performance issues they cause.

15.1.1 BPF Capabilities

Container analysis tools are typically metrics based, showing which containers, cgroups, and 
namespaces exist, their settings, and their sizes. BPF tracing tools can provide many more details, 
answering:

 ■ What is the run-queue latency per container?

 ■ Is the scheduler switching between containers on the same CPU?

 ■ Are CPU or disk soft limits encountered?

These questions can be answered with BPF by instrumenting tracepoints for scheduler events 
and kprobes for kernel functions. As has been discussed in prior chapters, some of these events 
(such as scheduling) can be very frequent and are more suited to ad hoc analysis than continuous 
monitoring.

There are tracepoints for cgroup events, including cgroup:cgroup_setup_root, 
cgroup:cgroup_attach_task, and others. These are high-level events that can help debug 
container startup.

Network packet programs can also be attached to cgroup ingress and egress using the 
BPF_PROG_TYPE_CGROUP_SKB program type (not shown in this chapter).

15.1.2 Challenges

Some challenges when using BPF tracing with containers are covered in the following topics.

BPF Privileges

BPF tracing currently requires root privileges, which for most container environments means that 
BPF tracing tools can only be executed from the host, not from within containers. This should 
change; non-privileged BPF access is currently being discussed specifically to solve the container 
problem.3 This was also summarized in Section 11.1.2 in Chapter 11.

rectangles of namespaces.

3 I’m writing this from the BPF track at the LSFMM summit 2019, where the discussions are happening in real-time.
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Container IDs

Container IDs used by technologies such as Kubernetes and Docker are managed by user-space 
software. For example (highlighted in bold):

# kubectl get pod

NAME                         READY   STATUS              RESTARTS   AGE

kubernetes-b94cb9bff-kqvml   0/1     ContainerCreating   0          3m

[...]

# docker ps

CONTAINER ID  IMAGE   COMMAND   CREATED      STATUS      PORTS  NAMES

6280172ea7b9  ubuntu  "bash"    4 weeks ago  Up 4 weeks         eager_bhaskara

[...]

In the kernel, a container is a set of cgroups and namespaces, but there is no kernel-space 
identifier tying these together. Adding a container ID to the kernel has been suggested [168], 
but so far it has not happened.

This can be a problem for when you run BPF tracing tools from the host (as they are normally 
executed: see the subsection “BPF Privileges” under Section 15.1.2). From the host, BPF tracing 
tools capture events from all containers, and you may want to be able to filter for just one 
container or break down events per container. But there is no container ID available in the kernel 
to use for filters or breakdowns.

Fortunately, there are a number of workarounds, although each depends on the specific 
configuration of the containers under investigation. Containers use some combination 
of namespaces; their details can be read from the nsproxy struct in the kernel. From 
linux/nsproxy.h:

struct nsproxy {

        atomic_t count;

        struct uts_namespace *uts_ns;

        struct ipc_namespace *ipc_ns;

        struct mnt_namespace *mnt_ns;

        struct pid_namespace *pid_ns_for_children;

        struct net           *net_ns;

        struct cgroup_namespace *cgroup_ns;

};

A container almost certainly uses a PID namespace, so you can at least use that to differentiate 
them. As an example of accessing this for the current task using bpftrace:

#include <linux/sched.h>

[...]

        $task = (struct task_struct *)curtask;

        $pidns = $task->nsproxy->pid_ns_for_children->ns.inum;
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This sets $pidns to be the PID namespace ID (integer), which can be printed or filtered. It will 
match the PID namespace seen in the /proc/PID/ns/pid_for_children symlink.

If the container runtime uses a UTS namespace and sets the nodename to be the container name 
(as is often the case with Kubernetes and Docker), then the nodename can also be fetched from a 
BPF program to identify containers on output. For example, using bpftrace syntax:

#include <linux/sched.h>

        [...]

        $task = (struct task_struct *)curtask;

        $nodename = $task->nsproxy->uts_ns->name.nodename;

The pidnss(8) tool (covered in Section 15.3.2) does this.

The network namespace can be a useful identifier for the analysis of Kubernetes pods since 
containers in the pod will likely share the same network namespace.

You can add these namespace identifiers to the tools covered in prior chapters to make them 
container-aware, including the PID namespace ID or UTS nodename string, along with the PID. 
Note that this only works if the instrumentation is in process context, so that curtask is valid.

Orchestration

Running BPF tools across multiple container hosts presents a similar problem to a cloud deploy-
ment across many VMs. Your company may already have orchestration software to manage 
this that can run a given command across multiple hosts and collect the output. There are also 
tailored solutions, including kubectl-trace.

kubectl-trace is a Kubernetes scheduler for running bpftrace programs across a Kubernetes cluster. 
It also provides a $container_pid variable for use in bpftrace programs that refers to the pid of the 
root process. For example, this command:

kubectl trace run -e 'k:vfs* /pid == $container_pid/ { @[probe] = count() }' mypod -a

counts kernel vfs*() calls for the mypod container application until you press Ctrl-C. Programs 
can be specified as one-liners, as in this example, or read from files using -f [169]. kubectl-trace is 
covered further in Chapter 17.

Function as a Service (FaaS)

A new model for computing involves defining application functions that a service provider 
runs, likely in containers. The end user defines only functions and may not have SSH access to 
the system that runs the functions. Such an environment is not expected to support end users 
running BPF tracing tools. (It cannot run other tools, either.) When non-privileged BPF tracing 
is supported by the kernel, it might be possible for an application function to make BPF kernel 
calls directly, but this presents many challenges. FaaS analysis with BPF will likely only be possible 
from the host, performed by users or interfaces that have access to the host.
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15.1.3 Strategy

If you are new to container analysis, it can be difficult to know where to start—which target to 
begin analyzing and with which tool. Here is an overall suggested strategy that you can follow. 
The next sections explain the tools involved in more detail.

 1. Examine the system for hardware resource bottlenecks and other issues covered in previous 
chapters (Chapter 6, Chapter 7, etc.). In particular, create CPU flame graphs for the running 
applications.

 2. Check whether cgroup software limits have been encountered.

 3. Browse and execute the BPF tools listed in Chapters 6 to 14.

Most container issues that I’ve encountered were caused by application or hardware problems, 
not the container configuration. CPU flame graphs would often show an application-level issue 
that had nothing to do with running within containers. Do check for such issues, as well as 
investigating the container limits.

15.2 Traditional Tools

Containers can be analyzed using the numerous performance tools covered by earlier chapters. 
Analysis of container specifics from the host and within containers using traditional tools is 
summarized here.4

15.2.1 From the Host

For the analysis of container-specific behavior, especially the usage of cgroups, there are some 
tools and metrics that can be used from the host, shown in Table 15-1.

Table 15-1 Traditional Host Tools for Container Analysis

Tool Type Description

systemd-cgtop Kernel statistics Top for cgroups

kubectl top Kernel statistics Top for Kubernetes resources

docker stats Kernel statistics Resource usage by Docker container

/sys/fs/cgroups Kernel statistics Raw cgroup statistics

perf Statistics and tracing Multitool tracer that supports cgroup filters

These tools are summarized in the sections that follow.

4 For more details on this topic, see my “Linux Container Performance Analysis” talk video and slides from USENIX LISA 

2017 [Gregg 17].
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15.2.2 From the Container

Traditional tools can also be used within the containers themselves, bearing in mind that some 
metrics exposed will refer to the entire host and not just the container. Table 15-2 lists the state of 
commonly-used tools, as they are for a Linux 4.8 kernel.

Table 15-2 Traditional Tools When Run from The Container

Tool Description

top(1) Process table shows container processes; summary heading shows the host

ps(1) Shows container processes

uptime(1) Shows host statistics, including host load averages

mpstat(1) Shows host CPUs, and host CPU usage

vmstat(8) Shows host CPUs, memory, and other statistics

iostat(1) Shows host disks

free(1) Shows host memory

The term container-aware is used to described tools that, when run from the container, will show 
only the container processes and resources. None of the tools in this table are fully container-
aware. This may change over time as the kernel and these tools are updated. For now, this is a 
known gotcha for performance analysis within containers.

15.2.3 systemd-cgtop

The systemd-cgtop(1) command shows the top resource-consuming cgroups. For example, from a 
production container host:

# systemd-cgtop

Control Group                              Tasks   %CPU   Memory  Input/s Output/s

/                                              -  798.2    45.9G        -        -

/docker                                     1082  790.1    42.1G        -        -

/docker/dcf3a...9d28fc4a1c72bbaff4a24834     200  610.5    24.0G        -        -

/docker/370a3...e64ca01198f1e843ade7ce21     170  174.0     3.0G        -        -

/system.slice                                748    5.3     4.1G        -        -

/system.slice/daemontools.service            422    4.0     2.8G        -        -

/docker/dc277...42ab0603bbda2ac8af67996b     160    2.5     2.3G        -        -

/user.slice                                    5    2.0    34.5M        -        -

/user.slice/user-0.slice                       5    2.0    15.7M        -        -

/user.slice/u....slice/session-c26.scope       3    2.0    13.3M        -        -

/docker/ab452...c946f8447f2a4184f3ccff2a     174    1.0     6.3G        -        -

/docker/e18bd...26ffdd7368b870aa3d1deb7a     156    0.8     2.9G        -        -

[...]
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This output shows that a cgroup named "/docker/dcf3a..." is consuming 610.5% total CPU for this 
update interval (across many CPUs) and 24 Gbytes of main memory, with 200 running tasks. The 
output also shows a number of cgroups created by systemd for system services (/system.slice) and 
user sessions (/user.slice).

15.2.4 kubectl top

The Kubernetes container orchestration system provides a way to check basic resource usage using 
kubectl top. Checking hosts (“nodes”):

# kubectl top nodes

NAME                         CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%

bgregg-i-03cb3a7e46298b38e   1781m        10%    2880Mi          9%

The "CPU(cores)" time shows cumulative milliseconds of CPU time, and "CPU%" shows the 
current usage of the node. Checking containers (“pods”):

# kubectl top pods

NAME                         CPU(cores)   MEMORY(bytes)

kubernetes-b94cb9bff-p7jsp   73m          9Mi

This shows the cumulative CPU time and current memory size.

These commands require a metrics server to be running, which may be added by default 
depending on how you initialized Kubernetes [170]. Other monitoring tools can also display these 
metrics in a GUI, including cAdvisor, Sysdig, and Google Cloud Monitoring [171].

15.2.5 docker stats

The Docker container technology provides some docker(1) analysis subcommands, including 
stats. For example, from a production host:

# docker stats

CONTAINER     CPU %     MEM USAGE / LIMIT     MEM %   NET I/O    BLOCK I/O        PIDS

353426a09db1  526.81%   4.061 GiB / 8.5 GiB   47.78%  0 B / 0 B  2.818 MB / 0 B   247

6bf166a66e08  303.82%   3.448 GiB / 8.5 GiB   40.57%  0 B / 0 B  2.032 MB / 0 B   267

58dcf8aed0a7  41.01%    1.322 GiB / 2.5 GiB   52.89%  0 B / 0 B  0 B / 0 B        229

61061566ffe5  85.92%    220.9 MiB / 3.023 GiB 7.14%   0 B / 0 B  43.4 MB / 0 B    61

bdc721460293  2.69%     1.204 GiB / 3.906 GiB 30.82%  0 B / 0 B  4.35 MB / 0 B    66

[...]

This shows that a container with UUID "353426a09db1" was consuming a total of 527% CPU for 
this update interval and was using four Gbytes of main memory versus an 8.5 Gbyte limit. For this 
interval there was no network I/O, and only a small volume (Mbytes) of disk I/O.
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15.2.6 /sys/fs/cgroups

This directory contains virtual files of cgroup statistics. These are read and graphed by various 
container monitoring products. For example:

# cd /sys/fs/cgroup/cpu,cpuacct/docker/02a7cf65f82e3f3e75283944caa4462e82f...

# cat cpuacct.usage

1615816262506

# cat cpu.stat

nr_periods 507

nr_throttled 74

throttled_time 3816445175

The cpuacct.usage file shows the CPU usage of this cgroup in total nanoseconds. The cpu.stat 
file shows the number of times this cgroup was CPU throttled (nr_throttled), as well as the total 
throttled time in nanoseconds. This example shows that this cgroup was CPU throttled 74 times 
out of 507 time periods, for a total of 3.8 throttled seconds.

There is also a cpuacct.usage_percpu, this time showing a Kubernetes cgroup:

# cd /sys/fs/cgroup/cpu,cpuacct/kubepods/burstable/pod82e745...

# cat cpuacct.usage_percpu

37944772821 35729154566 35996200949 36443793055 36517861942 36156377488 36176348313 

35874604278 37378190414 35464528409 35291309575 35829280628 36105557113 36538524246 

36077297144 35976388595 

The output includes 16 fields for this 16-CPU system, with total CPU time in nanoseconds.

These cgroupv1 metrics are documented in the kernel source under Documentation/cgroup-v1/
cpuacct.txt [172].

15.2.7 perf

The perf(1) tool, introduced in Chapter 6, can be run from the host and can filter on cgroups 
using --cgroup (-G). This can be used for CPU profiling, for example, with the perf record 
subcommand:

perf record -F 99 -e cpu-clock --cgroup=docker/1d567... -a -- sleep 30 

The event can be anything that occurs in process context, including syscalls.

This switch is also available with the perf stat subcommand, so that counts of events can be 
collected instead of writing events to the perf.data file. For example, counting the read family of 
syscalls and showing a different format of cgroup specification (with identifiers elided):

perf stat -e syscalls:sys_enter_read* --cgroup /containers.slice/5aad.../...

Multiple cgroups can be specified.

perf(1) can trace the same events that BPF can, although without the programmatic capabilities that 
BCC and bpftrace provide. perf(1) does have its own BPF interface: an example is in Appendix D. For 
other uses of perf that can be adapted to container inspection, see my perf examples page [73].
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15.3 BPF Tools

This section covers the BPF tools you can use for container performance analysis and 
troubleshooting. These are either from BCC or were created for this book. Table 15-3 lists the 
tool origins.

Table 15-3 Container-Specific Tools

Tool Source Target Description

runqlat BCC Sched Summarize CPU run queue latency by PID namespace

pidnss Book Sched Count PID namespace switches: containers sharing a CPU

blkthrot Book Block I/O Count block I/O throttles by blk cgroup

overlayfs Book Overlay FS Show overlay FS read and write latency

For container analysis, these should be used in conjunction with the many tools from the prior 
chapters.

15.3.1 runqlat

runqlat(8) was introduced in Chapter 6: it shows run queue latency as a histogram, helping to 
identify CPU saturation issues. It supports a --pidnss option to show the PID namespace. For 
example, on a production container system:

host# runqlat --pidnss -m

Tracing run queue latency... Hit Ctrl-C to end.

^C

pidns = 4026532382

     msecs               : count     distribution

         0 -> 1          : 646       |****************************************|

         2 -> 3          : 18        |*                                       |

         4 -> 7          : 48        |**                                      |

         8 -> 15         : 17        |*                                       |

        16 -> 31         : 150       |*********                               |

        32 -> 63         : 134       |********                                |

 

[…]

pidns = 4026532870

     msecs               : count     distribution

         0 -> 1          : 264      |****************************************|

         2 -> 3          : 0        |                                        |

[...]



ptg30854589

68115.3 BPF Tools

This shows that one PID namespace (4026532382) is suffering much higher run queue latency 
than the other.

This tool does not print the container name, since the mapping of a namespace to a container is 
specific to the container technology used. At the very least, the ls(1) command can be used as the 
root user to determine the namespace for a given PID. For example:

# ls -lh /proc/181/ns/pid

lrwxrwxrwx 1 root root 0 May  6 13:50 /proc/181/ns/pid -> 'pid:[4026531836]'

This shows that PID 181 is running in PID namespace 4026531836.

15.3.2 pidnss

pidnss(8)5 counts when a CPU switches between running one container and another, by 
detecting a PID namespace switch during a scheduler context switch. This tool can be used to 
confirm or exonerate issues of multiple containers contending for a single CPU. For example:

# pidnss.bt 

Attaching 3 probes...

Tracing PID namespace switches. Ctrl-C to end

^C

Victim PID namespace switch counts [PIDNS, nodename]:

 

 

@[0, ]: 2

@[4026532981, 6280172ea7b9]: 27

@[4026531836, bgregg-i-03cb3a7e46298b38e]: 28

The output shows two fields and then a switch count. The fields are the PID namespace ID 
and the nodename (if present). This output shows a PID namespace with the nodename 
"bgregg-i-03cb3a7e46298b38e" (the host) switched to another namespace 28 times while 
tracing, and another with nodename "6280172ea7b9" (a Docker container) switched 27 times. 
These details can be confirmed from the host:

# uname -n

bgregg-i-03cb3a7e46298b38e

# docker ps

CONTAINER ID  IMAGE   COMMAND   CREATED      STATUS      PORTS  NAMES

6280172ea7b9  ubuntu  "bash"    4 weeks ago  Up 4 weeks         eager_bhaskara

[...]

5 Origin: I created this for this book on 6-May-2019, based on a suggestion from my colleague Sargun Dhillon.
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This works by tracing the kernel context switch path using kprobes. The overhead is expected to 
become significant for busy I/O workloads.

Here is another example, this time during the setup of a Kubernetes cluster:

# pidnss.bt

Attaching 3 probes...

Tracing PID namespace switches. Ctrl-C to end

^C

Victim PID namespace switch counts [PIDNS, nodename]:

 

 

@[-268434577, cilium-operator-95ddbb5fc-gkspv]: 33

@[-268434291, cilium-etcd-g9wgxqsnjv]: 35

@[-268434650, coredns-fb8b8dccf-w7khw]: 35

@[-268434505, default-mem-demo]: 36

@[-268434723, coredns-fb8b8dccf-crrn9]: 36

@[-268434509, etcd-operator-797978964-7c2mc]: 38

@[-268434513, kubernetes-b94cb9bff-p7jsp]: 39

@[-268434810, bgregg-i-03cb3a7e46298b38e]: 203

[...]

@[-268434222, cilium-etcd-g9wgxqsnjv]: 597

@[-268434295, etcd-operator-797978964-7c2mc]: 1301

@[-268434808, bgregg-i-03cb3a7e46298b38e]: 1582

@[-268434297, cilium-operator-95ddbb5fc-gkspv]: 3961

@[0, ]: 8130

@[-268434836, bgregg-i-03cb3a7e46298b38e]: 8897

@[-268434846, bgregg-i-03cb3a7e46298b38e]: 15813

@[-268434581, coredns-fb8b8dccf-w7khw]: 39656

@[-268434654, coredns-fb8b8dccf-crrn9]: 40312

[...]

The source to pidnss(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/sched.h>

#include <linux/nsproxy.h>

#include <linux/utsname.h>

#include <linux/pid_namespace.h>

 

BEGIN

{

        printf("Tracing PID namespace switches. Ctrl-C to end\n");

}
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kprobe:finish_task_switch

{

        $prev = (struct task_struct *)arg0;

        $curr = (struct task_struct *)curtask;

        $prev_pidns = $prev->nsproxy->pid_ns_for_children->ns.inum;

        $curr_pidns = $curr->nsproxy->pid_ns_for_children->ns.inum;

        if ($prev_pidns != $curr_pidns) {

                @[$prev_pidns, $prev->nsproxy->uts_ns->name.nodename] = count();

        }

}

 

END

{

        printf("\nVictim PID namespace switch counts [PIDNS, nodename]:\n");

}

This is also an example of pulling out namespace identifiers. The identifiers from other 
namespaces can be fetched similarly.

Should more container-specific details be needed beyond the kernel namespace and cgroup info, 
this tool could be ported to BCC so that it can include code that fetches details directly from 
Kubernetes, Docker, etc.

15.3.3 blkthrot

blkthrot(8)6 counts when the cgroup blk controller throttles I/O based on a hard limit. For 
example:

# blkthrot.bt 

Attaching 3 probes...

Tracing block I/O throttles by cgroup. Ctrl-C to end

^C

 

@notthrottled[1]: 506

 

@throttled[1]: 31

While tracing this, I saw that blk cgroup with ID 1 was throttled 31 times and not throttled 
506 times.

This works by tracing the kernel blk_throtl_bio() function. The overhead should be minimal as 
block I/O is typically a relatively low-frequency event.

6 Origin: I created this for this book on 6-May-2019.
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The source to blkthrot(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/cgroup-defs.h>

#include <linux/blk-cgroup.h>

 

BEGIN

{

        printf("Tracing block I/O throttles by cgroup. Ctrl-C to end\n");

}

 

kprobe:blk_throtl_bio

{

        @blkg[tid] = arg1;

}

 

kretprobe:blk_throtl_bio

/@blkg[tid]/

{

        $blkg = (struct blkcg_gq *)@blkg[tid];

        if (retval) {

                @throttled[$blkg->blkcg->css.id] = count();

        } else {

                @notthrottled[$blkg->blkcg->css.id] = count();

        }

        delete(@blkg[tid]);

}

This is also an example of pulling out a cgroup ID, which is in the cgroup_subsys_state struct, in 
this case as css in the blkcg.

If desired, a different approach could be used: checking for the presence of the BIO_THROTTLED 
flag on the struct bio, upon block completions.

15.3.4 overlayfs

overlayfs(8)7 traces the latency of overlay file system reads and writes. The overlay FS is commonly 
used for containers, so this tool provides a view of container file system performance. For 
example:

7 Origin: My colleague Jason Koch created this on 18-Mar-2019 while working on container performance.
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# overlayfs.bt 4026532311

Attaching 7 probes...

 

21:21:06 --------------------

@write_latency_us: 

[128, 256)             1 |                                                    |

[256, 512)           238 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

 

@read_latency_us: 

[1]                    3 |@                                                   |

[2, 4)                 1 |                                                    |

[4, 8)                 3 |@                                                   |

[8, 16)                0 |                                                    |

[16, 32)             115 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@    |

[32, 64)             123 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[64, 128)              0 |                                                    |

[128, 256)             1 |                                                    |

 

21:21:07 --------------------

[...]

This shows the latency distribution of reads and writes, with the reads usually taking between 
16 and 64 microseconds during the 21:21:06 interval.

This works by tracing the overlayfs file_operations_t kernel functions for read and write. The over-
head is relative to the rate of these functions, and should be negligible for many workloads.

The source to overlayfs(8) is:

#!/usr/local/bin/bpftrace

 

#include <linux/nsproxy.h>

#include <linux/pid_namespace.h>

 

kprobe:ovl_read_iter

/((struct task_struct *)curtask)->nsproxy->pid_ns_for_children->ns.inum == $1/

{

        @read_start[tid] = nsecs;

}

 

kretprobe:ovl_read_iter

/((struct task_struct *)curtask)->nsproxy->pid_ns_for_children->ns.inum == $1/

{

        $duration_us = (nsecs - @read_start[tid]) / 1000;

        @read_latency_us = hist($duration_us);

        delete(@read_start[tid]);

}
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kprobe:ovl_write_iter

/((struct task_struct *)curtask)->nsproxy->pid_ns_for_children->ns.inum == $1/

{

        @write_start[tid] = nsecs;

}

 

kretprobe:ovl_write_iter

/((struct task_struct *)curtask)->nsproxy->pid_ns_for_children->ns.inum == $1/

{

        $duration_us = (nsecs - @write_start[tid]) / 1000;

        @write_latency_us = hist($duration_us);

        delete(@write_start[tid]);

}

 

interval:ms:1000

{

        time("\n%H:%M:%S --------------------\n");

        print(@write_latency_us);

        print(@read_latency_us);

        clear(@write_latency_us);

        clear(@read_latency_us);

}

 

END

{

        clear(@write_start);

        clear(@read_start);

}

The ovl_read_iter() and ovl_write_iter() functions were added in Linux 4.19. This tool accepts 
the PID namespace ID as an argument: it was developed for Docker, to be run with the following 
wrapper (overlayfs.sh) that accepted the Docker container ID as the argument.

#!/bin/bash

 

PID=$(docker inspect -f='{{.State.Pid}}' $1)

NSID=$(stat /proc/$PID/ns/pid -c "%N" | cut -d[ -f2 | cut -d] -f1)

 

bpftrace ./overlayfs.bt $NSID
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You can adjust this to match the container technology you use. That this step is necessary is 
discussed in Section 15.1.2: there is no in-kernel container ID; it is a construct of user space. This 
is a user space wrapper to convert the container ID into a PID namespace that the kernel can 
match on.

15.4 BPF One-Liners

This section shows bpftrace one-liners.

Count cgroup ID at 99 Hertz:

bpftrace -e 'profile:hz:99 { @[cgroup] = count(); }'

Trace open filenames for cgroup v2 named "container1":

bpftrace -e 't:syscalls:sys_enter_openat

    /cgroup == cgroupid("/sys/fs/cgroup/unified/container1")/ {

    printf("%s\n", str(args->filename)); }'

15.5 Optional Exercises

If not specified, these can be completed using either bpftrace or BCC:

 1. Modify runqlat(8) from Chapter 6 to include the UTS namespace nodename 
(see pidnss(8)).

 2. Modify opensnoop(8) from Chapter 8 to include the UTS namespace nodename.

 3. Develop a tool to show which containers are swapping out due to the mem cgroup 
(see the mem_cgroup_swapout() kernel function).

15.6 Summary

This chapter summarized Linux containers and showed how BPF tracing can expose container 
CPU contention and cgroup throttling durations, as well as overlay FS latency.
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Chapter 16
Hypervisors

This chapter discusses the use of BPF tools with virtual machine hypervisors for hardware 
virtualization, of which Xen and KVM are popular examples. BPF tools with OS-level 
virtualization—containers—was discussed in the previous chapter.

Learning Objectives:

 ■ Understand hypervisor confi gurations and BPF tracing capabilities

 ■ Trace guest hypercalls and exits, where possible

 ■ Summarize stolen CPU time

This chapter begins with the necessary background for hardware virtualization analysis, describes 
BPF capabilities and strategies for the different hypervisor situations, and includes some example 
BPF tools.

16.1 Background

Hardware virtualization creates a virtual machine (VM) that can run an entire operating system, 
including its own kernel. Two common configurations of hypervisors are shown in Figure 16-1.

Figure 16-1 Common hypervisor configurations
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A common classification of hypervisors identifies them as type 1 or 2 [Goldberg 73]. However, 
with advancements in these technologies these types are no longer a practical distinction [173] 
as type 2 has become type 1-ish by using kernel modules. The following instead describes two 
common configurations shown in Figure 16-1:

 ■ Config A: This configuration is called a native hypervisor or a bare-metal hypervisor. The 
hypervisor software runs directly on the processors, which creates domains for running 
guest virtual machines and schedules virtual guest CPUs onto the real CPUs. A privileged 
domain (number 0 in Figure 16-1) can administer the others. A popular example is the Xen 
hypervisor.

 ■ Config B: The hypervisor software is executed by a host OS kernel and may be composed 
of kernel-level modules and user-level processes. The host OS has privileges to administer 
the hypervisor, and its kernel schedules the VM CPUs along with other processes on the 
host. By use of kernel modules, this configuration also provides direct access to hardware. 
A popular example is the KVM hypervisor.

Both configurations may involve running an I/O proxy (e.g., the QEMU software) in domain 0 
(Xen) or the host OS (KVM) for serving guest I/O. This adds overhead to I/O, and over the years 
has been optimized by adding shared memory transports and other techniques.

The original hardware hypervisor, pioneered by VMware in 1998, used binary translations to 
perform full hardware virtualization [VMware 07]. This has since been improved by:

 ■ Processor virtualization support: The AMD-V and Intel VT-x extensions were introduced 
in 2005–2006 to provide faster hardware support for VM operations by the processor.

 ■ Paravirtualization (paravirt or PV): Instead of running an unmodified OS, with 
paravirtualization, an OS can be made aware that it is running on a hardware virtual 
machine and make special calls (hypercalls) to the hypervisor for more efficient processing 
of some operations. For efficiency, Xen batches these hypercalls into a multicall.

 ■ Device hardware support: To further optimize VM performance, hardware devices other 
than processors have been adding virtual machine support. This includes SR-IOV for 
network and storage devices and special drivers to use them: ixgbe, ena, and nvme.

Over the years, Xen has evolved and improved its performance. Modern Xen VMs often boot in 
hardware VM mode (HVM) and then use PV drivers with HVM support to achieve the best of both 
worlds: a configuration called PVHVM. This can further be improved by depending entirely on 
hardware virtualization for some drivers, such as SR-IOV for network and storage devices.

In 2017, AWS launched the Nitro hypervisor, with parts based on KVM, and hardware support 
for all main resources: processors, network, storage, interrupts, and timers [174]. No QEMU proxy 
is used.
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16.1.1 BPF Capabilities

Because hardware VMs run their own kernel, they can use BPF tools from the guest. Questions 
that BPF can help answer from the guest include:

 ■ What is the performance of the virtualized hardware resources? This can be answered using 
tools described in previous chapters.

 ■ If paravirtualization is in use, then what is hypercall latency, as a measure of hypervisor 
performance?

 ■ What are the frequency and duration of stolen CPU time?

 ■ Are hypervisor interrupt callbacks interfering with an application?

If run from the host, BPF can help answer more questions (host access is available to cloud 
computing providers but not to their end users):

 ■ If QEMU is in use, what workload is applied by the guest? What is the resulting 
performance?

 ■ For config B hypervisors, for what reasons are guests exiting to the hypervisor?

Hardware hypervisor analysis with BPF is another area that may have future developments, adding 
more capabilities and possibilities. Some future work is mentioned in the later tools sections.

AWS EC2 Guests

As hypervisors optimize performance by moving from emulation to paravirtualization to 
hardware support, there are fewer targets to trace from the guest because events have moved to 
hardware. This has been apparent with the evolution of AWS EC2 instances and the types of 
hypervisor targets that can be traced, listed below:

 ■ PV: Hypercalls (multicalls), hypervisor call backs, driver calls, stolen time

 ■ PVHVM: Hypervisor callbacks, driver calls, stolen time

 ■ PVHVM+SR-IOV drivers: Hypervisor callbacks, stolen time

 ■ KVM (Nitro): Stolen time

The most recent hypervisor, Nitro, has little code running in the guest that is special to hypervi-
sors. This is by design: it improves performance by moving hypervisor functionality to hardware.

16.1.2 Suggested Strategies

Start by determining what configuration of hardware hypervisor is in use. Are hypercalls being 
used, or special device drivers?

For guests:

 1. Instrument hypercalls (if in use) to check for excessive operations.

 2. Check for CPU stolen time.
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 3. Use tools from prior chapters for resource analysis, bearing in mind that these are 
virtual resources. Their performance may be capped by resource controls imposed by the 
hypervisor or external hardware, and they may also suffer contention with access from 
other guests.

For hosts:

 1. Instrument VM exits to check for excessive operations.

 2. If an I/O proxy is in use (QEMU), instrument its workload and latency.

 3. Use tools from prior chapters for resource analysis.

As hypervisors move functionality to hardware, as is the case with Nitro, more analysis will need 
to be conducted using tools from prior chapters, rather than specialized tools for hypervisors.

16.2 Traditional Tools

There are not many tools for hypervisor performance analysis and troubleshooting. From the 
guest, in some situations there are tracepoints for hypercalls, as shown in Section 16.3.1.

From the host, Xen provides its own tools, including xl top and xentrace, for inspecting guest 
resource usage. For KVM, the Linux perf(1) utility has a kvm subcommand. Example output:

# perf kvm stat live

11:12:07.687968

 

Analyze events for all VMs, all VCPUs:

 

           VM-EXIT Samples Samples%   Time%  Min Time    Max Time      Avg time

 

         MSR_WRITE    1668   68.90%   0.28%    0.67us     31.74us    3.25us ( +-  2.20% )

               HLT     466   19.25%  99.63%    2.61us 100512.98us 4160.68us ( +- 14.77% )

  PREEMPTION_TIMER     112    4.63%   0.03%    2.53us     10.42us    4.71us ( +-  2.68% )

 PENDING_INTERRUPT      82    3.39%   0.01%    0.92us     18.95us    3.44us ( +-  6.23% )

EXTERNAL_INTERRUPT      53    2.19%   0.01%    0.82us      7.46us    3.22us ( +-  6.57% )

    IO_INSTRUCTION      37    1.53%   0.04%    5.36us     84.88us   19.97us ( +- 11.87% )

          MSR_READ       2    0.08%   0.00%    3.33us      4.80us    4.07us ( +- 18.05% )

     EPT_MISCONFIG       1    0.04%   0.00%   19.94us     19.94us   19.94us ( +-  0.00% )

 

Total Samples:2421, Total events handled time:1946040.48us.

This shows the reasons for virtual machine exit and statistics for each reason. The longest-
duration exits in this example output were for HLT (halt), as virtual CPUs enter the idle state.

There are tracepoints for KVM events, including exits, which can be used with BPF to create more 
detailed tools.
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16.3 Guest BPF Tools

This section covers the BPF tools you can use for guest VM performance analysis and trouble-
shooting. These are either from the BCC and bpftrace repositories covered in Chapters 4 and 5 or 
were created for this book.

16.3.1 Xen Hypercalls

If the guest uses paravirt and makes hypercalls, they can be instrumented using existing tools: 
funccount(8), trace(8), argdist(8), and stackcount(8). There are even Xen tracepoints you can use. 
Measuring hypercall latency requires custom tooling.

Xen PV

For example, this system has booted into paravirtualization (PV):

# dmesg | grep Hypervisor

[    0.000000] Hypervisor detected: Xen PV

Using BCC funccount(8) to count the available Xen tracepoints:

# funccount 't:xen:*'

Tracing 30 functions for "t:xen:*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

xen:xen_mmu_flush_tlb_one_user             70

xen:xen_mmu_set_pte                        84

xen:xen_mmu_set_pte_at                     95

xen:xen_mc_callback                        97

xen:xen_mc_extend_args                    194

xen:xen_mmu_write_cr3                     194

xen:xen_mc_entry_alloc                    904

xen:xen_mc_entry                          924

xen:xen_mc_flush                         1175

xen:xen_mc_issue                         1378

xen:xen_mc_batch                         1392

Detaching...

The xen_mc tracepoints are for multicalls: batched hypercalls. These begin with a xen:xen_mc_batch 
call, then xen:xen_mc_entry calls for each hypercall, and finish with a xen:xen_mc_issue. The real 
hypercall only happens in a flush operation, traced by xen:xen_mc_flush. As a performance 
optimization, there are two “lazy” paravirt modes where the issue will be ignored, allowing 
multicalls to buffer and be flushed later: one for MMU updates, and one for context switching.

Various kernel code paths are bracketed by xen_mc_batch and xen_mc_issue, to group possible 
xen_mc_calls. But if no xen_mc_calls are made, the issue and flush are for zero hypercalls.
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The xenhyper(8) tool in the next section is an example of using one of these tracepoints. With so 
many tracepoints available, more such tools could be written, but unfortunately Xen PV guests 
are becoming less frequently used, giving way to HVM guests (PVHVM). I’ve only included one 
tool as a demonstration, and the following one-liners.

Xen PV: Counting Hypercalls

The number of issued hypercalls can be counted via the xen:xen_mc_flush tracepoint, along 
with its mcidx argument, which shows how many hypercalls were made. For example, using BCC 
argdist(8):

# argdist -C 't:xen:xen_mc_flush():int:args->mcidx'

[17:41:34]

t:xen:xen_mc_flush():int:args->mcidx

        COUNT      EVENT

        44         args->mcidx = 0

        136        args->mcidx = 1

[17:41:35]

t:xen:xen_mc_flush():int:args->mcidx

        COUNT      EVENT

        37         args->mcidx = 0

        133        args->mcidx = 1

[...]

This frequency counts how many hypercalls were issued on each flush. If the count is zero, no 
hypercall was made. The above output shows about 130 hypercalls per second and no cases of 
batching beyond a single hypercall per batch while tracing.

Xen PV: Hypercall Stacks

Each of the Xen tracepoints can be traced using stackcount(8) to reveal the code path that 
triggered them. For example, tracing when a multicall was issued:

# stackcount 't:xen:xen_mc_issue'

Tracing 1 functions for "t:xen:xen_mc_issue"... Hit Ctrl-C to end.

^C

[...]

 

  xen_load_sp0

  __switch_to

  __schedule

  schedule

  schedule_preempt_disabled

  cpu_startup_entry

  cpu_bringup_and_idle

    6629
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  xen_load_tls

    16448

 

  xen_flush_tlb_single

  flush_tlb_page

  ptep_clear_flush

  wp_page_copy

  do_wp_page

  handle_mm_fault

  __do_page_fault

  do_page_fault

  page_fault

    46604

 

  xen_set_pte_at

  copy_page_range

  copy_process.part.33

  _do_fork

  sys_clone

  do_syscall_64

  return_from_SYSCALL_64

    565901

 

Detaching...

Excessive multicalls (hypercalls) can be a performance issue, and this output helps reveal the 
reason for them. The overhead of hypercall tracing depends on their rate, which for busy systems 
may be frequent, costing noticeable overhead.

Xen PV: Hypercall Latency

The real hypercall only happens during the flush operation, and there are no tracepoints for when 
this begins and ends. You can switch to kprobes to trace the xen_mc_flush() kernel function, 
which includes the real hypercall. Using BCC funclatency(8):

# funclatency xen_mc_flush

Tracing 1 functions for "xen_mc_flush"... Hit Ctrl-C to end.

^C

     nsecs               : count     distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 0        |                                        |

         4 -> 7          : 0        |                                        |

         8 -> 15         : 0        |                                        |

        16 -> 31         : 0        |                                        |
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        32 -> 63         : 0        |                                        |

        64 -> 127        : 0        |                                        |

       128 -> 255        : 0        |                                        |

       256 -> 511        : 32508    |****************                        |

       512 -> 1023       : 80586    |****************************************|

      1024 -> 2047       : 21022    |**********                              |

      2048 -> 4095       : 3519     |*                                       |

      4096 -> 8191       : 12825    |******                                  |

      8192 -> 16383      : 7141     |***                                     |

     16384 -> 32767      : 158      |                                        |

     32768 -> 65535      : 51       |                                        |

     65536 -> 131071     : 845      |                                        |

    131072 -> 262143     : 2        |                                        |

This can be an important measure of hypervisor performance from the guest. A BCC tool can be 
written to remember which hypercalls were batched so that this hypercall latency can be broken 
down by hypercall operation type.

Another way to determine issues of hypercall latency is to try CPU profiling, covered in Chapter 6, 
and look for CPU time spent in hypercalls, either in the hypercall_page() function (which is 
really a table of hypercall functions) or in the xen_hypercall*() functions. An example is shown in 
Figure 16-2.

Figure 16-2 CPU Flame graph excerpt showing Xen PV hypercall

This shows a TCP receive codepath ending in hypercall_page(). Note that this CPU profiling 
approach may be misleading as it may not be possible to sample some hypercall code paths 
from the guest. This is because PV guests usually do not have access to PMC-based profiling, and 
instead will default to software-based profiling, which cannot sample during IRQ-disabled code 
paths, which can include hypercalls. This issue was described in Section 6.2.4 in Chapter 6.
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Xen HVM

For an HVM guest, the xen tracepoints usually do not fire:

# dmesg | grep Hypervisor

[    0.000000] Hypervisor detected: Xen HVM

# funccount 't:xen:xen*'

Tracing 27 functions for "t:xen:xen*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

Detaching...

This is because those code paths no longer hypercall but instead make native calls that are trapped 
and handled by the HVM hypervisor. This makes inspection of hypervisor performance more 
difficult: it must be inspected using the normal resource-oriented tools covered in earlier chapters, 
bearing in mind that these resources are accessed via a hypervisor, and therefore observed 
latencies are due to the resource plus hypervisor latency.

16.3.2 xenhyper

xenhyper(8)1 is a bpftrace tool to count hypercalls via the xen:xen_mc_entry tracepoint and 
prints a count of the hypercall names. This is only useful for Xen guests booting into paravirt 
mode and using hypercalls. Example output:

# xenhyper.bt

Attaching 1 probe...

^C

 

@[mmu_update]: 44

@[update_va_mapping]: 78

@[mmuext_op]: 6473

@[stack_switch]: 23445

The source to xenhyper(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Counting Xen hypercalls (xen_mc_entry). Ctrl-C to end.\n");

 

        // needs updating to match your kernel version: xen-hypercalls.h

        @name[0] = "set_trap_table";

        @name[1] = "mmu_update";

1 Origin: I developed it for this book on 22-Feb-2019.
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        @name[2] = "set_gdt";

        @name[3] = "stack_switch";

        @name[4] = "set_callbacks";

        @name[5] = "fpu_taskswitch";

        @name[6] = "sched_op_compat";

        @name[7] = "dom0_op";

        @name[8] = "set_debugreg";

        @name[9] = "get_debugreg";

        @name[10] = "update_descriptor";

        @name[11] = "memory_op";

        @name[12] = "multicall";

        @name[13] = "update_va_mapping";

        @name[14] = "set_timer_op";

        @name[15] = "event_channel_op_compat";

        @name[16] = "xen_version";

        @name[17] = "console_io";

        @name[18] = "physdev_op_compat";

        @name[19] = "grant_table_op";

        @name[20] = "vm_assist";

        @name[21] = "update_va_mapping_otherdomain";

        @name[22] = "iret";

        @name[23] = "vcpu_op";

        @name[24] = "set_segment_base";

        @name[25] = "mmuext_op";

        @name[26] = "acm_op";

        @name[27] = "nmi_op";

        @name[28] = "sched_op";

        @name[29] = "callback_op";

        @name[30] = "xenoprof_op";

        @name[31] = "event_channel_op";

        @name[32] = "physdev_op";

        @name[33] = "hvm_op";

}

 

tracepoint:xen:xen_mc_entry

{

        @[@name[args->op]] = count();

}

 

END

{

        clear(@name);

}
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This uses a translation table based on mappings from the kernel source to convert between the 
hypercall operation number and a name. This will need to be updated to match your kernel 
version, as these mappings change over time.

xenhyper(8) can be customized to include such details as the process name or user stack trace that 
led to the hypercall, by modifying the @ map keys.

16.3.3 Xen Callbacks

Rather than the guest making a hypercall to the hypervisor, these occur when Xen calls the guest, 
such as for IRQ notifications. There are per-CPU counts for these calls in /proc/interrupts:

# grep HYP /proc/interrupts 

HYP:   12156816    9976239   10156992    9041115    7936087    9903434    9713902    

8778612   Hypervisor callback interrupts

Each number is the count for one CPU (this is an eight-CPU system). These can also be traced 
using BPF, via a kprobe of the kernel function xen_evtchn_do_upcall(). For example, counting 
which process is interrupted using bpftrace:

# bpftrace -e 'kprobe:xen_evtchn_do_upcall { @[comm] = count(); }'

Attaching 1 probe...

^C

 

@[ps]: 9

@[bash]: 15

@[java]: 71

@[swapper/7]: 100

@[swapper/3]: 110

@[swapper/2]: 130

@[swapper/4]: 131

@[swapper/0]: 164

@[swapper/1]: 192

@[swapper/6]: 207

@[swapper/5]: 248

The output is showing that most of the time CPU idle threads ("swapper/*") were interrupted by 
the Xen callbacks.

The latency of these can also be measured, for example, using BCC funclatency(8):

# funclatency xen_evtchn_do_upcall

Tracing 1 functions for "xen_evtchn_do_upcall"... Hit Ctrl-C to end.

^C

     nsecs               : count     distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 0        |                                        |
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         4 -> 7          : 0        |                                        |

         8 -> 15         : 0        |                                        |

        16 -> 31         : 0        |                                        |

        32 -> 63         : 0        |                                        |

        64 -> 127        : 0        |                                        |

       128 -> 255        : 0        |                                        |

       256 -> 511        : 1        |                                        |

       512 -> 1023       : 6        |                                        |

      1024 -> 2047       : 131      |********                                |

      2048 -> 4095       : 351      |***********************                 |

      4096 -> 8191       : 365      |************************                |

      8192 -> 16383      : 602      |****************************************|

     16384 -> 32767      : 89       |*****                                   |

     32768 -> 65535      : 13       |                                        |

     65536 -> 131071     : 1        |                                        |

This shows that, most of the time, processing took between one and 32 microseconds.

More information about the interrupt type can be traced from the child functions of 
xen_evtchn_do_upcall().

16.3.4 cpustolen

cpustolen(8)2 is a bpftrace tool to show the distribution of stolen CPU time, showing whether 
time is stolen in short or long runs. This is CPU time unavailable to the guest as it was used by 
other guests (which, in some hypervisor configurations, can include CPU time consumed by an 
I/O proxy in another domain on behalf of the guest itself, so the term "stolen" is misleading3). 
Example output:

# cpustolen.bt 

Attaching 4 probes...

Tracing stolen CPU time. Ctrl-C to end.

^C

 

 

@stolen_us: 

[0]                30384 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[1]                    0 |                                                    |

[2, 4)                 0 |                                                    |

[4, 8)                28 |                                                    |

[8, 16)                4 |                                                    |

2 Origin: I developed it for this book on 22-Feb-2019.

3 Because of the way it is measured, stolen can also include time in the VMM on behalf of the guest [Yamamoto 16].



ptg30854589

70116.3 Guest BPF Tools

This output showed that, most of the time, there was no stolen CPU time (the "[0]" bucket), 
though on four occasions time the stolen time was in the eight- to 16-microsecond range. The 
"[0]" bucket has been included in the output so that the ratio of stolen time vs total time can be 
calculated: in this case it was 0.1% (32 / 30416).

This works by tracing the stolen_clock paravirt ops call using kprobes of the Xen and KVM 
versions: xen_stolen_clock() and kvm_stolen_clock(). This is called on many frequent events, 
such as context switches and interrupts, so the overhead of this tool may be noticeable depending 
on your workload.

The source to cpustolen(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing stolen CPU time. Ctrl-C to end.\n");

}

 

kretprobe:xen_steal_clock,

kretprobe:kvm_steal_clock

{

        if (@last[cpu] > 0) {

                @stolen_us = hist((retval - @last[cpu]) / 1000);

        }

        @last[cpu] = retval;

}

 

END

{

        clear(@last);

}

This will need to be updated for hypervisors other than Xen and KVM. Other hypervisors will 
likely have a similar steal_clock function to satisfy a table of paravirt ops (pv_ops). Note that there 
is a higher-level function, paravirt_steal_clock(), which sounds more suitable to trace as it isn’t 
tied to one hypervisor type. However, it is not available for tracing (likely inlined).

16.3.5 HVM Exit Tracing

With the move from PV to HVM guests, we lose the ability to instrument explicit hypercalls, 
but the guest is still making exits to the hypervisor for access to resources, and we’d like to trace 
those. The current approach is to analyze resource latency using all the existing tools in the prior 
chapters, while bearing in mind that some component of that latency may be hypervisor related, 
and we will not be able to measure that directly. We may be able to infer it by comparing latency 
measurements from a bare-metal machine.
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An interesting research prototype that could shed light on exit visibility by guests is a research 
technology called hyperupcalls [Amit 18]. These provide a safe way for a guest to request the 
hypervisor to run a mini program; its example use cases include hypervisor tracing from the 
guest. They are implemented using an extended BPF VM in the hypervisor, which the guest 
compiles BPF bytecode to run. This is not currently made available by any cloud providers (and 
may never be) but is another interesting project that uses BPF.

16.4 Host BPF Tools

This section covers the BPF tools you can use for from-the-host VM performance analysis and 
troubleshooting. These are either from the BCC and bpftrace repositories covered in Chapters 4 
and 5, or were created for this book.

16.4.1 kvmexits

kvmexits(8)4 is a bpftrace tool to show the distribution of guest exit time by reason. This will 
reveal hypervisor-related performance issues and direct further analysis. Example output:

# kvmexits.bt 

Attaching 4 probes...

Tracing KVM exits. Ctrl-C to end

^C

[...]

 

@exit_ns[30, IO_INSTRUCTION]: 

[1K, 2K)               1 |                                                    |

[2K, 4K)              12 |@@@                                                 |

[4K, 8K)              71 |@@@@@@@@@@@@@@@@@@                                  |

[8K, 16K)            198 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[16K, 32K)           129 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@                   |

[32K, 64K)            94 |@@@@@@@@@@@@@@@@@@@@@@@@                            |

[64K, 128K)           37 |@@@@@@@@@                                           |

[128K, 256K)          12 |@@@                                                 |

[256K, 512K)          23 |@@@@@@                                              |

[512K, 1M)             2 |                                                    |

[1M, 2M)               0 |                                                    |

[2M, 4M)               1 |                                                    |

[4M, 8M)               2 |                                                    |

 

4 Origin: I first developed this tool as kvmexitlatency.d using DTrace, published in the 2013 Systems Performance book 

[Gregg 13b]. I developed it using bpftrace for this book on 25-Feb-2019.
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@exit_ns[1, EXTERNAL_INTERRUPT]: 

[256, 512)            28 |@@@                                                 |

[512, 1K)            460 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |

[1K, 2K)             463 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[2K, 4K)             150 |@@@@@@@@@@@@@@@@                                    |

[4K, 8K)             116 |@@@@@@@@@@@@@                                       |

[8K, 16K)             31 |@@@                                                 |

[16K, 32K)            12 |@                                                   |

[32K, 64K)             7 |                                                    |

[64K, 128K)            2 |                                                    |

[128K, 256K)           1 |                                                    |

 

@exit_ns[32, MSR_WRITE]: 

[512, 1K)           5690 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[1K, 2K)            2978 |@@@@@@@@@@@@@@@@@@@@@@@@@@@                         |

[2K, 4K)            2080 |@@@@@@@@@@@@@@@@@@@                                 |

[4K, 8K)             854 |@@@@@@@                                             |

[8K, 16K)            826 |@@@@@@@                                             |

[16K, 32K)           110 |@                                                   |

[32K, 64K)             3 |                                                    |

 

@exit_ns[12, HLT]: 

[512, 1K)             13 |                                                    |

[1K, 2K)              23 |                                                    |

[2K, 4K)              10 |                                                    |

[4K, 8K)              76 |                                                    |

[8K, 16K)            234 |@@                                                  |

[16K, 32K)          4167 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@    |

[32K, 64K)          3920 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@       |

[64K, 128K)         4467 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[128K, 256K)        3483 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@            |

[256K, 512K)        1764 |@@@@@@@@@@@@@@@@@@@@                                |

[512K, 1M)           922 |@@@@@@@@@@                                          |

[1M, 2M)             113 |@                                                   |

[2M, 4M)             128 |@                                                   |

[4M, 8M)              35 |                                                    |

[8M, 16M)             40 |                                                    |

[16M, 32M)            42 |                                                    |

[32M, 64M)            97 |@                                                   |

[64M, 128M)           95 |@                                                   |

[128M, 256M)          58 |                                                    |

[256M, 512M)          24 |                                                    |

[512M, 1G)             1 |                                                    |

 



ptg30854589

704 Chapter 16  Hypervisors

@exit_ns[48, EPT_VIOLATION]: 

[512, 1K)           6160 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@           |

[1K, 2K)            6885 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@      |

[2K, 4K)            7686 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|

[4K, 8K)            2220 |@@@@@@@@@@@@@@@                                     |

[8K, 16K)            582 |@@@                                                 |

[16K, 32K)           244 |@                                                   |

[32K, 64K)            47 |                                                    |

[64K, 128K)            3 |                                                    |

This output shows the distribution of exits by type, including the exit code number and exit 
reason string, if known. The longest exits, reaching one second, were for HLT (halt), which is 
normal behavior: this is the CPU idle thread. The output also showed IO_INSTRUCTIONS taking 
up to eight milliseconds.

This works by tracing the kvm:kvm_exit and kvm:kvm_entry tracepoints, which are only used 
when the kernel KVM module is in use to accelerate performance.

The source to kvmexit(8) is:

#!/usr/local/bin/bpftrace

 

BEGIN

{

        printf("Tracing KVM exits. Ctrl-C to end\n");

 

        // from arch/x86/include/uapi/asm/vmx.h:

        @exitreason[0] = "EXCEPTION_NMI";

        @exitreason[1] = "EXTERNAL_INTERRUPT";

        @exitreason[2] = "TRIPLE_FAULT";

        @exitreason[7] = "PENDING_INTERRUPT";

        @exitreason[8] = "NMI_WINDOW";

        @exitreason[9] = "TASK_SWITCH";

        @exitreason[10] = "CPUID";

        @exitreason[12] = "HLT";

        @exitreason[13] = "INVD";

        @exitreason[14] = "INVLPG";

        @exitreason[15] = "RDPMC";

        @exitreason[16] = "RDTSC";

        @exitreason[18] = "VMCALL";

        @exitreason[19] = "VMCLEAR";

        @exitreason[20] = "VMLAUNCH";

        @exitreason[21] = "VMPTRLD";

        @exitreason[22] = "VMPTRST";

        @exitreason[23] = "VMREAD";
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        @exitreason[24] = "VMRESUME";

        @exitreason[25] = "VMWRITE";

        @exitreason[26] = "VMOFF";

        @exitreason[27] = "VMON";

        @exitreason[28] = "CR_ACCESS";

        @exitreason[29] = "DR_ACCESS";

        @exitreason[30] = "IO_INSTRUCTION";

        @exitreason[31] = "MSR_READ";

        @exitreason[32] = "MSR_WRITE";

        @exitreason[33] = "INVALID_STATE";

        @exitreason[34] = "MSR_LOAD_FAIL";

        @exitreason[36] = "MWAIT_INSTRUCTION";

        @exitreason[37] = "MONITOR_TRAP_FLAG";

        @exitreason[39] = "MONITOR_INSTRUCTION";

        @exitreason[40] = "PAUSE_INSTRUCTION";

        @exitreason[41] = "MCE_DURING_VMENTRY";

        @exitreason[43] = "TPR_BELOW_THRESHOLD";

        @exitreason[44] = "APIC_ACCESS";

        @exitreason[45] = "EOI_INDUCED";

        @exitreason[46] = "GDTR_IDTR";

        @exitreason[47] = "LDTR_TR";

        @exitreason[48] = "EPT_VIOLATION";

        @exitreason[49] = "EPT_MISCONFIG";

        @exitreason[50] = "INVEPT";

        @exitreason[51] = "RDTSCP";

        @exitreason[52] = "PREEMPTION_TIMER";

        @exitreason[53] = "INVVPID";

        @exitreason[54] = "WBINVD";

        @exitreason[55] = "XSETBV";

        @exitreason[56] = "APIC_WRITE";

        @exitreason[57] = "RDRAND";

        @exitreason[58] = "INVPCID";

}

 

tracepoint:kvm:kvm_exit

{

        @start[tid] = nsecs;

        @reason[tid] = args->exit_reason;

}

 

tracepoint:kvm:kvm_entry

/@start[tid]/
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{

        $num = @reason[tid];

        @exit_ns[$num, @exitreason[$num]] = hist(nsecs - @start[tid]);

        delete(@start[tid]);

        delete(@reason[tid]);

}

 

END

{

        clear(@exitreason);

        clear(@start);

        clear(@reason);

}

Some KVM configurations do not use the kernel KVM module, so the needed tracepoints will not 
fire, and this tool will be unable to measure the guest exists. In that case, the qemu process can be 
instrumented directly using uprobes to read the exit reason. (The addition of USDT probes would 
be preferred.)

16.4.2 Future Work

With KVM and similar hypervisors, the guest CPUs can be seen running as processes, and these 
processes show up in tools including top(1). This leads me to wonder whether the following 
questions can be answered:

 ■ What is the guest doing on CPU? Can functions or stack traces be read?

 ■ Why is the guest calling I/O?

Hosts can sample the on-CPU instruction pointer and can also read it when I/O is performed 
based on its exit to the hypervisor. For example, using bpftrace to show the IP on I/O instructions:

# bpftrace -e 't:kvm:kvm_exit /args->exit_reason == 30/ {

    printf("guest exit instruction pointer: %llx\n", args->guest_rip); }'

Attaching 1 probe...

guest exit instruction pointer: ffffffff81c9edc9

guest exit instruction pointer: ffffffff81c9ee8b

guest exit instruction pointer: ffffffff81c9edc9

guest exit instruction pointer: ffffffff81c9edc9

guest exit instruction pointer: ffffffff81c9ee8b

guest exit instruction pointer: ffffffff81c9ee8b

[...]



ptg30854589

70716.5 Summary

However, the host lacks a symbol table to convert these instruction pointers to function names, 
or process context to know which address space to use or even which process is running. Possible 
solutions to this have been discussed for years, including in my last book [Gregg 13b]. These 
include reading the CR3 register for the root of the current page table, to try to figure out which 
process is running, and using guest-supplied symbol tables.

These questions can currently be answered by instrumentation from the guest, but not the host.

16.5 Summary

This chapter summarized hardware hypervisors and showed how BPF tracing can expose details 
from the guest and the host, including hypercalls, stolen CPU time, and guest exits.
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Chapter 17
Other BPF 

Performance Tools

This chapter tours other observability tools built upon BPF. These are all open source and freely 
available online. (Thanks to my colleague Jason Koch on the Netflix performance engineering 
team for developing much of this chapter.)

While this book contains dozens of command-line BPF tools, it is expected that most people will 
end up using BPF tracing via GUIs. This is especially the case for cloud computing environments 
composed of thousands or even hundreds of thousands of instances; these are, of necessity, 
usually administered via GUIs. Studying the BPF tools covered in previous chapters should help 
you use and understand these BPF-based GUIs, which are created as front ends to the same tools.

The GUIs and tools discussed in this chapter:

 ■ Vector and Performance Co-Pilot (PCP): For remote BPF monitoring

 ■ Grafana with PCP: For remote BPF monitoring

 ■ eBPF Exporter: For BPF integration with Prometheus and Grafana

 ■ kubectl-trace: For tracing Kubernetes pods and nodes

The role of this chapter is to show you some possibilities of BPF-based GUIs and automation 
tools, using these as examples. This chapter has sections for each tool, summarizing what the 
tools does, its internals and usage, and further references. Note that these tools are under heavy 
development at the time of writing, and it is likely that their capabilities will grow.

17.1 Vector and Performance Co-Pilot (PCP)

Netflix Vector is an open source host-level performance monitoring tool that visualizes 
high-resolution system and application metrics, in near real-time. It is implemented as a 
web application, and leverages the battle-tested open source system monitoring framework 
Performance Co-Pilot (PCP), layering on top a flexible and user-friendly UI. The UI polls metrics 
every second or longer, rendering the data in completely configurable dashboards that simplify 
cross-metric correlation and analysis.
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Figure 17-1 Vector monitors BCC program outputs remotely with the help of PCP

Figure 17-1 shows how Vector running in a local web browser fetches its application code from 
a web server and then connects directly to a target host and PCP to execute BPF programs. Note 
that the internal PCP components may change in future versions.

Features of Vector include:

 ■ High-level dashboards are provided to show utilization across a number of resources 
(CPU, disk, network, memory) for a running instance.

 ■ More than 2000 metrics are available for deeper analysis. You can add or remove metrics 
by modifying the configuration of performance metrics domain agents (PMDAs).

 ■ Visualize the data over time, down to a one-second granularity.

 ■ Compare metric data between different metrics and different hosts at the same time, 
including comparing metrics from the container vs the host. For example, it is possible to 
compare resource utilization at the container and the host level at the same time, to see 
how the two correlate.

Vector now supports BPF-based metrics in addition to the other sources it uses. This was made 
possible by the addition of a PCP agent for accessing the BCC front end of BPF. BCC is covered in 
Chapter 4.

17.1.1 Visualizations

Vector can present data to the user in multiple formats. Time series data can be visualized 
using line charts, as shown in Figure 17-2.

Vector also supports other graph types that better suit visualizing the data produced by 
per-second BPF histograms and per-event logs: specifically, heat maps and tabular data.
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Figure 17-2 Example Vector line charts of system metrics

17.1.2 Visualization: Heat Maps

Heat maps can be used to show a histogram over time and are well suited for visualizing 
per-second BPF latency histogram summaries. A latency heat map has time on both axes, and is 
composed of buckets that show a count for a particular time and latency range [Gregg 10]. The 
axes are:

 ■ x-axis: Is the passage of time, where each column is one second (or one interval)

 ■ y-axis: Is latency

 ■ z-axis (color saturation): Shows the number of I/O that fell into that time and 
latency range

It is possible to use a scatter plot for visualizing time and latency; however, with thousands or 
millions of I/O, the number of points drawn bleed into each other and details are lost. The heat 
map solves this by scaling its color range as needed.

In Vector, heat maps are generally available for the relevant BCC tools. At the time of writing 
this includes biolatency(8) for block I/O latency, runqlat(8) for CPU run queue latency, and the 
ext4-, xfs-, and zfs-dist tools for monitoring file system latency. By configuring the BCC PMDA 
(explained in Section 17.1.5) and launching an appropriate BCC chart in Vector, you can see the 
outputs represented visually over time. Figure 17-3 shows block I/O latency collected on a host 
with two-second samples running some simple fio(1) jobs.
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Figure 17-3 Vector latency heat map showing BCC/BPF biolatency(8)

You can see that the most common block latencies are in the 256- to 511-microsecond range, and 
at the cursor point a tooltip shows there were 805 samples in that bucket.

For comparison, the following is the result from the command line biolatency(8) capturing a 
similar time period:

# biolatency

Tracing block device I/O... Hit Ctrl-C to end.

^C

 usecs                : count      distribution

     0 -> 1           : 0          |                                          |

     2 -> 3           : 0          |                                          |

     4 -> 7           : 0          |                                          |

     8 -> 15          : 0          |                                          |

    16 -> 31          : 5          |                                          |

    32 -> 63          : 19         |                                          |

    64 -> 127         : 1          |                                          |

   128 -> 255         : 2758       |********                                  |

   256 -> 511         : 12989      |******************************************|

   512 -> 1023        : 11425      |***********************************       |

  1024 -> 2047        : 2406       |*******                                   |

  2048 -> 4095        : 1034       |***                                       |

  4096 -> 8191        : 374        |*                                         |

  8192 -> 16383       : 189        |                                          |

 16384 -> 32767       : 343        |*                                         |

 32768 -> 65535       : 0          |                                          |

 65536 -> 131071      : 0          |                                          |

131072 -> 262143      : 42         |                                          |
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The same latencies are visible in the aggregate; however, it is much easier to see the variation over 
time with the heat map. It is also much more apparent that the I/O in the 128- to 256-millisecond 
range is consistent over time and not the result of a short burst.

There are many BPF tools that produce such histograms, not just of latency but also byte sizes, run 
queue lengths, and other metrics: these can all be visualized using Vector heat maps.

17.1.3 Visualization: Tabular Data

In addition to visualizing the data, it can be helpful to see the raw data in a table. This can be 
especially useful for some of the BCC tools as tables can provide additional context, or help to 
make sense as a list of values.

For example, you can monitor execsnoop(8) output to show a list of processes that were recently 
started. Shown in Figure 17-4, a Tomcat (catalina) process is starting on the monitored host. 
A table suits visualizing these event details.

Figure 17-4 Vector displaying per-event output from BCC/BPF execsnoop(8)

Or, for example, you can monitor TCP sockets with tcplife(8), showing host address and port 
details, transferred bytes, and session duration. This is shown in Figure 17-5. (tcplife(8) was 
introduced in Chapter 10.)

Figure 17-5 Vector listing TCP sessions via BCC/BPF tcplife(8)
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In this case, you can see amazon-ssm-agent, which appears to be long-polling for 20 seconds, and 
a wget(1) command was executed that received two Gbytes of data in 41.595 seconds.

17.1.4 BCC Provided Metrics

The majority of the tools available in the bcc-tools package are currently available with the 
PCP PMDA.

Vector has pre-configured charts for the following BCC tools:

 ■ biolatency(8) and biotop(8)

 ■ ext4dist(8), xfsdist(8), and zfsdist(8)

 ■ tcplife(8), tcptop(8), and tcpretrans(8)

 ■ runqlat(8)

 ■ execsnoop(8)

Many of these tools support configuration options that can be provided on the host. Additional 
BCC tools can also be added to Vector, with custom charts, tables, or heat maps to visualize 
the data.

Vector also supports adding custom event metrics for tracepoints, uprobe, and USDT events.

17.1.5 Internals

Vector itself is a web application that runs completely inside the user’s browser. It was built 
with React and leverages D3.js for charting. The metrics are collected and made available from 
the Performance Co-Pilot [175], a toolkit for collecting, archiving, and processing performance 
metrics from multiple operating systems. A typical Linux PCP installation offers more than 
1000 metrics by default and is in turn extensible with its own plugins, or PMDAs.

To understand how Vector visualizes BPF metrics, it is important to understand how PCP collects 
these metrics (see Figure 17-6):

Figure 17-6 Vector metric source internals
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 ■ PMCD (performance metrics collector daemon) is the central component of PCP. It 
typically runs on the target host and coordinates collection of metrics from numerous 
agents.

 ■ PMDA (performance metrics domain agent) is the term given to an agent hosted by PCP. 
Many PMDAs are available and can each expose different metrics. For example, there are 
agents to collect kernel data, agents for different filesystems, agents for NVIDIA GPUs, and 
many more. To use BCC metrics with PCP, the BCC PMDA must be installed.

 ■ Vector is a single-page web app that can be deployed to a server or executed locally and 
allows connection to a target pmwebd instance.

 ■ pmwebd acts as a REST gateway to the pmcd instance on the target host. Vector connects to 
the exposed REST port and uses this to interact with pmcd.

PCP’s stateless model makes it lightweight and robust. Its overhead on hosts is negligible, as 
clients are responsible for keeping track of state, sampling rate, and computation. Additionally, 
metrics are not aggregated across hosts or persisted outside of the user’s browser session, keeping 
the framework light. 

17.1.6 Installing PCP and Vector

To try out PCP and Vector, you can run them both on a single host for local monitoring. In a real 
production deployment, you likely would run Vector on a different host than the PCP agent and 
PMDAs. Refer to the latest project documentation for details.

The steps to install Vector are documented and updated online [176][177]. They currently involve 
installing pcp and pcp-webapi packages and running the Vector UI from a Docker container. 
Follow these additional instructions to ensure that the BCC PMDA is enabled:

$ cd /var/lib/pcp/pmdas/bcc/

$ ./Install

[Wed Apr  3 20:54:06] pmdabcc(18942) Info: Initializing, currently in 'notready' 

state.

[Wed Apr  3 20:54:06] pmdabcc(18942) Info: Enabled modules:

[Wed Apr  3 20:54:06] pmdabcc(18942) Info: ['biolatency', 'sysfork', 'tcpperpid', 

'runqlat']

When Vector and PCP are running on the system with a configured BCC PMDA, you can connect 
and view system metrics.

17.1.7 Connecting and Viewing Data

Browse to http://localhost/ (if testing on your local machine) or the appropriate address where 
Vector is installed. Enter the hostname of the target system in the dialog shown in Figure 17-7.

http://localhost
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Figure 17-7 Vector target system selection

The connection area will show a new connection. As shown in Figure 17-8, the icon should 
shortly show green (1), and the large buttons will become available. This example will use a 
specific chart instead of a prepared dashboard, so flip across to the Custom tab (2), and choose 
runqlat (3). Any modules not available on the server will be dimmed and not available. Click on 
the enabled module and click the Dashboard ^ (4) arrow to close the dashboard.

Figure 17-8 Vector selection of BCC/BPF tool
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In the connection dialog, by switching to the Custom tab and looking at the BCC/BPF options, 
you can see the available BCC/BPF metrics. In this case, many of these BPF programs appear 
grayed out as they are not enabled in the PMDA. When you select runqlat and close the 
Dashboard panel, a run queue latency heat map is shown that is updated live each second, as 
shown in Figure 17-9. This sources the runqlat(8) BCC tool.

Figure 17-9 Vector run queue latency heat map

Be sure to explore the configuration widget for other available BCC metrics.

17.1.8 Configuring the BCC PMDA

As noted previously, much of the BCC PMDA functionality is not available unless it is specifically 
configured. The BCC PMDA man page (pmdabcc(1)) describes the configuration file format in 
detail. The following show steps for configuring the tcpretrans BCC module to make it available 
in Vector, so that you can see TCP session statistics.

$ cd /var/lib/pcp/pmdas/bcc

$ sudo vi bcc.conf

[pmda]

# List of enabled modules

modules = biolatency,sysfork,tcpperpid,runqlat,tcplife

In the full file you will see additional configuration options for the tcplife module and many 
others. This file is important for configuration of the BCC PMDA.

# This module summarizes TCP sessions

#

# Configuration options:

# Name              - type   - default

#

# process           - string - unset : list of names/pids or regex of processes to 

monitor
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# dport             - int    - unset : list of remote ports to monitor

# lport             - int    - unset : list of local ports to monitor

# session_count     - int    - 20    : number of closed TCP sessions to keep in cache

# buffer_page_count - int    - 64    : number of pages for the perf ring buffer, 

power of two

[tcplife]

module = tcplife

cluster = 3

#process = java

#lport = 8443

#dport = 80,443

Any time the PMDA configuration changes, you should recompile and restart the PMDA:

$ cd /var/lib/pcp/pmdas/bcc

$ sudo ./Install

...

You can now refresh your browser and select the tcpretrans chart.

17.1.9 Future Work

More work is still required between Vector and PCP to improve integration with the full suite of 
BCC tools. Vector has served Netflix well for many years as a detailed on-host metrics solution. 
Netflix is currently investigating whether Grafana can also provide this capability, which would 
allow more development focus to be on the host and metrics. Grafana is covered in Section 17.2.

17.1.10 Further Reading

For more information on Vector and PCP, see:

 ■ https://getvector.io/

 ■ https://pcp.io/

17.2 Grafana and Performance Co-Pilot (PCP)

Grafana is a popular open source charting and visualization tool with support for connecting to 
and displaying data stored in many back-end data sources. By using Performance Co-Pilot (PCP) 
as a data source, you can visualize any of the metrics exposed in PCP. PCP is covered in more 
detail in Section 17.1.

There are two approaches for configuring PCP to support the presentation of metrics in Grafana. 
It is possible to present historic data, and it is possible to present live metric data. Each has a 
slightly different use case and configuration.

https://getvector.io/
https://pcp.io/
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17.2.1 Installation and Configuration

The two options for presenting PCP data in Grafana are:

 ■ Grafana PCP live data source: For this you use the grafana-pcp-live plugin. This plugin 
polls a PCP instance for the latest metric data and keeps a short history (a few minutes’ 
worth) of results in the browser. There is no long-term persistence of the data. The 
advantage is that there is no load on the system being monitored while you are not 
watching, which makes it great for deep dive viewing of a wide range of live metrics on a 
host.

 ■ Grafana PCP archived data source: For this you use the grafana-pcp-redis plugin. This 
plugin fetches data from the source using the PCP pmseries data storage and collates the 
data into a Redis instance. This relies on a configured pmseries instance and means PCP will 
poll and store the data. This makes it more suitable for collecting larger time series data that 
will be looked at across multiple hosts.

It is assumed that you have performed the PCP configuration steps previously described in 
Section 17.1.

For both options, the projects are undergoing changes, so the best approach for installation is to 
see the links in Section 17.2.4 and look at the installation instructions for each plugin.

17.2.2 Connecting and Viewing Data

The grafana-pcp-live plugin is under heavy development. At the time of writing, the approach to 
connecting to a back end relies on the setup of variables required for the PCP client. Since it does 
not have any storage, this allows the dashboard to be dynamically reconfigured to connect to 
multiple different hosts. These variables are _proto, _host, and _port.

Create a new dashboard, enter the dashboard settings, create variables for the dashboard, and set 
them up with the required configuration settings. You can see the result in Figure 17-10 (where 
you fill in the host field with an appropriate host):

Figure 17-10 Setting up dashboard variables in grafana-pcp-live

Once the dashboard is configured, you can add a new chart. Select a PCP metric; the available 
metric bcc.runq.latency is a good one to start with (see Figure 17-11).
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Figure 17-11 Choosing the query in Grafana

You also need to configure an appropriate visualization(see Figure 17-12). In this case, choose the 
Heatmap visualization and set the format to “Time series buckets,” with Unit set to “microseconds 
(μs).” The Bucket bound should be set to “Upper” (see Figure 17-13).

Figure 17-12 Grafana PCP, showing standard PCP metrics (context switches, runnable count) as 
well as run queue latency (runqlat) BCC metrics

Figure 17-13 Setting up the visualization in Grafana
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17.2.3 Future Work

More work is still needed between Grafana and PCP to improve integration with the full suite of 
packaged bcc-tools. Support for visualizing custom bpftrace programs will hopefully be available 
in a future update. In addition, the grafana-pcp-live plugin needs some significant additional 
work before it should be considered battle-hardened.

17.2.4 Further Reading

The following links are quite likely to change as the projects mature:

 ■ grafana-pcp-live data source:

https://github.com/Netflix-Skunkworks/grafana-pcp-live/

 ■ grafana-pcp-redis data source:

https://github.com/performancecopilot/grafana-pcp-redis/

17.3 Cloudflare eBPF Prometheus Exporter (with 

Grafana)

The Cloudflare eBPF exporter is an open source tool that plugs into the well-defined Prometheus 
monitoring format. Prometheus has become especially popular for metric collection, storage, and 
querying because it provides a simple, well-known protocol. This makes it easy to integrate from 
any language, and a number of simple language bindings are available. Prometheus also provides 
alerting functionality and integrates well with dynamic environments such as Kubernetes. 
Although Prometheus only provides a basic UI, a number of graphing tools—including Grafana—
are also built on top of it to provide a coherent dashboard experience.

Prometheus also integrates into existing application operations tools. Within Prometheus, the 
tool that collects and exposes metrics is known as an exporter. There are official and third-party 
exporters available to collect Linux host statistics, JMX exporters for Java applications, and 
many more for applications such as web servers, storage layers, hardware, and database services. 
Cloudflare has open sourced an exporter for BPF metrics that allows exposure and visualization of 
these metrics through Prometheus and thence to Grafana.

17.3.1 Build and Run the ebpf Exporter

Note that the build uses Docker:

$ git clone https://github.com/cloudflare/ebpf_exporter.git

$ cd ebpf_exporter

$ make

...

$ sudo ./release/ebpf_exporter-*/ebpf_exporter --config.file=./examples/runqlat.yaml

2019/04/10 17:42:19 Starting with 1 programs found in the config

2019/04/10 17:42:19 Listening on :9435

https://github.com/Netflix-Skunkworks/grafana-pcp-live/
https://github.com/performancecopilot/grafana-pcp-redis/
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17.3.2 Configure Prometheus to Monitor the ebpf_exporter Instance

This depends on your approach for monitoring targets in your environment. Assuming the 
instance is running the ebpf_exporter on port 9435, you can find a sample target configuration as 
follows:

$ kubectl edit configmap -n monitoring prometheus-core

  - job_name: 'kubernetes-nodes-ebpf-exporter'

    scheme: http

    kubernetes_sd_configs:

      - role: node

    relabel_configs:

      - source_labels: [__address__]

        regex: '(.*):10250'

        replacement: '${1}:9435'

        target_label: __address__

17.3.3 Set Up a Query in Grafana

As soon as the ebpf_exporter is running, it will produce metrics. You can graph these metrics 
using the following query and additional format (see Figure 17-14):

query : rate(ebpf_exporter_run_queue_latency_seconds_bucket[20s])

legend format : {{le}}

axis unit : seconds

(For more information on the query format and graph configuration, refer to the Grafana and 
Prometheus documentation.)

Figure 17-14 Grafana run queue latency heat map, showing latency spikes when schbench is 
executed with more threads than cores
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17.3.4 Further Reading

For more information on Grafana and Prometheus, see:

 ■ https://grafana.com/

 ■ https://github.com/prometheus/prometheus

For more information on the Cloudflare eBPF exporter, see:

 ■ https://github.com/cloudflare/ebpf_exporter

 ■ https://blog.cloudflare.com/introducing-ebpf_exporter/

17.4 kubectl-trace

Kubectl-trace is a Kubernetes command line front end for running bpftrace across nodes in a 
Kubernetes cluster. It was created by Lorenzo Fontana and is hosted at the IO Visor project (see 
https://github.com/iovisor/kubectl-trace).

To follow the examples here, you will need to download and install kubectl-trace. You also need 
an installation of Kubernetes (which is beyond the scope of this book):

$ git clone https://github.com/iovisor/kubectl-trace.git

$ cd kubectl-trace

$ make

$ sudo cp ./_output/bin/kubectl-trace /usr/local/bin

17.4.1 Tracing Nodes

Kubectl is the Kubernetes command line front end. Kubectl-trace supports running bpftrace 
commands across a cluster node. Tracing whole nodes is the simplest option available, but pay 
attention to the overhead of your BPF instrumentation: a bpftrace invocation that consumes high 
overhead will affect the entire cluster node.

For example, using vfsstat.bt to capture bpftrace output for a Kubernetes node in the cluster:

$ kubectl trace run node/ip-1-2-3-4 -f /usr/share/bpftrace/tools/vfsstat.bt

trace 8fc22ddb-5c84-11e9-9ad2-02d0df09784a created

$ kubectl trace get

NAMESPACE NODE      NAME                                               STATUS  AGE    

default   ip-1-2-34 kubectl-trace-8fc22ddb-5c84-11e9-9ad2-02d0df09784a Running 3s    

$ kubectl trace logs -f kubectl-trace-8fc22ddb-5c84-11e9-9ad2-02d0df09784a

00:02:54

@[vfs_open]: 940

@[vfs_write]: 7015

@[vfs_read]: 7797

 

https://grafana.com/
https://github.com/prometheus/prometheus
https://github.com/cloudflare/ebpf_exporter
https://blog.cloudflare.com/introducing-ebpf_exporter/
https://github.com/iovisor/kubectl-trace
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00:02:55

@[vfs_write]: 252

@[vfs_open]: 289

@[vfs_read]: 924

 

^C

$ kubectl trace delete kubectl-trace-8fc22ddb-5c84-11e9-9ad2-02d0df09784a

trace job kubectl-trace-8fc22ddb-5c84-11e9-9ad2-02d0df09784a deleted

trace configuration kubectl-trace-8fc22ddb-5c84-11e9-9ad2-02d0df09784a deleted

This output shows all vfs statistics in the entire node, not just the pod. Because bpftrace is executed 
from the host, kubectl-trace also runs in the context of the host. Therefore, it is tracing all applications 
running on that node. This may be helpful in some cases for system administrators, but for many use 
cases, it will be important to focus on the processes running inside the container.

17.4.2 Tracing Pods and Containers

bpftrace—and therefore kubectl-trace—has indirect support for containers by matching tracing 
through kernel data structures. kubectl-trace provides help for pods in two ways. First, when 
you specify the pod name, kubectl-trace will locate and deploy the bpftrace program on the 
correct node automatically. Second, kubectl-trace introduces an extra variable into your script: 
$container_pid. The $container_pid variable is set to the PID of the container root process, using 
the host PID namespace. This allows you to perform filtering or other actions targeting only the 
pod you prefer.

For this example, we will ensure that the PID is the only PID running inside the container we’re 
looking at. For more complex scenarios, such as when you are running an init process or have a 
forking server, you will need to build on top of this tooling to map PIDs to their parent PIDs.

Create a new deployment using the following specification. Note that the command specifies the 
Docker entry point to ensure that the node process is the only process inside the container, and 
the vfsstat-pod.bt includes an additional filter on the PID:

$ cat <<EOF | kubectl apply -f -

apiVersion: apps/v1

kind: Deployment

metadata:

  name: node-hello

spec:

  selector:

    matchLabels:

      app: node-hello

  replicas: 1

  template:

    metadata:

      labels:

        app: node-hello
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    spec:

      containers:

      - name: node-hello

        image: duluca/minimal-node-web-server

        command: ['node', 'index']

        ports:

        - containerPort: 3000

EOF

deployment.apps/node-hello created

$ kubectl get pods

NAME                             READY     STATUS        RESTARTS  AGE

node-hello-56b8dbc757-th2k2      1/1       Running       0         4s

Create a copy of vfsstat.bt called vfsstat-pod.bt, as shown below, and then start a tracer implemen-
tation (these steps show how to start a trace and review tracing output):

$ cat vfsstat-pod.bt

...

kprobe:vfs_read,

kprobe:vfs_write,

kprobe:vfs_fsync,

kprobe:vfs_open,

kprobe:vfs_create

/pid == $container_pid/

{

...

$ kubectl trace run pod/node-hello-56b8dbc757-th2k2 -f vfsstat-pod.bt

trace 552a2492-5c83-11e9-a598-02d0df09784a created

$ kubectl trace logs -f 552a2492-5c83-11e9-a598-02d0df09784a

if your program has maps to print, send a SIGINT using Ctrl-C, if you want to 

interrupt the execution send SIGINT two times

Attaching 8 probes...

Tracing key VFS calls... Hit Ctrl-C to end.

[...]

17:58:34

@[vfs_open]: 1

@[vfs_read]: 3

@[vfs_write]: 4

 

17:58:35

 

17:58:36

@[vfs_read]: 3

@[vfs_write]: 4

[...]
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You will notice that there are significantly fewer vfs operations at the pod level than at the node 
level, which is to be expected for a mostly idle web server.

17.4.3 Further Reading

 ■ https://github.com/iovisor/kubectl-trace

17.5 Other Tools

Some other BPF-based tools include:

 ■ Cilium: Applies network and application security policies in containerized environments 
using BPF.

 ■ Sysdig: Uses BPF to extend container observability.

 ■ Android eBPF: Monitors and manages device network usage on Android devices.

 ■ osquery eBPF: Exposes operating system information for analytics and monitoring. It now 
supports monitoring of kprobes with BPF.

 ■ ply: A BPF-based CLI tracer similar to bpftrace but with minimal dependencies, making 
it well suited for environments including embedded targets [5]. ply was created by Tobias 
Waldekranz.

As BPF usage is growing, there will likely be many more BPF-based GUI tools developed in 
the future.

17.6 Summary

The BPF tool space is rapidly growing, and more tools and features will be developed. This 
chapter presented four currently available tools that build upon BPF. Vector/PCP, Grafana, and 
Cloudflare’s eBPF exporter are graphical tools that provide the ability to present visually large 
amounts of complex data including time series BPF outputs. The final tool, kubectl-trace, allows 
for straightforward execution of bpftrace scripts against a Kubernetes cluster. In addition, a short 
list of other BPF tools was provided.

https://github.com/iovisor/kubectl-trace
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Chapter 18
Tips, Tricks, and 

Common Problems

This chapter shares tips and tricks for successful BPF tracing, along with common problems that 
you might encounter and how to fix them.

Tips and Tricks:

18.1 Typical event frequency and overhead

18.2 Sample at 49 or 99 Hertz

18.3 Yellow pigs and gray rats

18.4 Write target software

18.5 Learn syscalls

18.6 Keep it simple

Common Problems:

18.7 Missing events

18.8 Missing stack traces

18.9 Missing symbols (function names) when printing

18.10 Missing functions when tracing

18.11 Feedback loops

18.12 Dropped events

18.1 Typical Event Frequency and Overhead

Three main factors determine the CPU overhead of a tracing program:

 ■ The frequency of the event that is traced.

 ■ The action performed while tracing.

 ■ The number of CPUs on the system.
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An application will suffer this overhead on a per-CPU basis using the relationship:

Overhead = (Frequency × Action performed) / CPUs

Tracing one million events per second on a single-CPU system may bring an application to a 
crawl, whereas a 128-CPU system may be barely affected. The CPU count must be considered.

The number of CPUs and the overhead of the work performed can both vary by a single order 
of magnitude. Event frequency, however, can vary by several orders of magnitude, making it the 
biggest wildcard in trying to estimate overhead. 

18.1.1 Frequency

It helps to have some intuitive understanding of typical event rates, so I have created Table 18-1.1 
This includes a column where the maximum rate has been scaled to human-understandable 
terms: once per second becomes once per year. Imagine that you are subscribed to a mailing list 
that sends you email at this scaled rate.

Table 18-1 Typical Event Frequencies

Event Typical Frequency2 Maximum Scaled Max Estimated 

Tracing Overhead3

Thread sleeps 1 per second Yearly Negligible

Process 
execution

10 per second Monthly Negligible

File opens 10–50 per second Weekly Negligible

Profiling at 
100 Hz

100 per second Twice a week Negligible

New TCP 
sessions

10–500 per second Daily Negligible

Disk I/O 10–1000 per second Every eight hours Negligible

VFS calls 1000–10,000 /s Hourly Measurable

Syscalls 1000–50,000 /s Every ten minutes Significant

Network 
packets

1000–100,000 /s Every five minutes Significant

Memory 
allocations

10,000–1,000,000 /s Every thirty seconds Expensive

1 This was inspired by the scaled latency table from Chapter 2 of Systems Performance [Gregg 13b], which became 

popular and has been shared many times. While I created this scaled frequency table, I did not come up with the idea 

of a scaled latency table: I first saw that when I was a university student.

2 It is hard to pick something “typical” as workloads vary. Databases often have higher disk I/O rates, and web and 

proxy servers often have higher packet rates.

3 This is the estimated CPU overhead of tracing the event at its maximum rate (see below). CPU instructions and cycles 

cannot be traced individually and directly, although in theory their software execution by CPU simulators could be traced.
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Event Typical Frequency2 Maximum Scaled Max Estimated 

Tracing Overhead3

Locking 
events

50,000–5,000,000 /s Every five seconds Expensive

Function 
calls

Up to 100,000,000 /s Three times per second Extreme

CPU 
instructions

Up to 1,000,000,000+ 
per second

Thirty times per second: 
As a beat, C contra-octave 
on the piano scale: the limit 
of human hearing

Extreme 
(CPU simulators)

CPU cycles Up to 3,000,000,000+ 
per second

Ninety times per second: 
G on the piano scale

Extreme 
(CPU simulators)

Throughout this book I have described the overhead for BPF tools, sometimes with measurements 
but often with the words negligible, measurable, significant, and expensive. I chose these terms to 
be both deliberately vague and sufficiently descriptive. Using hard numbers would be misleading 
as the specific metrics depend on the workload and system. With that caveat in mind, here is a 
rough guide to those terms:

 ■ Negligible: <0.1%

 ■ Measurable: ~1%

 ■ Significant: >5%

 ■ Expensive: >30%

 ■ Extreme: >300%

In Table 18-1, I extrapolated from event frequency to these overhead descriptions assuming 
the minimum tracing action: an in-kernel count and for typical system sizes of today. The next 
section shows how different actions can cost more.

18.1.1.2 Action Performed

The following measurements describe BPF overhead as the absolute per-event cost, illustrating 
how different actions can cost more. They were calculated by instrumenting reads for a dd(1) 
workload performing over one million reads per second: the previous section on frequency 
should already have suggested that BPF tracing will add expensive overhead at this high rate.

The workload is:

dd if=/dev/zero of=/dev/null bs=1 count=10000k

This is executed with different bpftrace one-liners, such as:

bpftrace -e 'kprobe:vfs_read { @ = count(); }'

Based on the runtime difference and known event counts, the per-event CPU cost can be 
calculated (ignoring dd(1) process startup and termination costs). This is shown in Table 18-2.
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Table 18-2 bpftrace Per-Event Costs

bpftrace Test Purpose dd Runtime 

(secs)

BPF per-event 

cost (nsecs)

<none> Control 5.97243 —

k:vfs_read { 1 } Kprobe 6.75364 76

kr:vfs_read { 1 } Kretprobe 8.13894 212

t:syscalls:sys_enter_read { 1 } Tracepoint 6.95894 96

t:syscalls:sys_exit_read { 1 } Tracepoint 6.9244 93

u:libc:__read { 1 } Uprobe 19.1466 1287

ur:libc:__read { 1 } Uretprobe 25.7436 1931

k:vfs_read /arg2 > 0/ { 1 } Filter 7.24849 124

k:vfs_read { @ = count() } Map 7.91737 190

k:vfs_read { @[pid] = count() } Single key 8.09561 207

k:vfs_read { @[comm] = count() } String key 8.27808 225

k:vfs_read { @[pid, comm] = count() } Two key 8.3167 229

k:vfs_read { @[kstack] = count() } Kernel stack 9.41422 336

k:vfs_read { @[ustack] = count() } User stack 12.648 652

k:vfs_read { @ = hist(arg2) } Histogram 8.35566 233

k:vfs_read  { @s[tid] = nsecs } 
kr:vfs_read /@s[tid]/ 
{ @ = hist(nsecs - @s[tid]); 
delete(@s[tid]); }

Timing 12.4816 636 / 24

k:vfs_read 
{ @[kstack, ustack] = hist(arg2) }

Multiple 14.5306 836

k:vfs_read 
{ printf("%d bytes\n", arg2) }   > out.txt

Per event 14.6719 850

This shows that kprobes (on this system) are fast, adding only 76 nanoseconds per call, increasing 
to around 200 nanoseconds when a map with a key is used. Kretprobes are much slower, as would 
be expected due to instrumenting the function entry and inserting a trampoline handler for the 
return (see Chapter 2 for details). Uprobes and uretprobes add the most overhead, over one 
microsecond per event: this is a known problem that we would like to improve in a future version 
of Linux.

These are all short BPF programs. It is possible to write lengthy BPF programs that cost much 
more, measured in microseconds.

4 This added 636 nanoseconds per read, but two probes were used—a kprobe and a kretprobe—so this is really 

636 nanoseconds for two BPF events.
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These were measured on Linux 4.15 with BPF JIT enabled, Intel(R) Core(TM) i7-8650U CPU 
@ 1.90GHz CPUs, using taskset(1) to bind to one CPU only for consistency, and taking the 
fastest of 10 runs (principle of least perturbations) while checking the standard deviation for 
consistency. Bear in mind that these numbers can all change based on the speed and architecture 
of the system, the running workload, and future changes to BPF.

18.1.3 Test Yourself

If you can accurately measure an application’s performance, you can do so with and without a 
BPF tracing tool running and measure the difference. If a system is running at CPU saturation 
(100%), then BPF will take CPU cycles away from the application, and the difference may be 
measurable as a drop in request rate. If the system is running with CPU idle, then the difference 
may be seen as a drop in available CPU idle.

18.2 Sample at 49 or 99 Hertz

The point of sampling at these seemingly odd rates is to avoid lockstep sampling.

We take timed samples to paint a coarse picture of the target software. A rate of 100 samples per 
second (100 Hertz), or 50 per second, is usually sufficient to provide details for solving both big 
and small performance wins.

Consider 100 Hertz. This takes a sample every 10 milliseconds. Now consider an application 
thread that wakes up every 10 milliseconds to do 2 milliseconds of work. It’s consuming 20% of 
one CPU. If we sample at 100 Hertz, and by coincidence run our profiling tool at just the right 
time, every sample will coincide with the two-millisecond window of work, so our profile will 
show it on-CPU 100% of the time. Or, if we hit Enter at a different time, every sample will miss 
and show that application thread 0% of the time. Both results are deeply misleading and are 
examples of aliasing errors.

By using 99 Hertz instead of 100, the time offsets where we take samples will no longer always 
coincide with the application’s work. Over enough seconds, it will show that the application is 
on-CPU 20% of the time. It’s also close enough to 100 Hertz that we can reason about it as though 
it were 100. Eight-CPU system for one second? Roughly 800 samples. I frequently make such 
calculations when sanity-checking my results.

If instead we picked, say, 73, that would also avoid lockstep sampling, but we wouldn’t be able to 
make such quick calculations in our heads. 73 Hertz on four CPUs for eight seconds? Give me a 
calculator!

The 99 Hertz strategy only works because application programmers usually pick round numbers 
for their timed activity: every 1 second, 10 times per second, every 20 milliseconds, etc. If applica-
tion developers began picking 99 times per second for their timed activities, we’d have the lock-
step problem again.

Let’s call 99 the “profiler number.” Don’t use it for anything other than profiling!
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18.3 Yellow Pigs and Gray Rats

In mathematics, the number 17 is special and has been nicknamed the “yellow pig” number; 
there is even a yellow pig day, July 17 [178]. It is also a useful number for tracing analysis, although 
I prefer 23.

You will often be faced with an unknown system to analyze, not knowing which events to start 
tracing. If you are able to inject a known workload, then frequency counting events may reveal 
which are related to your workload.

To show how this works, let’s say you wanted to understand how the ext4 file system performed 
write I/O, but you didn’t know which events to trace. We will create a known workload using 
dd(1) to perform 23 writes, or even better, 230,000 writes so that they stand out from other 
activity:

# dd if=/dev/zero of=test bs=1 count=230000

230000+0 records in

230000+0 records out

230000 bytes (230 kB, 225 KiB) copied, 0.732254 s, 314 kB/s

While this ran, all functions beginning with "ext4_" were traced for 10 seconds:

# funccount -d 10 'ext4_*'

Tracing 509 functions for "ext4_*"... Hit Ctrl-C to end.

^C

FUNC                                    COUNT

ext4_rename2                                1

ext4_get_group_number                       1

[...]

ext4_bio_write_page                        89

ext4_es_lookup_extent                     142

ext4_es_can_be_merged                     217

ext4_getattr                             5125

ext4_file_getattr                        6143

ext4_write_checks                      230117

ext4_file_write_iter                   230117

ext4_da_write_end                      230185

ext4_nonda_switch                      230191

ext4_block_write_begin                 230200

ext4_da_write_begin                    230216

ext4_dirty_inode                       230299

ext4_mark_inode_dirty                  230329

ext4_get_group_desc                    230355

ext4_inode_csum.isra.56                230356

ext4_inode_csum_set                    230356

ext4_reserve_inode_write               230357

ext4_mark_iloc_dirty                   230357
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ext4_do_update_inode                   230360

ext4_inode_table                       230446

ext4_journal_check_start               460551

Detaching...

Notice that 15 of these functions were called a little over 230,000 times: these are very likely 
related to our known workload. Out of the 509 ext4 functions traced, using this trick we’ve 
narrowed them down to 15 candidates. I like using 23 (or 230, 2300, etc.) as it is unlikely to 
coincide with other unrelated event counts. What else would also happen 230,000 times during 
10 seconds of tracing?

23 and 17 are prime numbers, which tend to occur less naturally in computing than other 
numbers, such as powers of 2 or 10. I prefer 23 because it has distance from other power-of-two 
and 10 numbers, unlike 17. I’d call 23 the “gray rat” number.5

See Section 12.4 in Chapter 12, which also used this trick to discover functions.

18.4 Write Target Software

It can save you time and headaches to write load generation software first, then  write the tracing 
tool to measure it.

Let’s say you wanted to trace DNS requests and show latency and request details. Where do you 
start, and how do you know if your program is working? If you begin by writing a simple DNS 
request generator, you’ll learn which functions to trace, how the request details are stored in 
structs, and the return values of the request functions. You’ll likely learn this quickly, as there 
is usually an abundance of documentation for programmers that can be found with Internet 
searches, including code snippets.

In this case, the man page for the getaddrinfo(3) resolver function contains entire programs that 
you can use:

$ man getaddrinfo

[...]

           memset(&hints, 0, sizeof(struct addrinfo));

           hints.ai_family = AF_UNSPEC;    /* Allow IPv4 or IPv6 */

           hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */

           hints.ai_flags = 0;

           hints.ai_protocol = 0;          /* Any protocol */

 

           s = getaddrinfo(argv[1], argv[2], &hints, &result);

           if (s != 0) {

               fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));

               exit(EXIT_FAILURE);

           }

[...]

5 It counts how many whiskers there are on a gray rat. I also own many gray rat stuffed toys from Ikea—maybe 23.
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By starting here, you’ll end up with a tool to generate known requests. You can even modify it to 
make 23 requests (or 2300) to help you find other related functions in the stack (see Section 18.3).

18.5 Learn Syscalls

System calls are rich targets for tracing.

They are documented in man pages, they have tracepoints, and they provide useful insight for 
resource usage by applications. For example, you use the BCC syscount(8) tool and discover a high 
rate of setitimer(2). What is that?

$ man setitimer

GETITIMER(2)               Linux Programmer's Manual              GETITIMER(2)

 

NAME

       getitimer, setitimer - get or set value of an interval timer

 

SYNOPSIS

       #include <sys/time.h>

 

       int getitimer(int which, struct itimerval *curr_value);

       int setitimer(int which, const struct itimerval *new_value,

                     struct itimerval *old_value);

 

DESCRIPTION

       These  system  calls provide access to interval timers, that is, timers

       that initially expire at some point in the future, and (optionally)  at

       regular intervals after that.  When a timer expires, a signal is gener

       ated for the calling process, and the timer is reset to  the  specified

       interval (if the interval is nonzero).

 

[...]

 

   setitimer()

       The function setitimer() arms or disarms the timer specified by  which,

       by setting the timer to the value specified by new_value.  If old_value

       is non-NULL, the buffer it points to is used  to  return  the  previous

       value  of  the  timer  (i.e.,  the same information that is returned by

       getitimer()).

 

[...]

 

RETURN VALUE

       On  success,  zero is returned.  On error, -1 is returned, and errno is

       set appropriately.
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The man page explains what setitimer(2) does, along with its entry arguments and return 
value. These can all be inspected by the tracepoints syscalls:sys_enter_setitimer and 
syscalls:sys_exit_setitimer.

18.6 Keep It Simple

Avoid writing long and complex tracing programs.

BPF tracing is a superpower that can trace everything, and it can be easy to get carried away and 
add more and more events to a tracing program and lose sight of the original problem you wanted 
to solve. This has the following drawbacks:

 ■ Unnecessary overhead: The original problem might have been solved by tracing only a few 
events, but the tool now traces many more, adding little insight to the common use case 
but costing overhead for everyone who uses it.

 ■ Maintenance burden: This is especially the case with kprobes and uprobes, as they are 
an unstable interface that can change between software versions. We’ve already had a 
number of kernel changes during the Linux 4.x series that have broken BCC tools. The fix 
was to include code for each kernel version (often selected by checking for the existence of 
functions, as kernel version numbers are an unreliable indicator due to backports), or to 
simply duplicate the tools, keeping copies for older kernels in the tools/old directory. 
Best case: tracepoints were added so that such breakage stops happening (e.g., with 
sock:inet_sock_set_state for the tcp tools).

Fixing the BCC tools has not been arduous, as each one typically traces only a few events or event 
types (as I designed them to do). Were they to trace dozens of events each, breakage would be 
more frequent, and fixing them would be more complicated. Also, the tests required would be 
magnified: testing all event types across all kernel versions that the tool has specific code for.

I learned this the hard way when I developed a tool called tcpsnoop(1m) 15 years ago. My goal 
was to show which processes were causing TCP I/O, but I solved this by writing a tool to trace 
all packet types with the PID (TCP handshake, port refused packets, UDP, ICMP, etc.) so that it 
matched the output of a network sniffer. This involved tracing many unstable kernel details, 
and the tool broke several times due to kernel updates. I’d lost sight of the original problem and 
developed something that became impractical to maintain. (For more details on this lesson, see 
tcpsnoop in Chapter 10.)

The bpftrace tools I developed and included in this book are the result of 15 years of experience: 
I’m deliberately restricting them to trace the fewest events required, solving the specific problem 
and no more. Where possible, I recommend that you do the same.

18.7 Missing Events

This is a common problem: an event can be instrumented successfully, but it doesn’t seem to 
fire, or a tool produces no output. (If the event can’t be instrumented at all, see Section 18.10.) 
Instrumenting the events using the Linux perf(1) utility can help determine whether the issue is 
with BPF tracing or with the event itself.
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The following demonstrates using perf(1) to check if the block:block_rq_insert and 
block:block_rq_requeue tracepoints are occurring:

# perf stat -e block:block_rq_insert,block:block_rq_requeue -a

^C

 Performance counter stats for 'system wide':

 

                41      block:block_rq_insert                                       

                 0      block:block_rq_requeue                                      

 

       2.545953756 seconds time elapsed

In this example, the block:block_rq_insert tracepoint fired 41 times, and the block:block_rq_requeue 
tracepoint fired zero times. If a BPF tool was tracing block:block_rq_insert at the same time, and it did 
not see any events, then it would suggest a problem with the BPF tool. If both a BPF tool and perf(1) 
showed zero events, then it would suggest there is a problem with the event: it is not occurring.

Now an example of checking if the vfs_read() kernel function is called, using kprobes:

# perf probe vfs_read

Added new event:

  probe:vfs_read       (on vfs_read)

 

You can now use it in all perf tools, such as:

 

        perf record -e probe:vfs_read -aR sleep 1

 

# perf stat -e probe:vfs_read -a

^C

 Performance counter stats for 'system wide':

 

             3,029      probe:vfs_read                                              

 

       1.950980658 seconds time elapsed

# perf probe --del probe:vfs_read

Removed event: probe:vfs_read

The perf(1) interface required separate commands to create and delete the kprobe, and it is similar 
with uprobes. This example showed that vfs_read() was called 3029 times while tracing.

Missing events sometimes happen after a software change where previously instrumented events 
are no longer called.

One common occurrence is where a library function is traced from its shared library location, 
but the target application is statically compiled, and that function is called from the application 
binary instead.
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18.8 Missing Stacks Traces

This is where printed stack traces look incomplete or are completely missing. It may also involve 
missing symbols (covered Section 18.9) so that frames appear as "[unknown]".

Here is some example output, using BCC trace(8) to print user-level stack traces for the execve() 
tracepoint (new process execution):

# trace -U t:syscalls:sys_enter_execve

PID     TID     COMM            FUNC             

26853   26853   bash            sys_enter_execve 

        [unknown]

        [unknown]

 

26854   26854   bash            sys_enter_execve 

        [unknown]

        [unknown]

[...]

This is another opportunity to use perf(1) for cross-checks before digging deeper into 
BCC/BPF debugging. Reproducing this task using perf(1):

# perf record -e syscalls:sys_enter_execve -a -g

^C[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 3.246 MB perf.data (2 samples) ]

 

# perf script

bash 26967 [007] 2209173.697359: syscalls:sys_enter_execve: filename: 0x56172df05030, 

argv: 0x56172df3b680, envp: 0x56172df2df00

                   e4e37 __GI___execve (/lib/x86_64-linux-gnu/libc-2.27.so)

            56172df05010 [unknown] ([unknown])

 

bash 26968 [001] 2209174.059399: syscalls:sys_enter_execve: filename: 0x56172df05090, 

argv: 0x56172df04440, envp: 0x56172df2df00

                   e4e37 __GI___execve (/lib/x86_64-linux-gnu/libc-2.27.so)

            56172df05070 [unknown] ([unknown])

This shows similar broken stacks. There are three problems:

 ■ Stacks are incomplete. They are tracing the bash(1) shell calling a new program: I know 
from prior experience that it is several frames deep, yet only two frames (lines) are shown 
above. If your stack traces are one or two lines long and don’t end with an initial frame 
(e.g., "main" or "start_thread"), it’s reasonable to assume that they may be incomplete 
as well.
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 ■ The last line is [unknown]. Even perf(1) could not resolve the symbol. There may be a 
problem with symbols in bash(1), or libc’s __GI___execve() may have trampled the frame 
pointer, breaking further walking.

 ■ The libc __GI___exceve() call was seen by perf(1) but is not in BCC’s output. This points 
to another problem with BCC’s trace(8) that should be fixed.6

18.8.1 How to Fix Broken Stack Traces

Incomplete stack traces are unfortunately common and are usually caused by a confluence of two 
factors: (1) the observability tool using a frame pointer-based approach for reading the stack trace 
and (2) the target binary not reserving a register (RBP on x86_64) for the frame pointer, instead 
reusing it as a general-purpose register, as a compiler performance optimization. The observability 
tool reads this register expecting it to be a frame pointer, but in fact it now could contain 
anything: numbers, object address, pointers to strings. The observability tool tries to resolve this 
number in the symbol table and, if it is lucky, it doesn’t find it and can print "[unknown]". If it is 
unlucky, that random number resolves to an unrelated symbol, and now the printed stack trace 
has a function name that is wrong, confusing the end user.

The easiest fix is usually to fix the frame pointer register:

 ■ For C/C++ software and other software compiled with gcc or LLVM: Recompile the 
software with -fno-omit-frame-pointer.

 ■ For Java: Run java(1) with -XX:+PreserveFramePointer.

This may come with a performance cost, but it has often been measured at less than 1%; the bene-
fits of being able to use stack trace to find performance wins usually far outweigh this cost. These 
are also discussed in Chapter 12.

The other approach is to switch to a stack walking technique that is not frame pointer based. 
perf(1) supports DWARF-based stack walking, ORC, and last branch record (LBR). At the time of 
writing, DWARF-based and LBR stack walking are not available from BPF, and ORC is not yet avail-
able for user-level software. For more on this topic, see Section 2.4 in Chapter 2.

18.9 Missing Symbols (Function Names) When Printing

This is where symbols are not printed correctly in stack traces or via symbol lookup functions: 
instead of function names, they are shown as hexadecimal numbers or the string "[unknown]". 
One culprit is broken stacks, explained in the previous section. Another is short-lived processes 
that exit before the BPF tool can read its address space and look up symbol tables. A third is that 
the symbol table information is not available. How to fix this differs between JIT runtimes and 
ELF binaries.

6 I would guess that perf(1) may have used debuginfo to get that frame. See a similar investigation in bpftrace #646 [179].
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18.9.1 How to Fix Missing Symbols: JIT Runtimes (Java, Node.js, ...)

Missing symbols commonly occur for just-in-time (JIT) compiler runtimes like Java and Node.js. 
In those cases, the JIT compiler has its own symbol table that is changing at runtime and is not 
part of the pre-compiled symbol tables in the binary. The common fix is to use supplemental 
symbol tables generated by the runtime, which are placed in /tmp/perf-<PID>.map files read by 
both perf(1) and BCC. This approach, some caveats, and future work are discussed in Section 12.3 
of Chapter 12.

18.9.2 How to Fix Missing Symbols: ELF binaries (C, C++, ...)

Symbols may be missing from compiled binaries, especially those that are packaged and 
distributed, as they have been processed using strip(1) to reduce their file size. One fix is to 
adjust the build process to avoid stripping symbols; another is to use a different source of symbol 
information, such as debuginfo or BTF. BCC and bpftrace support debuginfo symbols. These 
approaches, caveats, and future work are discussed in Section 12.2 of Chapter 12.

18.10 Missing Functions When Tracing

This is where a known function cannot be traced with uprobes, uretprobes, kprobes, or 
kretprobes: it appears to be missing or doesn’t fire. The problem may be missing symbols 
(covered earlier). It may also be due to compiler optimizations, or other reasons:

 ■ Inlining: With inlining, the function instructions have been included in the calling 
function. This can happen for functions with few instructions, to save making call, ret, and 
function prologue instructions. The function symbol may be gone completely, or it may be 
present but not fire for that code path.

 ■ Tail-call optimization: When the code flow is A()->B()->C(), and C() is called last in B(), 
then the compiler may have C() return directly to A() as an optimization. This means the 
uretprobe or kretprobe for the function does not fire.

 ■ Static and dynamic linking: This is where a uprobe defines a function to be in a library, 
but the target software has switched from dynamic to static linking, and the function 
location has changed: it is now in the binary. The same is possible in reverse, where a 
uprobe defines a function to be in a binary, but it has since moved to a shared library.

Dealing with this may mean tracing a different event: the parent function, a child function, or 
a neighboring function. kprobes and uprobes also support instruction offset tracing (bpftrace 
should support this in the future), so the location of an inlined function can be instrumented if 
you know its offset.
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18.11 Feedback Loops

If you trace yourself tracing, you can create a feedback loop.

Examples of things to avoid:

# bpftrace -e 't:syscalls:sys_write_enter { printf(...) }'

remote_host# bpftrace -e 'k:tcp_sendmsg { printf(...) }'

# bpftrace -e 'k:ext4_file_write_iter{ printf(...) }' > /ext4fs/out.file

The first two will accidentally trace the bpftrace printf() event by creating another printf() event, 
which is traced and creates another. The event rate will explode, creating a performance issue 
until you can kill bpftrace.

The third does the same as bpftrace triggers ext4 writes to save the output, which causes more 
output to be generated and saved, and so on.

You can avoid this by using filters to exclude tracing your own BPF tool or just trace the target 
process of interest.

18.12 Dropped Events

Be aware of dropped events rendering the tool output incomplete.

BPF tools can emit output so quickly that it overflows the perf output buffer, or can try to save too 
many stack IDs and overflow the BPF stack map, etc. 

For example:

# profile

[...]

WARNING: 5 stack traces could not be displayed.

The tools should tell you when events have been dropped, as the output above shows. These drops 
can often be fixed by tuning. profile(8), for example, has the -stack-storage-size option 
to increase the size of the stack map, which by default can store 16,384 unique stack traces. If 
tuning becomes commonplace, the tool defaults should be updated so that users do not need to 
change them.
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bpftrace One-Liners

This is a selection of one-liners used throughout this book.

Chapter 6 CPUs

New processes with arguments:

bpftrace -e 'tracepoint:syscalls:sys_enter_execve { join(args->argv); }'

Syscall count by process:

bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[pid, comm] = count(); }'

Sample running process name at 99 Hertz:

bpftrace -e 'profile:hz:99 { @[comm] = count(); }'

Sample user-level stacks at 49 Hertz, for PID 189:

bpftrace -e 'profile:hz:49 /pid == 189/ { @[ustack] = count(); }'

Trace new threads via pthread_create():

bpftrace -e 'u:/lib/x86_64-linux-gnu/libpthread-2.27.so:pthread_create {

    printf("%s by %s (%d)\n", probe, comm, pid); }'

Chapter 7 Memory

Count process heap expansion (brk()) by code path:

bpftrace -e tracepoint:syscalls:sys_enter_brk { @[ustack, comm] = count(); }

Count page faults by process:

bpftrace -e 'software:page-fault:1 { @[comm, pid] = count(); }'

Count user page faults by user-level stack trace:

bpftrace -e 'tracepoint:exceptions:page_fault_user { @[ustack, comm] =

     count(); }'
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Count vmscan operations by tracepoint:

bpftrace -e 'tracepoint:vmscan:* { @[probe]++; }'

Chapter 8 File Systems

Trace files opened via open(2) with process name:

bpftrace -e 't:syscalls:sys_enter_open { printf("%s %s\n", comm,

    str(args->filename)); }'

Show the distribution of read() syscall request sizes:

bpftrace -e 'tracepoint:syscalls:sys_enter_read { @ = hist(args->count); }'

Show the distribution of read() syscall read bytes (and errors):

bpftrace -e 'tracepoint:syscalls:sys_exit_read { @ = hist(args->ret); }'

Count VFS calls:

bpftrace -e 'kprobe:vfs_* { @[probe] = count(); }'

Count ext4 tracepoints:

bpftrace -e 'tracepoint:ext4:* { @[probe] = count(); }'

Chapter 9 Disk I/O

Count block I/O tracepoints:

bpftrace -e 'tracepoint:block:* { @[probe] = count(); }'

Summarize block I/O size as a histogram:

bpftrace -e 't:block:block_rq_issue { @bytes = hist(args->bytes); }'

Count block I/O request user stack traces:

bpftrace -e 't:block:block_rq_issue { @[ustack] = count(); }'

Count block I/O type flags:

bpftrace -e 't:block:block_rq_issue { @[args->rwbs] = count(); }'

Trace block I/O errors with device and I/O type:

bpftrace -e 't:block:block_rq_complete /args->error/ {

    printf("dev %d type %s error %d\n", args->dev, args->rwbs, args->error); }'

Count SCSI opcodes:

bpftrace -e 't:scsi:scsi_dispatch_cmd_start { @opcode[args->opcode] =

    count(); }'

Count SCSI result codes:

bpftrace -e 't:scsi:scsi_dispatch_cmd_done { @result[args->result] = count(); }'
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Count scsi driver funcitons:

bpftrace -e 'kprobe:scsi* { @[func] = count(); }'

Chapter 10 Networking

Count socket accept(2)s by PID and process name: 

bpftrace -e 't:syscalls:sys_enter_accept* { @[pid, comm] = count(); }'

Count socket connect(2)s by PID and process name: 

bpftrace -e 't:syscalls:sys_enter_connect { @[pid, comm] = count(); }'

Count socket send/receive bytes by on-CPU PID and process name:

bpftrace -e 'kr:sock_sendmsg,kr:sock_recvmsg /retval > 0/ {

    @[pid, comm, retval] = sum(retval); }'

Count TCP send/receives:

bpftrace -e 'k:tcp_sendmsg,k:tcp*recvmsg { @[func] = count(); }'

TCP send bytes as a histogram:

bpftrace -e 'k:tcp_sendmsg { @send_bytes = hist(arg2); }'

TCP receive bytes as a histogram:

bpftrace -e 'kr:tcp_recvmsg /retval >= 0/ { @recv_bytes = hist(retval); }'

Count TCP retransmits by type and remote host (assumes IPv4):

bpftrace -e 't:tcp:tcp_retransmit_* { @[probe, ntop(2, args->saddr)] =

    count(); }'

UDP send bytes as a histogram:

bpftrace -e 'k:udp_sendmsg { @send_bytes = hist(arg2); }'

Count transmit kernel stack traces:

bpftrace -e 't:net:net_dev_xmit { @[kstack] = count(); }'

Chapter 11 Security

Count security audit events for PID 1234:

bpftrace -e 'k:security_* /pid == 1234 { @[func] = count(); }'

Trace pluggable authentication module (PAM) session starts:

bpftrace -e 'u:/lib/x86_64-linux-gnu/libpam.so.0:pam_start {

    printf("%s: %s\n", str(arg0), str(arg1)); }'

Trace kernel module loads:

bpftrace -e 't:module:module_load { printf("load: %s\n", str(args->name)); }'
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Chapter 13 Applications

Sum malloc() requested bytes by user stack trace (high overhead):

bpftrace -e 'u:/lib/x86_64-linux-gnu/libc-2.27.so:malloc { @[ustack(5)] =

    sum(arg0); }'

Trace kill() signals showing sender process name, target PID, and signal number:

bpftrace -e 't:syscalls:sys_enter_kill { printf("%s -> PID %d SIG %d\n",

    comm, args->pid, args->sig); }'

Count libpthread mutex lock functions for one second:

bpftrace -e 'u:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_mutex_*lock {

    @[probe] = count(); } interval:s:1 { exit(); }'

Count libpthread conditional variable functions for one second:

bpftrace -e 'u:/lib/x86_64-linux-gnu/libpthread.so.0:pthread_cond_* {

    @[probe] = count(); } interval:s:1 { exit(); }'

Chapter 14 Kernel

Count system calls by syscall function:

bpftrace -e 'tracepoint:raw_syscalls:sys_enter {

    @[ksym(*(kaddr("sys_call_table") + args->id * 8))] = count(); }'

Count kernel function calls starting with "attach":

bpftrace -e 'kprobe:attach* { @[probe] = count(); }'

Time the kernel function vfs_read() and summarize as a histogram:

bpftrace -e 'k:vfs_read { @ts[tid] = nsecs; } kr:vfs_read /@ts[tid]/ {

    @ = hist(nsecs - @ts[tid]); delete(@ts[tid]); }'

Frequency count the first integer argument to kernel function "func1":

bpftrace -e 'kprobe:func1 { @[arg0] = count(); }'

Frequency count the return value from kernel function "func1":

bpftrace -e 'kretprobe:func1 { @[retval] = count(); }'

Sample kernel-level stacks at 99 Hertz, excluding idle:

bpftrace -e 'profile:hz:99 /pid/ { @[kstack] = count(); }'

Count context switch stack traces:

bpftrace -e 't:sched:sched_switch { @[kstack, ustack, comm] = count(); }'

Count work queue requests by kernel function:

bpftrace -e 't:workqueue:workqueue_execute_start { @[ksym(args->function)] =

    count() }'
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bpftrace Cheat Sheet

Synopsis

bpftrace -e 'probe /filter/ { action; }'

Probes

BEGIN, END Program start and end

tracepoint:syscalls:sys_enter_execve execve(2) syscall

tracepoint:syscalls:sys_enter_open open(2) syscall (also trace openat(2))

tracepoint:syscalls:sys_exit_read trace read(2) syscall return (one variant)

tracepoint:raw_syscalls:sys_enter All syscalls

block:block_rq_insert Queue block I/O request

block:block_rq_issue Issue block I/O request to storage device

block:block_rq_complete Block I/O completion

sock:inet_sock_set_state Socket state change

sched:sched_process_exec Process execution

sched:sched_switch Context switch

sched:sched_wakeup Thread wakeup event

software:faults:1 Page faults

hardware:cache-misses:1000000 Once every 1,000,000 LLC cache miss

kprobe:vfs_read Trace vfs_read() kernel function entry

kretprobe:vfs_read Trace return of vfs_read() kernel function

uprobe:/bin/bash:readline Trace readline() from /bin/bash

uretprobe:/bin/bash:readline Trace return of readline() from /bin/bash

usdt:path:probe Trace USDT probe from path

profile:hz:99 Sample on all CPUs at 99 Hertz

interval:s:1 Run on one CPU once per second

Probe Aliases

t tracepoint U usdt k kprobe kr kretprobe p profile

s software h hardware u uprobe ur uretprobe i interval
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Vars

comm On-CPU process name username Username string

pid, tid On-CPU PID, Thread ID uid User ID

cpu CPU ID kstack Kernel stack trace

nsecs Time, nanoseconds ustack User stack trace

elapsed Time since program start, 
nsecs

probe Current full probe name

arg0..N [uk]probe arguments func Current function name

args-> Tracepoint args $1..$N CLI args, int

retval [uk]retprobe return value str($1)... CLI args, string

cgroup Current cgroup ID curtask Pointer to current task struct

Actions

@map[key1, ...] = count() Frequency count

@map[key1, ...] = sum(var) Sum variable

@map[key1, ...] = hist(var) Power of two histogram

@map[key1, ...] = lhist(var, 
min, max, step)

Linear histogram

@map[key1, ...] = stats(var) Statistics: count, average, and total

min(var), max(var), avg(var) Min, max, average

printf("format", var0..varN) Print vars; use print() for aggregations

kstack(num), ustack(num) Print num lines of kernel, user stack

ksym(ip), usym(ip) Kernel/user symbol string from instruction pointer

kaddr("name"), uaddr("name") Kernel/user address from symbol name

str(str[, len]) String from address

ntop([af], addr) IP address to string

Asynchronous Actions

printf("format", var0..varN) Print vars; use print() for aggregations

system("format", var0..varN) Run at command line

time("format") Print formatted time

clear(@map) Clear a map: delete all keys

print(@map) Print a map

exit() Exit

Switches

-e Trace this probe description

-l List probes instead of tracing them

-p PID Enable USDT probes on PID

-c 'command' Invoke this command

-v, -d Verbose and debug output
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BCC Tool Development

This appendix summarizes BCC tool development using examples and is an extension of 
Chapter 4. This is optional content for those readers who are interested. Chapter 5 covers 
how to develop tools in bpftrace, a higher-level language that is expected to be sufficient and 
preferred in many cases. Also see Chapter 18 for a discussion on minimizing overhead, which 
is common to both BCC and bpftrace tool development.

Resources

I created three detailed documents for learning BCC tool development and made them 
 available for free as part of the BCC repository where they are online and maintained by other 
contributors. They are:

 ■ BCC Python Developer Tutorial: This contains more than 15 lessons for BCC tool 
development using the Python interface, where each lesson highlights a number of 
details to learn [180].

 ■ BCC Reference Guide: This is a full reference for the BPF C API, and the BCC Python 
API. It covers all the capabilities of BCC, and includes short code examples for every 
capability. It is intended to be searched when needed [181].

 ■ Contributing BCC/eBPF scripts: This provides a checklist for tool developers who 
wish to contribute their tools to the BCC repository. This summarizes years of lessons 
learned when developing and maintaining tracing tools [63].

In this appendix I provide an additional resource for learning BCC tool development: a crash 
course of learning by example. This includes four Python programs: hello_world.py as a 
basic example; sleepsnoop.py for per-event output; bitehist.py to introduce histogram maps, 
 function signatures, and structs; and biolatency.py as an example of a real tool.

Five Tips

Here are five tips you should know before writing BCC tools:
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 1. BPF C is restricted: no loops or kernel function calls. You can only use the bpf_* kernel 
helper functions and some compiler built-ins.

 2. All memory must be read through bpf_probe_read(), which does necessary checks. 
If you want to dereference a->b->c->d, then try doing it first, as BCC has a rewriter 
that may turn it into the necessary bpf_probe_read()s. If it doesn’t work, add explicit 
bpf_probe_reads()s.

 ■ Memory can only be read to the BPF stack or BPF maps. The stack is limited in size; 
use BPF maps for storing large objects.

 3. There are three ways to output data from kernel to user:

 ■ BPF_PERF_OUTPUT(): A way to send per-event details to user space, via a custom 
struct you define.

 ■ BPF_HISTOGRAM() or other BPF maps: Maps are a key/value hash from which 
more advanced data structures can be built. They can be used for summary statistics 
or histograms, and read periodically from user space (efficient).

 ■ bpf_trace_printk(): Debugging only, this writes to trace_pipe and can clash with 
other programs and tracers.

 4. Use static instrumentation (tracepoints, USDT) instead of dynamic instrumentation 
(kprobes, uprobes) wherever possible. Dynamic instrumentation is an unstable API, so 
your tools will break if the code it is instrumenting changes.

 5. Check for BCC developments for new features and capabilities, and bpftrace 
developments in case it becomes sufficient for your needs.

Tool Examples

The following example tools have been selected to teach you the essentials of BCC 
 programming. They are hello_world.py and sleepsnoop.py as examples of per-event output, 
and bitehist.py and biolatency.py as examples of histogram output.

Tool 1: hello_world.py

This is a basic example to begin with. First, consider the output:

# hello_world.py

 ModuleProcessTh-30136 [005] .... 2257559.959119: 0x00000001: Hello, World!

 SendControllerT-30135 [002] .... 2257559.971135: 0x00000001: Hello, World!

 SendControllerT-30142 [007] .... 2257559.974129: 0x00000001: Hello, World!

 ModuleProcessTh-30153 [000] .... 2257559.977401: 0x00000001: Hello, World!

 SendControllerT-30135 [003] .... 2257559.996311: 0x00000001: Hello, World!

[...]

It prints a line of output for some event, ending with the text "Hello, World!"
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Now the source code, hello_world.py:

 1  #!/usr/bin/python

 2  from bcc import BPF

 3  b = BPF(text="""

 4  int kprobe__do_nanosleep()

 5  {

 6      bpf_trace_printk("Hello, World!\\n");

 7      return 0;

 8  }""");

 9  b.trace_print()

Line 1 sets the interpreter to Python. Some environments prefer using "#!/usr/bin/env 
python" to use the first python found in the shell environment.

Line 4 imports the BPF library from BCC.

Lines 4 to 8, highlighted in bold, declare the kernel-level BPF program, written in C. This 
program is included in the parent Python program in quotation marks and passed as the text 
argument to a new BPF() object, b.

Line 4 uses a shortcut to instrument a kprobe. This shortcut is a function declaration that 
begins with "kprobe__". The rest of the string is treated as the function name to instrument, 
in this case, do_nanosleep(). This shortcut is not used by many tools yet, since those tools 
predate his capability. The tools often use a BPF.attach_kprobe() Python call instead.

Line 6 calls bpf_trace_printk() with the "Hello World!" string, followed by a newline (which 
is escaped with an extra "\" so that the "\n" is preserved for the final compilation step). 
bpf_trace_printk() prints a string to the shared trace buffer.

Line 9 calls a Python trace_print() function from the BPF object. This fetches the trace buffer 
messages from the kernel and prints them out.

To keep this example short, the bpf_trace_printk() interface was used. However, this is for 
debugging only as it utilizes a buffer that is shared with other tools (which can be read from 
user space via /sys/kernel/debug/tracing/trace_pipe.) Running this at the same time as other 
tracing tools may cause their outputs to clash. The recommended interface is demonstrated 
by the next tool, sleepsnoop.py.

Tool 2: sleepsnoop.py

This tool shows calls to do_nanosleep() with a timestamp and process ID. This is provided as 
an example of using the perf output buffer. Sample output:

# sleepsnoop.py 

TIME(s)            PID    CALL

489488.676744000   5008   Hello, World!

489488.676740000   4942   Hello, World!
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489488.676744000   32469  Hello, World!

489488.677674000   5006   Hello, World!

[...]

The source code is:

 1  #!/usr/bin/python

 2  

 3  from bcc import BPF

 4  

 5  # BPF program

 6  b = BPF(text="""

 7  struct data_t {

 8      u64 ts;

 9      u32 pid;

10  };

11  

12  BPF_PERF_OUTPUT(events);

13  

14  int kprobe__do_nanosleep(void *ctx) {

15      struct data_t data = {};

16      data.pid = bpf_get_current_pid_tgid();

17      data.ts = bpf_ktime_get_ns() / 1000;

18      events.perf_submit(ctx, &data, sizeof(data));

19      return 0;

20  };

21  """)

22  

23  # header

24  print("%-18s %-6s %s" % ("TIME(s)", "PID", "CALL"))

25  

26  # process event

27  def print_event(cpu, data, size):

28      event = b["events"].event(data)

29      print("%-18.9f %-6d Hello, World!" % ((float(event.ts) / 1000000),

30          event.pid))

31  

32  # loop with callback to print_event

33  b["events"].open_perf_buffer(print_event)

34  while 1:

35      try:

36          b.perf_buffer_poll()

37      except KeyboardInterrupt:

38          exit()
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Lines 7 to 10 define the output struct, data_t. It contains two members, a u64 (unsigned 
64-bit int) for a timestamp, and a u32 for a pid.

Line 12 declares the perf event output buffer, named "events".

Line 14 instruments do_nanosleep(), as did the earlier hello_world.py example.

Line 15 declares a data_t struct named data and initializes it to zero, which is required 
(the BPF verifier will reject access to uninitialized memory).

Lines 16 and 17 populate members of data using BPF helper functions.

Line 18 submits the data struct via the events perf buffer.

Line 27 to 30 declare a callback named print_event() that handles an event from the perf 
buffer. It reads the event data on line 28 as the object named event and accesses its members 
on lines 29 and 30. (Older versions of BCC required more manual steps to declare in Python 
the layout of the data struct; that is now automatic).

Line 33 registers the perf_event() callback with the perf event buffer named events.

Lines 34 to 38 poll open perf buffers. If there are events, their callbacks are executed. On a 
Ctrl-C, the program will exit.

If the events are frequent, the user-space Python program may wake up often to process them. 
As an optimization, some tools introduce a small sleep in the final while loop to allow several 
events to be buffered, reducing the number of times Python runs on CPU, and lowering 
overall overhead.

If events are frequent, you should consider whether summarizing them in kernel context can 
better answer your questions, as it should cost lower overhead. The next tool is an example of 
this, bitehist.py.

Tool 3: bitehist.py

This tool prints the size of disk I/O as a power-of-two histogram; a similar version is in the 
BCC examples/tracing directory. I’ll begin with the output of this tool to show what it does 
before looking at the source code:

# bitehist.py

Tracing block I/O... Hit Ctrl-C to end.

^C

     kbytes              : count     distribution

         0 -> 1          : 3        |**                                      |

         2 -> 3          : 0        |                                        |

         4 -> 7          : 55       |****************************************|

         8 -> 15         : 26       |******************                      |

        16 -> 31         : 9        |******                                  |

        32 -> 63         : 4        |**                                      |
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        64 -> 127        : 0        |                                        |

       128 -> 255        : 1        |                                        |

       256 -> 511        : 0        |                                        |

       512 -> 1023       : 1        |                                        |

The full BCC program, with enumerated lines:

 1  #!/usr/bin/python

 2  #[...]

 3  from __future__ import print_function

 4  from bcc import BPF

 5  from time import sleep

 6  

 7  # load BPF program

 8  b = BPF(text="""

 9  #include <uapi/linux/ptrace.h>

10  

11  BPF_HISTOGRAM(dist);

12  

13  int kprobe__blk_account_io_completion(struct pt_regs *ctx,

14      void *req, unsigned int bytes)

15  {

16      dist.increment(bpf_log2l(bytes / 1024));

17      return 0;

18  }

19  """)

20  

21  # header

22  print("Tracing block I/O... Hit Ctrl-C to end.")

23  

24  # trace until Ctrl-C

25  try:

26      sleep(99999999)

27  except KeyboardInterrupt:

28      print()

29  

30  # output

31  b["dist"].print_log2_hist("kbytes")

Lines 1–8 include details covered in the previous hello_world.py example.

Line 9 includes header information used by the BPF program (for struct pt_regs).

Line 11 declares a BPF map histogram, named "dist", used for storage and output.
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Lines 13 and 14 declare the function signature for blk_account_io_completion(). The first 
argument, "struct pt_regs *ctx," refers to register state from the instrumentation, and is not 
from the target function. The remaining arguments are from the function, which is from the 
kernel in block/blk-core.c:

void blk_account_io_completion(struct request *req, unsigned int bytes)

I am interested in the bytes argument, but I must also declare the "struct request *req" argu-
ment so that the positions match, even though I am not using struct request *req in the BPF 
program. However, struct request is not known by default by BPF, so including it in the func-
tion signature would cause the BPF tool to fail to compile. There are two workarounds: (1) 
#include <linux/blkdev.h>, so that struct request is known, or (2) replace "struct request *req" 
with "void *req," since void is already known, and that I have lost the real type information is 
unimportant since the program does not dereference it. In this example I used workaround 2.

Line 16 takes the bytes argument and divides it by 1024, then passes this Kbyte value to 
bpf_log2l(), a function that generates a power-of-two index from the value. This index value 
is then saved in the dist histogram via dist.increment(): which increments the value at that 
index by one. To explain with an example:

 1. Imagine the for the first event the bytes variable was 4096

 2. 4096 / 1024 = 4

 3. bpf_log2l(4) = 3

 4. dist.increment(3) adds 1 to index 3, so the dist histogram now contains:

index 1: value 0 (refers to 0 → 1 Kbytes)

index 2: value 0 (refers to 2 → 3 Kbytes)

index 3: value 1 (refers to 4 → 7 Kbytes)

index 4: value 0 (refers to 8 → 15 Kbytes)

…

These indexes and values will be read by user space and printed as a histogram.

Line 22 prints a header. When using this tool, it can be useful to see when the header is 
printed: it tells you that the BCC compilation stages and attaching event instrumentation has 
completed, and is about to start tracing. The contents of this introductory message follow a 
convention that explains what the tool is doing and when it will finish:

 ■ Tracing: This tells the user that the tool is doing per-event tracing. If it were sampling 
(profiling), it would say that instead.

 ■ block I/O: This tells the user what events are instrumented.
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 ■ Hit Ctrl-C to end.: This tells the user when the program will end. Tools that generate 
interval output may include this as well—for example, “Output every 1 second, Ctrl-C 
to end.”

Lines 25 to 28 cause the program to wait until Ctrl-C is pressed. When it is, a newline is 
printed to prepare the screen for output.

Line 31 prints the dist histogram as a power-of-2 histogram, with a label for the range column 
of "kbytes". This involves fetching the values for the indexes from the kernel. How does this 
Python BPF.print_log2_hist() call understand what ranges each index refers to? These ranges 
are not passed from the kernel to user space, only the values are. The ranges are known 
because the user-space and kernel log2 algorithms match.

There is another way to write the BPF code, which serves as an example of struct 
dereferencing:

#include <uapi/linux/ptrace.h>

#include <linux/blkdev.h>

 

BPF_HISTOGRAM(dist);

 

int kprobe__blk_account_io_completion(struct pt_regs *ctx, struct request *req)

{

        dist.increment(bpf_log2l(req->__data_len / 1024));

        return 0;

}

Now, the bytes value is fetched from struct request and its __data_len member. Since I’m now 
processing struct request, I have needed to include the linux/blkdev.h header that has its defi-
nition. Since I’m not using the second bytes argument to this function, I have not declared it 
in the function signature: trailing unused arguments can be elided, which still preserves the 
position of earlier arguments.

What’s really happening is that the arguments (after struct pt_regs *ctx) defined in the BPF 
program are mapped to the function calling convention registers. On x86_64, this is %rdi, 
%rsi, %rdx, etc. If you write the wrong function signature, the BPF tool will compile success-
fully and apply that signature to the registers, leading to invalid data.

Shouldn’t the kernel know what these function arguments are? Why am I redeclaring them in 
the BPF program? The answer is that the kernel does know, if kernel debuginfo is installed on 
your system. But that’s rarely the case in practice, since the debuginfo files can be large.

Lightweight metadata has been in development that should solve this problem: BPF Type 
Format, which can be included in the kernel vmlinux binary, and one day may be available 
for user-level binaries as well. This should hopefully remove the need to include header files 
and redeclare function signatures. See Section 2.3.9 in Chapter 2.
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Tool 4: biolatency

The following are all the lines from my original biolatency.py tool, enumerated and 
commented:

     1 #!/usr/bin/python

     2 # @lint-avoid-python-3-compatibility-imports

Line 1: We’re Python.

Line 2 suppresses a lint warning (these were added for Facebook’s build environment).

     3 #

     4 # biolatency    Summarize block device I/O latency as a histogram.

     5 #               For Linux, uses BCC, eBPF.

     6 #

     7 # USAGE: biolatency [-h] [-T] [-Q] [-m] [-D] [interval] [count]

     8 #

     9 # Copyright (c) 2015 Brendan Gregg.

    10 # Licensed under the Apache License, Version 2.0 (the "License")

    11 #

    12 # 20-Sep-2015   Brendan Gregg   Created this.

I have a certain style to my header comments. Line 4 names the tool and has a single-sentence 
description. Line 5 adds any caveats: for Linux only, uses BCC/eBPF.1 It then has a synopsis 
line, a copyright, and a history of major changes.

    13 

    14 from __future__ import print_function

    15 from bcc import BPF

    16 from time import sleep, strftime

    17 import argparse

Note that I import BPF, which I’ll use to interact with BPF in the kernel.

    18 

    19 # arguments

    20 examples = """examples:

    21     ./biolatency            # summarize block I/O latency as a histogram

    22     ./biolatency 1 10       # print 1 second summaries, 10 times

    23     ./biolatency -mT 1      # 1s summaries, milliseconds, and timestamps

    24     ./biolatency -Q         # include OS queued time in I/O time

    25     ./biolatency -D         # show each disk device separately

1 The “eBPF” dates back to when we were still calling it that. Today, we just call it BPF.
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    26 """

    27 parser = argparse.ArgumentParser(

    28     description="Summarize block device I/O latency as a histogram",

    29     formatter_class=argparse.RawDescriptionHelpFormatter,

    30     epilog=examples)

    31 parser.add_argument("-T", "--timestamp", action="store_true",

    32     help="include timestamp on output")

    33 parser.add_argument("-Q", "--queued", action="store_true",

    34     help="include OS queued time in I/O time")

    35 parser.add_argument("-m", "--milliseconds", action="store_true",

    36     help="millisecond histogram")

    37 parser.add_argument("-D", "--disks", action="store_true",

    38     help="print a histogram per disk device")

    39 parser.add_argument("interval", nargs="?", default=99999999,

    40     help="output interval, in seconds")

    41 parser.add_argument("count", nargs="?", default=99999999,

    42     help="number of outputs")

    43 args = parser.parse_args()

    44 countdown = int(args.count)

    45 debug = 0

    46 

Lines 19 to 44 are argument processing. I’m using Python’s argparse here.

My intent is to make this a Unix-like tool, something similar to vmstat(8) or iostat(1), to make 
it easy for others to recognize and learn—hence the style of options and arguments and also 
to do one thing and do it well (in this case, showing disk I/O latency as a histogram). I could 
have added a mode to dump per-event details but made that a separate tool, biosnoop.py.

You may be writing BCC/eBPF for other reasons, including agents to other monitoring soft-
ware, and don’t need to worry about the user interface.

    47 # define BPF program

    48 bpf_text = """

    49 #include <uapi/linux/ptrace.h>>

    50 #include <linux/blkdev.h>

    51 

    52 typedef struct disk_key {

    53     char disk[DISK_NAME_LEN];

    54     u64 slot;

    55 } disk_key_t;

    56 BPF_HASH(start, struct request *);

    57 STORAGE

    58 
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    59 // time block I/O

    60 int trace_req_start(struct pt_regs *ctx, struct request *req)

    61 {

    62     u64 ts = bpf_ktime_get_ns();

    63     start.update(&req, &ts);

    64     return 0;

    65 }

    66 

    67 // output

    68 int trace_req_completion(struct pt_regs *ctx, struct request *req)

    69 {

    70     u64 *tsp, delta;

    71 

    72     // fetch timestamp and calculate delta

    73     tsp = start.lookup(&req);

    74     if (tsp == 0) {

    75         return 0;   // missed issue

    76     }

    77     delta = bpf_ktime_get_ns() - *tsp;

    78     FACTOR

    79 

    80     // store as histogram

    81     STORE

    82 

    83     start.delete(&req);

    84     return 0;

    85 }

    86 """

The BPF program is declared as an inline C assigned to the variable bpf_text.

Line 56 declares a hash array called "start", which uses a struct request pointer as the key. 
The trace_req_start() function fetches a timestamp using bpf_ktime_get_ns() and then 
stores it in this hash, keyed by *req. (I’m just using that pointer address as a UUID.) The 
trace_req_completion() function then does a lookup on the hash with its *req, to fetch the 
start time of the request, which is then used to calculate the delta time on line 77. Line 83 
deletes the timestamp from the hash.

The prototypes to these functions begin with a struct pt_regs * for registers, and then as many 
of the probed function arguments as you want to include. I’ve included the first function 
argument in each, struct request *.

This program also declares storage for the output data and stores it, but there’s a problem: 
biolatency has a -D option to emit per-disk histograms, instead of one histogram for every-
thing, and this changes the storage code. So this BPF program contains the text STORAGE and 
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STORE (and FACTOR) which are merely strings that I’ll search and replace with code next, 
depending on the options. I’d rather avoid code-that-writes-code if possible, since it makes it 
harder to debug.

    87 

    88 # code substitutions

    89 if args.milliseconds:

    90     bpf_text = bpf_text.replace('FACTOR', 'delta /= 1000000;')

    91     label = "msecs"

    92 else:

    93     bpf_text = bpf_text.replace('FACTOR', 'delta /= 1000;')

    94     label = "usecs"

    95 if args.disks:

    96     bpf_text = bpf_text.replace('STORAGE',

    97         'BPF_HISTOGRAM(dist, disk_key_t);')

    98     bpf_text = bpf_text.replace('STORE',

    99         'disk_key_t key = {.slot = bpf_log2l(delta)}; ' +

   100         'bpf_probe_read(&key.disk, sizeof(key.disk), ' +

   101         'req->rq_disk->disk_name); dist.increment(key);')

   102 else:

   103     bpf_text = bpf_text.replace('STORAGE', 'BPF_HISTOGRAM(dist);')

   104     bpf_text = bpf_text.replace('STORE',

   105         'dist.increment(bpf_log2l(delta));')

The FACTOR code just changes the units of the time I’m recording, depending on the -m 
option.

Line 95 checks if per-disk has been requested (-D), and if so, replaces the STORAGE and 
STORE strings with code to do per-disk histograms. It uses the disk_key struct declared 
on line 52, which is the disk name and the slot (bucket) in the power-of-two histogram. 
Line 99 takes the delta time and turns it into the power-of-two slot index using the 
bpf_log2l() helper function. Lines 100 and 101 fetch the disk name via bpf_probe_read(), 
which is how all data is copied onto BPF’s stack for operation. Line 101 includes many 
dereferences: req->rq_disk, rq_disk->disk_name: BCC’s rewriter has transparently turned 
these into bpf_probe_read()s as well.

Lines 103 to 105 deal with the single histogram case (not per disk). A histogram is declared 
named "dist" using the BPF_HISTOGRAM macro. The slot (bucket) is found using the 
bpf_log2l() helper function and then incremented in the histogram.

This example is a little gritty, which is both good (realistic) and bad (intimidating). See the 
tutorial I linked to earlier for more simple examples.

   106 if debug:

   107     print(bpf_text)
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Since I have code that writes code, I need a way to debug the final output. If debug is set, print 
it out.

   108 

   109 # load BPF program

   110 b = BPF(text=bpf_text)

   111 if args.queued:

   112    b.attach_kprobe(event="blk_account_io_start", fn_name="trace_req_start")

   113 else:

   114    b.attach_kprobe(event="blk_start_request", fn_name="trace_req_start")

   115    b.attach_kprobe(event="blk_mq_start_request", fn_name="trace_req_start")

   116 b.attach_kprobe(event="blk_account_io_completion",

   117     fn_name="trace_req_completion")

   118 

Line 110 loads the BPF program.

Since this program was written before BPF had tracepoint support, I wrote it to use kprobes 
(kernel dynamic tracing). It should be rewritten to use tracepoints, as they are a stable API, 
although that then also requires a later kernel version (Linux 4.7+).

biolatency.py has a -Q option to include time queued in the kernel. You can see how it’s 
implemented in this code. If it is set, line 112 attaches the BPF trace_req_start() function with 
a kprobe on the blk_account_io_start() kernel function, which tracks the request when it’s 
first queued in the kernel. If not set, lines 114 and 115 attach the BPF function to different 
kernel functions, which is when the disk I/O is issued (it can be either of these). This only 
works because the first argument to any of these kernels functions is the same: struct 
request *. If their arguments were different, I’d need separate BPF functions for each to 
handle that.

   119 print("Tracing block device I/O... Hit Ctrl-C to end.")

   120 

   121 # output

   122 exiting = 0 if args.interval else 1

   123 dist = b.get_table("dist")

Line 123 fetches the "dist" histogram that was declared and populated by the 
STORAGE/STORE code.

   124 while (1):

   125     try:

   126         sleep(int(args.interval))

   127     except KeyboardInterrupt:

   128         exiting = 1

   129 

   130     print()
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   131     if args.timestamp:

   132         print("%-8s\n" % strftime("%H:%M:%S"), end="")

   133 

   134     dist.print_log2_hist(label, "disk")

   135     dist.clear()

   136 

   137     countdown -= 1

   138     if exiting or countdown == 0:

   139         exit()

This has logic for printing every interval a certain number of times (countdown). Lines 131 
and 132 print a timestamp if the -T option was used.

Line 134 prints the histogram, or per-disk histograms. The first argument is the label variable, 
which contains "usecs" or "msecs" and decorates the column of values in the output. 
The second argument labels the secondary key if dist has per-disk histograms. How 
print_log2_hist() can identify whether this is a single histogram or has a secondary key, I’ll 
leave as an adventurous exercise in code spelunking of BCC and BPF internals.

Line 135 clears the histogram, ready for the next interval.

Here is some sample output, using -D for per-disk histograms:

# biolatency -D

Tracing block device I/O... Hit Ctrl-C to end.

^C

disk = 'xvdb'

     usecs               : count     distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 0        |                                        |

         4 -> 7          : 0        |                                        |

         8 -> 15         : 0        |                                        |

        16 -> 31         : 0        |                                        |

        32 -> 63         : 0        |                                        |

        64 -> 127        : 18       |****                                    |

       128 -> 255        : 167      |****************************************|

       256 -> 511        : 90       |*********************                   |

 

disk = 'xvdc'

     usecs               : count     distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 0        |                                        |

         4 -> 7          : 0        |                                        |

         8 -> 15         : 0        |                                        |

        16 -> 31         : 0        |                                        |
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        32 -> 63         : 0        |                                        |

        64 -> 127        : 22       |****                                    |

       128 -> 255        : 179      |****************************************|

       256 -> 511        : 88       |*******************                     |

[...]

More Info

Refer to the section “Resources,” at the beginning of this appendix, for more about BCC tool 
development, and see Chapter 4 for BCC in general.
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Appendix D
C BPF

This appendix shows examples of BPF tools implemented in C, either as compiled C programs 
or executed via the perf(1) utility. This appendix is optional material for those readers who 
are interested in developing a deeper understanding of how BPF works, as well as other BPF 
 interfaces that are supported by the Linux kernel.

Chapter 5 covers how to develop tools in bpftrace, a higher-level language that is expected 
to be sufficient and preferred in many cases, and Appendix C covers the BCC interface as 
another preferred option. This appendix is a follow-on from the BPF sections in Chapter 2.

This appendix begins with a discussion on C programming and five tips before you begin. 
The first program included is hello_world.c, for demonstrating BPF instruction-level 
 programming, followed by two C tools, bigreads and bitehist, to demonstrate per-event 
output and histograms, respectively. The final tool included is a perf(1) version of bigreads, as 
an example of using C programming via perf(1).

Why Program in C?

Back in 2014, C was all we had. Then came the BCC project, which provided an improved 
C language1 for the kernel BPF programs, and other languages for the front end. And now we 
have the bpftrace project, where the entire program is a high-level language.

Reasons for continuing to write tracing tools entirely in C include the following, along with 
counterpoints:

 ■ Lower startup overhead: On my system, bpftrace costs around 40 ms of CPU time 
to start up, and BCC costs around 160 ms. These costs can be eliminated with a stand-
alone C binary. But they can also be reduced by compiling a BPF kernel object file once 
and re-sending it to the kernel when needed: Cilium and Cloudflare have orchestration 
systems that do this with BPF object file templating, where certain data in the program 
(IP address, etc.) can be rewritten as needed. For your environment, consider how much 
this matters: how frequently will you be starting BPF programs? If frequently, then 

1 BCC includes Clang-based memory dereference rewriters: so that a->b->c automatically expands into the 

 necessary bpf_probe_read() calls. In C programs, you need to make these calls explicitly.
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should they be left running (“pinned”)? I also suspect that we can tune BCC down to 
bpftrace’s startup cost,2 plus the following point may reduce startup time further.

 ■ No bulky compiler dependencies: BCC and bpftrace currently use LLVM and 
Clang to compile their programs, which can add over 80 Mbytes to the file system. 
On some environments, including embedded systems, this can be prohibitive. 
A C binary containing pre-compiled BPF does not need these dependencies. Another 
issue with LLVM and Clang is that there are frequent new versions with API changes 
(during bpftrace development, we’ve worked through LLVM versions 5.0, 6.0, 7, and 
8), creating a maintenance burden. However, there are a number of projects in various 
stages of progress to change compilation. Some are to build a lightweight and sufficient 
BPF compiler as a replacement for LLVM and Clang, at the cost of losing LLVM 
optimizations. The SystemTap tracer with its BPF back end and the ply(1) tracer [5] 
already do this. Others are for pre-compiling BPF programs from BCC/bpftrace and just 
sending the BPF binary to the target system. These projects should also improve startup 
overhead.

 ■ Lower runtime overhead: At first glance, this doesn’t make sense, as any front 
end will ultimately run the same BPF bytecode in the kernel and pay the same kprobe 
and uprobe costs, etc. There are also many BCC and bpftrace tools that use in-kernel 
summaries, and while running, there is no user CPU time from those front ends. 
Rewriting them in C will accomplish nothing. A case where the front end can matter 
is if many events are frequently printed, such that the user-space front end is needing 
to read and process thousands of events per second (so much so that you can see the 
front end’s CPU consumption in tools such as top(1)).  In that case, a C rewrite may 
yield more efficiency. More efficiency can also be found by tuning BCC’s ring-buffer 
polling code,3 after which, the difference between C and Python may be negligible. 
An optimization not yet employed by BCC or bpftrace would be to create consumer 
threads bound to each CPU that read the per-CPU ring buffer for the CPU they are 
bound to.

 ■ BPF hacking: If you have a use case that’s outside the capabilities of BCC and 
bpftrace, writing in C will allow you to code anything that the BPF verifier accepts. 
Note that BCC already accepts arbitrary C code, so it’s hard to imagine a case where this 
will be necessary.

 ■ For use with perf(1): perf(1) supports BPF programs to enhance the capabilities of its 
record and trace subcommands. perf(1) has a number of uses beyond the other BPF 
tools: for example, if you needed a tool to record many events efficiently in a binary 
output file, perf(1) has already optimized this use case. See the section “perf C,” later in 
this appendix.

Note that many BPF networking projects use C, including Cilium [182]. For tracing, it is 
expected that bpftrace and BCC will almost always be sufficient.

2 See https://github.com/iovisor/bcc/issues/2367.

3 See https://github.com/iovisor/bcc/issues/1033.

https://github.com/iovisor/bcc/issues/2367
https://github.com/iovisor/bcc/issues/1033


ptg30854589

765C BPF

Five Tips

Here are tips you should know before writing C tools:

 1. BPF C is restricted: no unbounded loops or kernel function calls are possible. You can 
only use the bpf_* kernel helper functions, BPF tail calls, BPF to BPF function calls, and 
some compiler built-ins.

 2. All memory must be read through bpf_probe_read(), which does necessary checks. The 
destination is usually stack memory, but for large objects, you can use BPF map storage.

 3. There are three ways to output data from kernel to user:

 ■ bpf_perf_event_output() (BPF_FUNC_perf_event_output): This is the 
preferred way to send per-event details to user space, via a custom struct you define.

 ■ BPF_MAP_TYPE.* and map helpers (e.g., bpf_map_update_elem()): A map 
is a key-value hash from which more advanced data structures can be built. Maps can 
be used for summary statistics or histograms, and read periodically from user space 
(efficient).

 ■ bpf_trace_printk(): For debugging only, this writes to trace_pipe and can clash 
with other programs and tracers.

 4. Use static instrumentation (tracepoints, USDT) instead of dynamic instrumentation 
(kprobes, uprobes) wherever possible, as static instrumentation provides a more stable 
interface.

 5. If you get stuck, rewriting the tool in BCC or bpftrace and then examining its 
debug or verbose output may reveal steps that you missed. For example, BCC’s 
DEBUG_PREPROCESSOR mode shows the C code after the preprocessor.

Some tools use the following macro wrapper to bpf_probe_read():

#define _(P) ({typeof(P) val; bpf_probe_read(&val, sizeof(val), &P); val;})

So "_(skb->dev)" will expand to the appropriate bpf_probe_read() for that member.

C Programs

When a new BPF feature is developed, a sample C program and/or a kernel self-test suite test 
case is often provided in the same patch set to demonstrate its use. The C programs are stored 
in the Linux source under samples/bpf, and the self-tests are under tools/testing/selftests/bpf.4 
These Linux samples and self-tests demonstrate two ways to specify BPF programs in 
C [Zannoni 16]:

4 These were written by many from the BPF kernel community. Developers with more than twenty commits to these 

locations include: Alexei Starovoitov, Daniel Borkmann, Yonghong Song, Stanislav Fomichev, Martin KaFai Lau, John 

Fastabend, Jesper Dangaard Brouer, Jakub Kicinski, and Andrey Ignatov. There is more development work happen-

ing on self-tests, and to keep everything in BPF working as it grows, new developers are encouraged to add to self-

tests instead of samples.
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 ■ BPF instructions: As an array of BPF instructions embedded in a C program, passed 
to the bpf(2) syscall.

 ■ C program: As a C program that can be compiled to BPF, which is later passed to the 
bpf(2) syscall. This method is preferred.

Compilers typically support cross-compiling, where different architectural targets can be 
 specified. The LLVM compiler has a BPF target5 so that C programs can be compiled to BPF in 
ELF files, just like they can to x86/ELF. The BPF instructions can be stored in an ELF section 
named after the BPF program type ("socket", "kprobe/...", etc.). Some object loaders will 
parse this type for use with the bpf(2) syscall;6 for other loaders (including the ones in this 
 appendix) the type is used as a label.

Note that other techniques to build BPF programs are also possible: for example, specifying 
the BPF program in LLVM intermediate representation format, which LLVM can compile to 
BPF bytecode.

The following sections cover API changes, compilation, and example tools for each type 
described earlier: an instruction-level example, hello_world.c; and C programming examples, 
bigread_kern.c and bitehist_kern.c.

WARNING: API Changes

Between December 2018 and August 2019, this appendix has been rewritten twice to 
match changes in the BPF C library APIs. In case of further changes, it is recommended to 
follow updates to the libraries as they occur. The libraries are libbpf in the Linux source 
(tools/lib/bpf) and libbcc from iovisor BCC [183].

The older API from the Linux 4.x series was a simple library of common functions defined 
in bpf_load.c and bpf_load.h in samples/bpf. It has been deprecated in favor of libbpf in the 
kernel, and at some point this older bpf_load API may be removed. Most of the networking 
samples have already been converted to use libbpf instead, which is developed in sync with 
the kernel features and is used by external projects (BCC, bpftrace). We recommend that 
you use libbpf and libbcc instead of either the bpf_load library or creating your own 
custom library, as they will lag features and fixes that are in libbpf and libbcc and hinder 
BPF adoption.

The tracing tools in this appendix use libbpf and libbcc. Thanks to Andrii Nakryiko for 
 rewriting these to use the latest API, which should be present in Linux 5.4, and for his work 
on libbpf. Earlier versions of these tools were written for Linux 4.15 and can be found in the 
tool repository for this book (the URL can be found on http://www.brendangregg.com/
bpf-performance-tools-book.html).

Compilation

Starting with an Ubuntu 18.04 (Bionic) server, here are example steps for fetching, compiling, 
and installing a newer kernel, and compiling the bpf samples. (WARNING: Try this on a test 

5 A BPF target has been developed for gcc as well, although it has not yet been merged.

6 Including samples/bpf/bpf_load.*, although that library is deprecated.

http://www.brendangregg.com/bpf-performance-tools-book.html
http://www.brendangregg.com/bpf-performance-tools-book.html
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system first, as mistakes such as missing necessary CONFIG options for virtualized environ-
ments may cause the system to fail to boot):

# apt-get update

# apt-get install bc libssl-dev llvm-9 clang libelf-dev

# ln -s llc-9 /usr/bin/llc

# cd /usr/src

# wget https://git.kernel.org/torvalds/t/linux-5.4.tar.gz

# cd linux-5.4

# make olddefconfig

# make $(getconf _NPROCESSORS_ONLN)

# make modules_install && make install && make headers_install

# reboot

[...]

# make samples/bpf/

llvm-9 or a newer LLVM version is required for BTF support. These steps are provided as 
an example: as your OS distribution, the kernel, LLVM, Clang, and the BPF samples are 
updated, these steps will need to be adjusted to match.

At times there have been problems with the packaged LLVM, and it has been necessary to 
build the latest LLVM and Clang from source. Some example steps:

# apt-get install -y cmake gcc g++

# git clone --depth 1 http://llvm.org/git/llvm.git

# cd llvm/tools

# git clone --depth 1 http://llvm.org/git/clang.git

# cd ..; mkdir build; cd build

# cmake -DLLVM_TARGETS_TO_BUILD="X86;BPF" -DLLVM_BUILD_LLVM_DYLIB=ON \

    -DLLVM_ENABLE_RTTI=ON -DCMAKE_BUILD_TYPE=Release ..

# make -j $(getconf _NPROCESSORS_ONLN)

# make install

Note how the build targets were restricted to X86 and BPF only in these steps.

Tool 1: Hello, World!

As an example of instruction programming, I have rewritten the hello_world.py program 
from Appendix C as a C program, hello_world.c. It can be compiled from samples/bpf/ as 
described earlier, after adding it to thesamples/bpf/Makefile. Some sample output:

# ./hello_world

          svscan-1991  [007] .... 2582253.708941: 0: Hello, World!

            cron-983   [008] .... 2582254.363956: 0: Hello, World!

          svscan-1991  [007] .... 2582258.709153: 0: Hello, World!

[...]
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This shows the "Hello, World!" text, along with other default fields from the trace buffer 
(process name and ID, CPU ID, flags, and timestamp).

The hello_world.c file is:

 1  #include <stdio.h>

 2  #include <stdlib.h>

 3  #include <string.h>

 4  #include <errno.h>

 5  #include <unistd.h>

 6  #include <linux/version.h>

 7  #include <bpf/bpf.h>

 8  #include <bcc/libbpf.h>

 9  

10  #define DEBUGFS "/sys/kernel/debug/tracing/"

11  

12  char bpf_log_buf[BPF_LOG_BUF_SIZE];

13  

14  int main(int argc, char *argv[])

15  {

16      int prog_fd, probe_fd;

17  

18      struct bpf_insn prog[] = {

19              BPF_MOV64_IMM(BPF_REG_1, 0xa21), /* '!\n' */

20              BPF_STX_MEM(BPF_H, BPF_REG_10, BPF_REG_1, -4),

21              BPF_MOV64_IMM(BPF_REG_1, 0x646c726f), /* 'orld' */

22              BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_1, -8),

23              BPF_MOV64_IMM(BPF_REG_1, 0x57202c6f), /* 'o, W' */

24              BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_1, -12),

25              BPF_MOV64_IMM(BPF_REG_1, 0x6c6c6548), /* 'Hell' */

26              BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_1, -16),

27              BPF_MOV64_IMM(BPF_REG_1, 0),

28              BPF_STX_MEM(BPF_B, BPF_REG_10, BPF_REG_1, -2),

29              BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),

30              BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -16),

31              BPF_MOV64_IMM(BPF_REG_2, 15),

32              BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,

33                           BPF_FUNC_trace_printk),

34              BPF_MOV64_IMM(BPF_REG_0, 0),

35              BPF_EXIT_INSN(),

36      };

37      size_t insns_cnt = sizeof(prog) / sizeof(struct bpf_insn);

38  
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39      prog_fd = bpf_load_program(BPF_PROG_TYPE_KPROBE, prog, insns_cnt,

40                                 "GPL", LINUX_VERSION_CODE,

41                                 bpf_log_buf, BPF_LOG_BUF_SIZE);

42      if (prog_fd < 0) {

43              printf("ERROR: failed to load prog '%s'\n", strerror(errno));

44              return 1;

45      }

46  

47      probe_fd = bpf_attach_kprobe(prog_fd, BPF_PROBE_ENTRY, "hello_world",

48                                   "do_nanosleep", 0, 0);

49      if (probe_fd < 0)

50              return 2;

51  

52      system("cat " DEBUGFS "/trace_pipe");

53  

54      close(probe_fd);

55      bpf_detach_kprobe("hello_world");

56      close(prog_fd);

57      return 0;

58  }

This example is about the "Hello, World!" BPF instruction program on lines 19 to 35. The 
remainder of this program uses the older file-descriptor based API and trace pipe output as 
shortcuts to keep this example small. The newer API and output methods are shown in the 
later bigreads and bitehist examples in this appendix, and as you will see, they make the 
program much longer.

The BPF program is declared as the prog array using BPF instruction helper macros. See 
Appendix E for a summary of these BPF macros and BPF instructions. This program also uses 
functions from libbpf and libbcc to load the program and attach it to a kprobe.

Lines 19 to 26 store "Hello, World!\n" on the BPF stack. For efficiency, instead of storing this 
character string one character at a time, groups of four characters are declared and stored 
as a 32-bit integer (type BPF_W for word). The final two bytes are stored as a 16-bit integer 
(type BPF_H  for half-word).

Lines 27 to 33 prepare and call BPF_FUNC_trace_printk, which writes the string to the shared 
trace buffer.

Lines 39 to 41 call the bpf_load_program() function from libbpf (the library in the Linux 
source under tools/lib/bpf). It loads the BPF program and sets the type to kprobe, and returns 
a file descriptor for the program.

Lines 47 to 48 call the bpf_attach_kprobe() function from libbcc (the library from the iovisor 
BCC repository; it is defined in BCC’s src/cc/libbpf.h), which attaches the program to a kprobe 
for the entry of the do_nanosleep() kernel function. The event name "hello_world" is used, 
which can be helpful for debugging (it appears in /sys/kernel/debug/tracing/kprobe_events). 
bpf_attach_kprobe() returns a file descriptor for the probe. This library function will also print 
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an error message on failure, so I do not print an additional error message for the test 
on line 49.

Line 52 uses system() to call cat(1) on the shared trace pipe, printing out messages.7

Lines 54 to 56 close the probe file descriptor, detach the kprobe, and close the program file 
descriptor. If you miss these calls, earlier Linux kernels can be left with probes configured and 
enabled, costing overhead but with no user-level consumer. This can be checked using 
cat /sys/kernel/debug/tracing/kprobe_events or bpftool(8) prog show, and can be 
cleaned up using BCC’s reset-trace(8) (which cancels all tracers). By Linux 5.2, the kernel has 
switched to file descriptor–based probes, which are automatically closed on process exit.

BPF_FUNC_trace_printk and system() were used to make this example as short as possible. 
They operate using the shared trace buffer (/sys/kernel/debug/tracing/trace_pipe), which can 
clash with other tracing or debugging programs, for which the kernel offers no protection. 
The recommended interface is via BPF_FUNC_perf_event_output: this is explained in the 
section “Tool 2: bigreads,” later in this appendix.

To compile this program, hello_world was added to the Makefile. The following diff shows the 
extra three lines for Linux 5.3, highlighted in bold:

# diff -u Makefile.orig Makefile

--- ../orig/Makefile 2019-08-03 19:50:23.671498701 +0000

+++ Makefile 2019-08-03 21:23:04.440589362 +0000

@@ -10,6 +10,7 @@

 hostprogs-y += sockex1

 hostprogs-y += sockex2

 hostprogs-y += sockex3

+hostprogs-y += hello_world

 hostprogs-y += tracex1

 hostprogs-y += tracex2

 hostprogs-y += tracex3

@@ -64,6 +65,7 @@

 sockex1-objs := sockex1_user.o

 sockex2-objs := sockex2_user.o

 sockex3-objs := bpf_load.o sockex3_user.o

+hello_world-objs := hello_world.o

 tracex1-objs := bpf_load.o tracex1_user.o

 tracex2-objs := bpf_load.o tracex2_user.o

 tracex3-objs := bpf_load.o tracex3_user.o

@@ -180,6 +182,7 @@

 HOSTCFLAGS_bpf_load.o += -I$(objtree)/usr/include -Wno-unused-variable

 

 KBUILD_HOSTLDLIBS           += $(LIBBPF) -lelf

7 This trace pipe can also be read by bpftool prog tracelog.
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+HOSTLDLIBS_hello_world   += -lbcc

 HOSTLDLIBS_tracex4          += -lrt

 HOSTLDLIBS_trace_output     += -lrt

 HOSTLDLIBS_map_perf_test    += -lrt

It can then be compiled and executed as described in the “Compilation” section, later in this 
appendix.

While instruction-level programming is possible, as shown by this tool, it is not recom-
mended for tracing tools. The following two tools switch to developing the BPF code via C 
programming.

Tool 2: bigreads

bigreads traces the return of vfs_read() and prints a message for reads larger than one Mbyte. 
This time the BPF program is declared using C.8 bigreads is equivalent to the following 
bpftrace one-liner:

# bpftrace -e 'kr:vfs_read /retval > 1024 * 1024/ {

    printf("READ: %d bytes\n", retval); }'

Some sample output from running the bigreads C program:

# ./bigreads

              dd-5145  [003] d... 2588681.534759: 0: READ: 2097152 bytes

              dd-5145  [003] d... 2588681.534942: 0: READ: 2097152 bytes

              dd-5145  [003] d... 2588681.535085: 0: READ: 2097152 bytes

[...]

This output shows that a dd(1) command was used to issue three reads, each with a size of 
two Mbytes. As with hello_world.c, extra fields are added to the output from the shared trace 
buffer.

bigreads is split into separate kernel and user-level C files. This allows the kernel component 
to be compiled separately to a file using BPF as the target architecture, and then the user 
component reads that file and sends the BPF instructions to the kernel.

The kernel component, bigreads_kern.c, is:

 1  #include <uapi/linux/bpf.h>

 2  #include <uapi/linux/ptrace.h>

 3  #include <linux/version.h>

 4  #include "bpf_helpers.h"

 5  

8 I first wrote this on 6-Jun-2014, when C was the highest-level language available. Andrii Nakryiko rewrote these C 

BPF tools to use the latest BPF interfaces on 1-Aug-2019.
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 6  #define MIN_BYTES (1024 * 1024)

 7  

 8  SEC("kretprobe/vfs_read")

 9  int bpf_myprog(struct pt_regs *ctx)

10  {

11      char fmt[] = "READ: %d bytes\n";

12      int bytes = PT_REGS_RC(ctx);

13      if (bytes >= MIN_BYTES) {

14              bpf_trace_printk(fmt, sizeof(fmt), bytes, 0, 0);

15      }

16  

17      return 0;

18  }

19  

20  char _license[] SEC("license") = "GPL";

21  u32 _version SEC("version") = LINUX_VERSION_CODE;

Line 6 defines the bytes threshold.

Line 8 declares an ELF section named "kretprobe/vfs_read", followed by a BPF program. This 
will be seen in the final ELF binary. Some user-level loaders will use these section headers to 
determine where to attach programs. The bitehist_user.c loader (covered in a moment) does 
not, although this section header may still be useful for debugging purposes.

Line 9 begins a function called for the kretprobe event. The struct pt_regs argument contains 
register state and BPF context. From the registers, function arguments and return values can 
be read. This struct pointer is also a required argument to a number of BPF helper functions 
(see include/uapi/linux/bpf.h).

Line 11 declares a format string for use with printf().

Line 12 fetches the return value from the pt_regs struct register using a macro (it will map 
long bytes = PT_REGS_RC(ctx) to ctx->rax on x86).

Line 13 performs the test.

Line 14 prints the output string using a debugging function: bpf_trace_printk(). This writes to 
the output to a shared trace buffer and is only used here to keep this example short. It has the 
same caveats as explained in Appendix C: it can clash with other concurrent users.

Lines 20 and 21 declare other necessary sections and values.

The user-level component, bigreads_user.c, is:

 1  // SPDX-License-Identifier: GPL-2.0

 2  #include <stdio.h>

 3  #include <stdlib.h>

 4  #include <unistd.h>
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 5  #include <string.h>

 6  #include <errno.h>

 7  #include <sys/resource.h>

 8  #include "bpf/libbpf.h"

 9  

10  #define DEBUGFS "/sys/kernel/debug/tracing/"

11  

12  int main(int ac, char *argv[])

13  {

14      struct bpf_object *obj;

15      struct bpf_program *prog;

16      struct bpf_link *link;

17      struct rlimit lim = {

18              .rlim_cur = RLIM_INFINITY,

19              .rlim_max = RLIM_INFINITY,

20      };

21      char filename[256];

22  

23      snprintf(filename, sizeof(filename), "%s_kern.o", argv[0]);

24  

25      setrlimit(RLIMIT_MEMLOCK, &lim);

26  

27      obj = bpf_object__open(filename);

28      if (libbpf_get_error(obj)) {

29              printf("ERROR: failed to open prog: '%s'\n", strerror(errno));

30              return 1;

31      }

32  

33      prog = bpf_object__find_program_by_title(obj, "kretprobe/vfs_read");

34      bpf_program__set_type(prog, BPF_PROG_TYPE_KPROBE);

35  

36      if (bpf_object__load(obj)) {

37              printf("ERROR: failed to load prog: '%s'\n", strerror(errno));

38              return 1;

39      }

40  

41      link = bpf_program__attach_kprobe(prog, true /*retprobe*/, "vfs_read");

42      if (libbpf_get_error(link))

43              return 2;

44      

45      system("cat " DEBUGFS "/trace_pipe");

46  

47      bpf_link__destroy(link);



ptg30854589

774 Appendix D

48      bpf_object__close(obj);

49  

50      return 0;

51  }

Lines 17 to 19 and 25 set RLIMIT_MEMLOCK to infinity, to avoid any BPF memory allocation 
issues.

Line 27 creates a struct bpf_object to refer to the BPF components in the _kern.o file. This 
bpf_object may contain multiple BPF programs and maps.

Line 28 checks that the bpf_object was initialized successfully.

Line 33 creates a struct bpf_program based on the BPF program that matches the section title 
"kretprobe/vfs_read", as set by SEC() in the kernel source.

Line 36 initializes and loads the BPF objects from the kernel file into the kernel, including all 
maps and programs.

Line 41 attaches the earlier selected program to a kprobe for vfs_read(), and returns a bpf_link 
object. This is later used on line 47 to detach the program.

Line 45 prints the shared trace buffer using system() to keep this tool short.

Line 48 unloads the BPF programs from the bpf_object from the kernel and frees all associated 
resources.

These files can be added to samples/bpf and compiled by adding a bigreads target to the 
samples/bpf/Makefile. The lines you need to add are (place each among similar lines in the 
Makefile):

# grep bigreads Makefile

hostprogs-y += bigreads

bigreads-objs := bigreads_user.o

always += bigreads_kern.o

Compiling and execution is the same as for the previous hello_world example. This time, 
there is a separate bigreads_kern.o file created containing the BPF program in a section that 
bigreads_user.o reads. You can inspect it using readelf(1) or objdump(1):

# objdump -h bigreads_kern.o

 

bigreads_kern.o:     file format elf64-little

 

Sections:

Idx Name          Size      VMA               LMA               File off  Algn

  0 .text         00000000  0000000000000000  0000000000000000  00000040  2**2

                  CONTENTS, ALLOC, LOAD, READONLY, CODE
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  1 kretprobe/vfs_read 000000a0  0000000000000000  0000000000000000  00000040  2**3

                  CONTENTS, ALLOC, LOAD, READONLY, CODE

  2 .rodata.str1.1 0000000f  0000000000000000  0000000000000000  000000e0  2**0

                  CONTENTS, ALLOC, LOAD, READONLY, DATA

  3 license       00000004  0000000000000000  0000000000000000  000000ef  2**0

                  CONTENTS, ALLOC, LOAD, DATA

  4 version       00000004  0000000000000000  0000000000000000  000000f4  2**2

                  CONTENTS, ALLOC, LOAD, DATA

  5 .llvm_addrsig 00000003  0000000000000000  0000000000000000  00000170  2**0

                  CONTENTS, READONLY, EXCLUDE

The "kretprobe/vfs_read" section is highlighted.

To turn this into a reliable tool, the bpf_trace_printk() must be replaced with print_bpf_output(), 
which emits records to user space via a BPF map that accesses perf per-CPU ring buffers. The 
kernel program will then include code such as the following (this uses the newer BTF-based 
deceleration)9:

struct {

        __uint(type, BPF_MAP_TYPE_PERF_EVENT_ARRAY)

        __uint(key_size, sizeof(int));

        __uint(value_size, sizeof(u32));

} my_map SEC(".maps");

[...]

bpf_perf_event_output(ctx, &my_map, 0, &bytes, sizeof(bytes));

Changes to the user-level program are more extensive: the system() call will be removed, and 
a function added to process the map output events. This function will then be registered 
using perf_event_poller(). An example of this is in the Linux source samples/bpf directory: 
trace_output_user.c.

Tool 3: bitehist

This tool is based on BCC bitehist.py from the Appendix C. It demonstrates output via BPF 
maps, which it uses for storing a histogram of block device I/O sizes. Example output:

# ./bitehist 

Tracing block I/O... Hit Ctrl-C to end.

^C

9 This was declared differently on earlier kernels, which also included setting max_entries to __NR_CPUS__ so that 

there was a buffer per CPU. This max_entries setting has become the default for BPF_MAP_TYPE_PERF_EVENT_

ARRAY.
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     kbytes          : count     distribution

       4 -> 7        : 11       |****************                      |

       8 -> 15       : 24       |************************************* |

      16 -> 31       : 12       |******************                    |

      32 -> 63       : 10       |**************                        |

      64 -> 127      : 5        |******                                |

     128 -> 255      : 4        |*****                                 |

Exiting and clearing kprobes...

As with bigreads, bitehist is composed of two C files: bitehist_kern.c and bitehist_user.c. The full 
source can be found at this book’s website: http://www.brendangregg.com/bpf-performance-
tools-book.html. The following are excerpts.

From bitehist_kern.c:

[...]

struct hist_key {

        u32 index;

};

 

struct {

        __uint(type, BPF_MAP_TYPE_HASH);

        __uint(max_entries, 1024);

        __type(key, struct hist_key);

        __type(value, long);

} hist_map SEC(".maps");

[...]

SEC("kprobe/blk_account_io_completion")

int bpf_prog1(struct pt_regs *ctx)

{

        long init_val = 1;

        long *value;

        struct hist_key key = {};

 

        key.index = log2l(PT_REGS_PARM2(ctx) / 1024);

        value = bpf_map_lookup_elem(&hist_map, &key);

        if (value)

                __sync_fetch_and_add(value, 1);

        else

                bpf_map_update_elem(&hist_map, &key, &init_val, BPF_ANY);

        return 0;

}

[...]

http://www.brendangregg.com/bpf-performance-tools-book.html
http://www.brendangregg.com/bpf-performance-tools-book.html
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This declares a map of type BPF_MAP_TYPE_HASH called hist_map: this style of declaration 
will be propagated using BTF. The key is a struct hist_key that only contains a bucket index, 
and the value is a long: the count for the bucket.

The BPF program reads the size from the second argument of blk_account_io_completion 
using the PT_REGS_PARM2(ctx) macro. This is turned into a histogram bucket index using 
log2() C function (not included here).

A pointer to the value for that index is fetched using bpf_map_lookup_elem(). If a value is 
found, it is incremented using __sync_fetch_and_add(). If it is not found, it is initialized using 
bpf_map_update_elem().

From bitehist_user.c:

struct bpf_object *obj;

struct bpf_link *kprobe_link;

struct bpf_map *map;

 

static void print_log2_hist(int fd, const char *type)

{

[...]

        while (bpf_map_get_next_key(fd, &key, &next_key) == 0) {

                bpf_map_lookup_elem(fd, &next_key, &value);

                ind = next_key.index;

// logic to print the histogram

[...]

}

 

static void int_exit(int sig)

{

        printf("\n");

        print_log2_hist(bpf_map__fd(map), "kbytes");

        bpf_link__destroy(kprobe_link);

        bpf_object__close(obj);

        exit(0);

}

 

int main(int argc, char *argv[])

{

        struct rlimit lim = {

                .rlim_cur = RLIM_INFINITY,

                .rlim_max = RLIM_INFINITY,

        };

        struct bpf_program *prog;

        char filename[256];
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        snprintf(filename, sizeof(filename), "%s_kern.o", argv[0]);

 

        setrlimit(RLIMIT_MEMLOCK, &lim);

 

        obj = bpf_object__open(filename);

        if (libbpf_get_error(obj))

                return 1;

 

        prog = bpf_object__find_program_by_title(obj,

            "kprobe/blk_account_io_completion");

        if (prog == NULL)

                return 2;

        bpf_program__set_type(prog, BPF_PROG_TYPE_KPROBE);

 

        if (bpf_object__load(obj)) {

                printf("ERROR: failed to load prog: '%s'\n", strerror(errno));

                return 3;

        }

 

        kprobe_link = bpf_program__attach_kprobe(prog, false /*retprobe*/,

            "blk_account_io_completion");

        if (libbpf_get_error(kprobe_link))

                return 4;

 

        if ((map = bpf_object__find_map_by_name(obj, "hist_map")) == NULL)

                return 5;

 

        signal(SIGINT, int_exit);

 

        printf("Tracing block I/O... Hit Ctrl-C to end.\n");

        sleep(-1);

 

        return 0;

}

The main() program loads the BPF program using similar steps to bigreads.

A BPF map object is fetched using bpf_object__find_map_by_name(), and saved as the global 
map variable that is later printed during int_exit().

int_exit() is a signal handler attached to SIGINT (Ctrl-C). After initializing the signal 
handler, the main() program sleeps. When Ctrl-C is pressed, int_exit() is run, which calls the 
print_log2_hist() function.
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print_log2_hist() iterates over the map using a bpf_get_next_key() loop calling 
bpf_lookup_elem() to read each value. The rest of the function, elided here, turns the 
keys and values into the printed histogram.

This tool can be compiled and run from the samples/bpf directory, using similar Makefile 
additions as bigreads.

perf C

The Linux perf(1) utility has the ability to run BPF programs on events10 from one of two 
interfaces:

 ■ perf record: For running programs on events that can apply custom filters and emit 
additional records to the perf.data file. 

 ■ perf trace: For "beautifying" trace output: using BPF programs to filter and enhance 
the output of perf trace events (e.g., showing a filename string on syscalls instead of just 
a filename pointer [84]).

perf(1)’s BPF capabilities are rapidly growing, and there is currently a lack of documentation 
on how to use them. The best source of documentation at the moment is a search of the 
Linux kernel mailing list archives for the keywords "perf" and "BPF."

The following section demonstrates perf and BPF.

Tool 1: bigreads

bigreads is based on the same tool shown earlier, in the section “C Programs,” which traces 
the return of vfs_read() and shows reads larger than one Mbyte. Here is some sample output to 
show how it works:

# perf record -e bpf-output/no-inherit,name=evt/ \

    -e ./bigreads.c/map:channel.event=evt/ -a

^C[ perf record: Woken up 1 times to write data ]

[ perf record: Captured and wrote 0.255 MB perf.data (3 samples) ]

# perf script

              dd 31049 [009] 2652091.826549:          0                       evt:  

ffffffffb5945e20 kretprobe_trampoline+0x0 

(/lib/modules/5.0.0-rc1-virtual/build/vmlinux)

      BPF output: 0000: 00 00 20 00 00 00 00 00  .. .....

                  0008: 00 00 00 00              ....    

 

              dd 31049 [009] 2652091.826718:          0                       evt:  

ffffffffb5945e20 kretprobe_trampoline+0x0

(/lib/modules/5.0.0-rc1-virtual/build/vmlinux)

10 perf(1) BPF support was first added by Wang Nan.
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      BPF output: 0000: 00 00 20 00 00 00 00 00  .. .....

                  0008: 00 00 00 00              ....    

 

              dd 31049 [009] 2652091.826838:          0                       evt:  

ffffffffb5945e20 kretprobe_trampoline+0x0

(/lib/modules/5.0.0-rc1-virtual/build/vmlinux)

      BPF output: 0000: 00 00 20 00 00 00 00 00  .. .....

                  0008: 00 00 00 00              ....    

The perf.data record file only contains entries for reads larger than one Mbyte, followed by 
BPF output events that contain the size of the read. While tracing, I issued three two Mbyte 
reads using dd(1), which can be seen in the BPF output: "00 00 20" is two Mbytes, 0x200000, 
in little-endian format (x86).

The bigreads.c source is:

#include <uapi/linux/bpf.h>

#include <uapi/linux/ptrace.h>

#include <linux/types.h>

 

#define SEC(NAME) __attribute__((section(NAME), used))

 

struct bpf_map_def {

        unsigned int type;

        unsigned int key_size;

        unsigned int value_size;

        unsigned int max_entries;

};

 

static int (*perf_event_output)(void *, struct bpf_map_def *, int, void *,

    unsigned long) = (void *)BPF_FUNC_perf_event_output;

 

struct bpf_map_def SEC("maps") channel = {

        .type = BPF_MAP_TYPE_PERF_EVENT_ARRAY,

        .key_size = sizeof(int),

        .value_size = sizeof(__u32),

        .max_entries = __NR_CPUS__,

};

 

#define MIN_BYTES (1024 * 1024)

 

SEC("func=vfs_read")

int bpf_myprog(struct pt_regs *ctx)
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{

        long bytes = ctx->rdx;

        if (bytes >= MIN_BYTES) {

                perf_event_output(ctx, &channel, BPF_F_CURRENT_CPU, 

                    &bytes, sizeof(bytes));

        }

 

        return 0;

}

 

char _license[] SEC("license") = "GPL";

int _version SEC("version") = LINUX_VERSION_CODE;

This issues perf_event_output() via a "channel" map for reads larger than MIN_BYTES: these 
become the BPF output events in the perf.data file.

The perf(1) interface is gaining more capabilities, and it is becoming possible to run BPF 
programs with just "perf record -e program.c." Check for new developments and examples.

More Info

For more on BPF C programming, see:

 ■ Documentation/networking/filter.txt in the Linux source [17].

 ■ Cilium’s “BPF and XDP Reference Guide” [19].
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Appendix E
BPF Instructions

This appendix is a summary of selected BPF instructions, and is provided to aid in reading 
instruction listings from tracing tools and the source to the hello_world.c  program in 
Appendix D. Developing BPF tracing programs from scratch directly using instructions is not 
recommended and not covered here.

The BPF instructions included in this appendix are only a selection. For a complete  reference, 
see the following header files in the Linux source and the references at the end of this 
appendix:

 ■ Classic BPF: include/uapi/linux/filter.h and include/uapi/linux/bpf_common.h

 ■ Extended BPF: include/uapi/linux/bpf.h and include/uapi/linux/bpf_common.h

The bpf_common.h is shared between them as the encodings are mostly the same.

Helper Macros

The BPF instructions from the Appendix D hello_world.c example include:

        BPF_MOV64_IMM(BPF_REG_1, 0xa21), /* '!\n' */

        BPF_STX_MEM(BPF_H, BPF_REG_10, BPF_REG_1, -4),

        BPF_MOV64_IMM(BPF_REG_1, 0x646c726f), /* 'orld' */

        BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_1, -8),

[...]

        BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,

                     BPF_FUNC_trace_printk),

        BPF_MOV64_IMM(BPF_REG_0, 0),

        BPF_EXIT_INSN(),

These are actually higher-level helper macros. They are summarized in Table E-1.
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Table E-1 Selected BPF Instruction Helper Macros1

BPF Instruction Macro Description

BPF_ALU64_REG(OP, DST, SRC) ALU 64-bit register operation

BPF_ALU32_REG(OP, DST, SRC) ALU 32-bit register operation

BPF_ALU64_IMM(OP, DST, IMM) ALU 64-bit immediate value operation

BPF_ALU32_IMM(OP, DST, IMM) ALU 32-bit immediate value operation

BPF_MOV64_REG(DST, SRC) Move 64-bit source register to destination

BPF_MOV32_REG(DST, SRC) Move 32-bit source register to destination

BPF_MOV64_IMM(DST, IMM) Move 64-bit immediate value to destination

BPF_MOV32_IMM(DST, IMM) Move 32-bit immediate value to destination

BPF_LD_IMM64(DST, IMM) Load 64-bit immediate value

BPF_LD_MAP_FD(DST, MAP_FD) Load map FD into register

BPF_LDX_MEM(SIZE, DST, SRC, OFF) Memory load from register

BPF_STX_MEM(SIZE, DST, SRC, OFF) Memory store from register

BPF_STX_XADD(SIZE, DST, SRC, OFF) Atomic memory add by register

BPF_ST_MEM(SIZE, DST, OFF, IMM) Memory store from immediate value

BPF_JMP_REG(OP, DST, SRC, OFF) Conditional jump against register

BPF_JMP_IMM(OP, DST, IMM, OFF) Conditional jump against immediate value

BPF_JMP32_REG(OP, DST, SRC, OFF) Compare registers as 32-bit

BPF_JMP32_IMM(OP, DST, IMM, OFF) Compare register-to-immediate as 32-bit

BPF_JMP_A(OFF) Unconditional jump

BPF_LD_MAP_VALUE(DST, MAP_FD, OFF) Load map value pointer to register

BPF_CALL_REL(IMM) Relative call (BPF-to-BPF)

BPF_EMIT_CALL(FUNC) Helper function call

BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) Raw BPF code

BPF_EXIT_INSN() Exit

These macros and arguments use abbreviations that may or may not be obvious. In 
 alphabetical order: 

 ■ 32: 32-bit

 ■ 64: 64-bit

 ■ ALU: Arithmetic Logic Unit

1 BPF_LD_ABS() and BPF_LD_IND() have been left out as they are deprecated and included for mostly historical 

reasons.
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 ■ DST: destination

 ■ FUNC: function

 ■ IMM: immediate value: a provided constant

 ■ INSN: instruction

 ■ JMP: jump

 ■ LD: load

 ■ LDX: load from register

 ■ MAP_FD: map file descriptor

 ■ MEM: memory

 ■ MOV: move

 ■ OFF: offset

 ■ OP: operation

 ■ REG: register

 ■ REL: relative

 ■ ST: store

 ■ SRC: source

 ■ STX: store from register

These BPF macros expand to BPF instructions, in some cases based on the operation specified.

Instructions

BPF instructions include those listed in Table E-2. (See the earlier header files for a complete list.)

Table E-2 Selected BPF Instructions, Fields, and Registers

Name Type Origin Numeric Description

BPF_LD Instruction class Classic 0x00 Load

BPF_LDX Instruction class Classic 0x01 Load into X

BPF_ST Instruction class Classic 0x02 Store

BPF_STX Instruction class Classic 0x03 Store from X

BPF_ALU Instruction class Classic 0x04 Arithmetic Logic Unit

BPF_JMP Instruction class Classic 0x05 Jump

BPF_RET Instruction class Classic 0x06 Return

BPF_ALU64 Instruction class Extended 0x07 ALU 64-bit
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Name Type Origin Numeric Description

BPF_W Size Classic 0x00 32-bit word

BPF_H Size Classic 0x08 16-bit half word

BPF_B Size Classic 0x10 8-bit byte

BPF_DW Size Extended 0x18 64-bit double word

BPF_XADD Store modifier Extended 0xc0 Exclusive add

BPF_ADD ALU/Jump operation Classic 0x00 Addition

BPF_SUB ALU/Jump operation Classic 0x10 Subtraction

BPF_K ALU/Jump operand Classic 0x00 Immediate value operand

BPF_X ALU/Jump operand Classic 0x08 Register operand

BPF_MOV ALU/Jump operation Extended 0xb0 Move register to register

BPF_JLT Jump operation Extended 0xa0 Unsigned jump less than

BPF_REG_0 Register number Extended 0x00 Register 0

BPF_REG_1 Register number Extended 0x01 Register 1

BPF_REG_10 Register number Extended 0x0a Register 10

Instructions are often composed of combinations of instruction classes and fields that are 
bitwise OR’d together.

Encoding

The extended BPF instruction format is (struct bpf_insn):

Table E-3 Extended BPF Instruction Format

Opcode Dest 

Register

Source 

Register

Signed Offset Signed Immediate Constant

8-bit 8-bit 8-bit 16-bit 32-bit

So, for the first instruction in the hello_world.c program:

BPF_MOV64_IMM(BPF_REG_1, 0xa21)

the opcode expands to:

BPF_ALU64 | BPF_MOV | BPF_K
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Referring to Tables E-3 and E-2, this opcode becomes 0xb7. The arguments to the instruction 
set the destination register BPF_REG_1 (0x01) and the constant (operand) 0xa21. The result-
ing instruction bytes can be verified using bpftool(8):

# bpftool prog

[...]

907: kprobe  tag 9abf0e9561523153  gpl

        loaded_at 2019-01-08T23:22:00+0000  uid 0

        xlated 128B  jited 117B  memlock 4096B

# bpftool prog dump xlated id 907 opcodes

   0: (b7) r1 = 2593

       b7 01 00 00 21 0a 00 00

   1: (6b) *(u16 *)(r10 -4) = r1

       6b 1a fc ff 00 00 00 00

   2: (b7) r1 = 1684828783

       b7 01 00 00 6f 72 6c 64

   3: (63) *(u32 *)(r10 -8) = r1

       63 1a f8 ff 00 00 00 00

[...]

For tracing tools, much of the BPF instructions will be for loading data from structures and 
then calling BPF helper functions to store values in maps or emit perf records. See the “BPF 
Helper Functions” subsection under Section 2.3.6 in Chapter 2.

References

For more about BPF instruction-level programming, see the Linux source headers listed at the 
start of this appendix and:

 ■ Documentation/networking/filter.txt [17]

 ■ include/uapi/linux/bpf.h [184]

 ■ Cilium’s “BPF and XDP Reference Guide” [19]
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Glossary

ALU Arithmetic logic unit: a  subsystem 
of a CPU that processes arithmetic 
instructions.

API Application programming  interface.

array A variable type that consists of 
a set of values, referenced by an integer 
index.

associative array A collection of values 
that are each assigned and retrieved 
using a unique key.

BCC BPF Compiler Collection: an open 
source software framework and toolkit 
for using BPF. See Chapter 4.

bpftrace An open source BPF-based 
tracer with a high-level programming 
language. See Chapter 5.

BPF Berkeley Packet Filter: a light-
weight in-kernel technology from 1992 
created for improving the performance 
of packet filtering and extended since 
2014 to become a general-purpose 
 execution environment (see eBPF).

BPF map An in-kernel BPF storage 
object that is used to store metrics, stack 
traces, and other data.

BTF BPF Type Format. See Chapter 2.

buffer A region of memory used to 
store data, often temporary I/O data.

byte A unit of digital data. This book 
follows the industry standard where one 
byte equals eight bits, and a bit is a zero 
or one.

C The C programming language.
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command A program executed at the 
shell.

core An execution pipeline on a pro-
cessor. Cores may be exposed on an OS 
as a single CPU or via hyperthreads as 
multiple CPUs.

CPU Central processing unit. In this 
book, CPU refers to the virtual CPU 
managed by the OS, which may be a 
core or hyperthread.

CSV Comma-separated values: a file 
type.

daemon A system program that 
 continually runs to provide a service.

DNS Domain Name System.

drops Trace events that are dropped 
(not recorded) because they arrive at 
a rate higher than can be stored in an 
 output buffer.

DTrace A dynamic tracing facility from 
Sun Microsystems, released for Solaris 10 
in 2005.

DTraceToolkit A collection of 230 
DTrace tools, mostly written by myself 
and first released on April 20, 2005, as 
open source software with documenta-
tion. The DTraceToolkit is the origin 
of various tracing tools—execsnoop, 
iosnoop, iotop, etc.—that have since 
been ported to different languages and 
operating systems.

dynamic instrumentation Also known as 
dynamic tracing after the tracing tools 
that use it. This is a technology that can 
instrument any software event, includ-
ing function calls and returns, through 
live modification of instruction text 
and the insertion of temporary tracing 
instructions. Target software usually 
does not need special capabilities to sup-
port dynamic instrumentation. Since 
this can instrument any software func-
tion, it is not considered a stable API.

dynamic tracing The software that 
implements dynamic instrumentation.

eBPF Extended BPF (see BPF). The eBPF 
abbreviation originally described the 
extended BPF from 2014, which updated 
the register size and instruction set, 
added map storage, and limited kernel 
calls. By 2015, the e was dropped, and 
extended BPF was called just BPF.

ELF Executable and Linkable Format: 
a common file format for executable 
programs.

enable In tracing context, to activate 
a dormant instrumentation point so it 
can begin running tracing programs. 

fault A possible failure mode of 
 hardware and software. Faults are  
 usually expected failures, and a fault 
handler is used to deal with them 
appropriately.

fire In tracing context, fire refers to 
when an instrumentation point runs a 
tracing program. 

flame graph A visualization for a set of 
stack traces. See Chapter 2.

Ftrace A built-in Linux kernel tech-
nology that provides various tracing 
capabilities. It is currently separate from 
eBPF. See Chapter 14.

globbing A set of wildcards commonly 
used for filename matching (*, ?, []).

GUI Graphical user interface.

Hertz Cycles per second.

HTTP Hypertext Transfer Protocol.

hyperthreading An Intel technology for 
scaling CPUs that allows the  operating 
system to create multiple virtual CPUs 
for one core and schedule work on 
them, which the processor attempts to 
process in parallel.
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ICMP Internet Control Message 
Protocol: a protocol used by ping(1) 
(ICMP echo request/reply).

inline A compiler optimization that 
places a function’s instructions in its 
parent function.

instance A virtual server. Cloud 
 computing provides server instances.

IOPS I/O per second.

IO Visor A Linux Foundation proj-
ect that hosts the BCC and bpftrace 
 repositories on Github and facilitates 
collaboration between BPF developers at 
 different companies.

iovisor See IO Visor.

IP Internet Protocol: a protocol whose 
main versions are IPv4 and IPv6. See 
Chapter 10.

IPC Instructions per cycle.

Java The Java programming language.

JavaScript The JavaScript programming 
language.

Kbytes Kilobytes.

kernel The core program on a system 
that runs in privileged mode to manage 
resources and user-level processes.

kernel land Kernel software.

kernel level The processor privilege 
mode that kernel execution uses.

kernel space The address space of the 
kernel.

kprobes A Linux kernel technology for 
kernel-level dynamic instrumentation.

kretprobe A kprobe for instrumenting 
the return of a kernel function.

latency The time for an event to occur, 
such as the time for I/O to complete. 
Latency is important for performance 
analysis because it is often the most 

effective measure of a performance 
issue. Where exactly it is measured can 
be ambiguous without further quali-
fiers. For example, "disk latency" could 
mean time spent waiting on a disk driv-
er queue only, or from an application, it 
could mean the entire time waiting for 
disk I/O to complete, including queued 
and service time.

LBR Last branch record: a processor 
technology that can collect limited 
stack traces. See Chapter 2.

lockstep Refers to sampling at the same 
rate as another timed event, which 
could over-represent the event in the 
collected sample data.

LRU Least recently used.

malloc Memory allocate. This usu-
ally refers to the function performing 
 memory allocation.

map See BPF map. 

Mbytes Megabytes.

memory System memory, which is 
 usually implemented as DRAM.

MMU Memory management unit: a 
hardware component that is responsible 
for presenting memory to a CPU and for 
performing virtual-to-physical address 
translation.

ms Milliseconds.

mutex Mutual exclusion lock: a soft-
ware lock that can become a source of 
performance bottlenecks and is often 
studied. See Chapters 13 and 14.

MySQL An open source relational 
 database management system.

native In computing, refers to code and 
data that can be processed directly by 
processors, without additional interpre-
tation or compilation.
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observability The practice and tools 
used to observe and analyze the state 
of computing systems. The tools in this 
book are observability tools.

off-CPU Refers to a thread that is not 
currently running on a CPU and so is 
“off-CPU,” due to either having blocked 
on I/O, a lock, a voluntary sleep, or 
another event.

on-CPU Refers to a thread that is 
 currently running on a CPU.

ORC Oops Rewind Capability: a stack 
trace unwinding technology supported 
by the Linux kernel.

OS Operating system: a collection of 
software including the kernel for man-
aging resources and user-level processes.

page A chunk of memory managed by 
the kernel and processor. All memory 
used by the system is broken up into 
pages for reference and management. 
Typical page sizes are 4 Kbytes and 2 
Mbytes (depending on the processor).

pagefault A system trap that occurs 
when a program references a memory 
location where the backing page is not 
currently mapped to virtual memory. 
Pagefaults are normal consequences 
of the Linux on-demand allocation 
 memory model.

pagein/pageout Functions performed 
by an operating system (kernel) to move 
chunks of memory (pages) to and from 
external storage devices.

PEBS Precise event-based sampling: a 
processor technology for use with PMCs 
to provide more accurate recording of 
CPU state during events.

perf(1) The standard Linux profiler and 
tracer, which is included in the Linux 
source tree. perf(1) began as a tool for 
PMC analysis and has been extended to 
include tracing capabilities as well.

perf_events The Linux kernel frame-
work that supports the perf(1) command 
and its instrumentation of events and 
that records event data into ring buffers. 
Other tracers, including BPF, make use 
of this framework for event instrumenta-
tion and event data  buffering.

PID Process identifier: an operating 
system unique numeric identifier for 
processes.

PMCs Performance monitoring coun-
ters: special hardware registers on the 
processor that can be programmed 
to instrument low-level CPU events, 
such as cycles, stall cycles, instructions, 
 memory loads/stores, etc.

POSIX Portable Operating System 
Interface for Unix: a family of related stan-
dards by the IEEE to define a Unix API.

probe An instrumentation point in 
software or hardware.

process An operating system abstrac-
tion of an executing user-level program. 
Each process is identified by PID (see 
PID) and may have one or more running 
threads (see thread).

profiling A technique that involves 
collecting data that characterizes the 
performance of a target. A common 
 profiling technique is timed sampling 
(see sampling).

provider The term DTrace uses for a 
library of related probes and arguments. 
The Linux terminology for provider 
varies depending on the tool: it may 
be referred to as a system, category, or 
probe type.

Python The Python programming 
 language.

reader/writer lock A mutual exclusion 
primitive used by threaded software to 
protect shared data.
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RCU Read-copy-update: a Linux 
 synchronization mechanism.

RFC Request for Comments: a public 
document by the Internet Engineering 
Task Force (IETF). RFCs are used to 
define networking protocols; for 
 example, RFC 793 defines TCP.

ring buffer A principal buffer policy 
that wraps when full, thereby keeping 
only recent events.

RSS Resident set size: a measure of 
main memory.

run queue A CPU scheduler queue 
of tasks waiting their turn to run on a 
CPU. In reality, the queue may be imple-
mented as a tree structure, but the term 
run queue is still used.

sampling A technique involving under-
standing a target by taking a subset (or 
sample) of measurements. For tracing, 
this often refers to timed sampling, 
where an instruction pointer or stack 
trace is collected at a timed interval 
(e.g., 99 Hertz across all CPUs).

script In computing, an executable 
program that is usually short and in a 
high-level language. bpftrace may be 
considered a scripting language.

SCSI Small Computer System Interface: 
an interface standard for storage devices.

server A physical computer, typically 
a rack-mounted enterprise-grade com-
puter that is housed in a datacenter. 
A server typically runs a kernel, an 
 operating system, and applications.

Shell A command-line interpreter and 
scripting language.

SLA Service level agreement.

SLO Service level objective: a specific 
and measurable goal.

SNMP Simple Network Management 
Protocol.

socket A software abstraction that 
represents a network endpoint for 
 communication.

Solaris A Unix operating system origi-
nally developed by Sun Microsystems 
that shipped with DTrace by default in 
2005. Oracle Corporation acquired Sun, 
and Solaris is now called Oracle Solaris.

spin A software mechanism that 
involves executing in a tight loop while 
trying to acquire a resource,  typically 
a spin lock or an adaptive mutual 
 exclusion (mutex) lock.

SSH Secure Shell: an encrypted remote 
shell protocol.

stable Refers to a commitment level of 
a programming interface in which the 
interface is not expected to change.

stack Short for stack trace. 

stack back trace See stack trace.

stack frame A data structure that 
contains function state information, 
including pointers to the function, 
return address, and function 
arguments.

stack trace A call stack composed 
of multiple stack frames, showing 
the ancestry of executing functions. 
Reading a stack trace from bottom to 
top shows which functions have called 
which other functions and, from this, 
the path through code. This is also 
called a stack back trace, since reading 
the stack from top down begins with 
the most recent function and works 
backward to the least recent.
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static instrumentation/tracing Refers to 
the inclusion of instrumentation points 
explicitly in code. Some software may 
support static instrumentation because 
the programmer inserted it, whereas 
some may have none. Static instrumen-
tation often has the benefit of being a 
stable interface.

struct A structured object, usually from 
the C programming language.

SVG Scalable Vector Graphics: a file 
 format.

syscall See system call.

sysctl A tool used to view and  modify 
kernel parameters; often used to 
describe a parameter as well.

system call The interface for processes 
to request privileged actions from the 
kernel.

task A Linux term for a thread.

TCP Transmission Control Protocol: a 
protocol originally defined in RFC 793. 
See Chapter 10.

thread A software abstraction that 
 represents a program that can be 
 scheduled and executed.

TLB Translation Lookaside Buffer: a 
cache for memory translation on virtual 
memory systems, used by the MMU 
(see MMU).

tracer A tracing tool (see tracing).

tracepoints A Linux kernel technology 
for providing static instrumentation.

tracing Event-based recording. Tracing 
events may be static or dynamic instru-
mentation based, or they may be timer 
based. The tools in this book are tracing 
tools; they instrument events and run 
BPF programs to record data.

UDP User Datagram Protocol: a proto-
col originally defined in RFC 768. See 
Chapter 10.

unstable Refers to a commitment level 
of a programming interface in which 
there is no commitment and changes 
may occur over time across different 
software versions. Since kprobes and 
uprobes instrument software internals, 
the API they expose is considered an 
unstable interface.

uprobes A Linux kernel technology for 
user-level dynamic instrumentation.

uretprobe A type of uprobe for instru-
menting the return of user-level 
 functions.

μs Microseconds.

USDT User-land Statically Defined 
Tracing: a type of tracing that involves 
static instrumentation placed in 
 application code by the programmer to 
provide useful probes.

user land User-level software and files, 
including executable programs in 
/usr/bin, /lib, etc.

user level The processor privilege mode 
that user-land execution uses. This is a 
lower privilege level than the kernel has; 
it denies direct access to resources, forc-
ing user-level software to request access 
to those resources via the kernel.

user space The address space of user-
level processes.

variable A named storage object used 
by programming languages.

VFS Virtual File System: an abstraction 
used by the kernel for supporting differ-
ent file system types.

workload Requests for a system or 
resource.

ZFS A combined file system and 
volume manager created by Sun 
Microsystems.
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ttysnoop(8), 502–503

uprobes, 51–52

USDT, 61

user-level features, 87–88

Vector and PCP, 714

vfsstat(8), 300

xfsdist(8), 325–326

BFQ (Budget Fair Queuing), 343

/bin/bash, 577–581

/bin/bash USDT, 581–582

bioerr(8), 371–373
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biolatency(8), 5–6, 81, 352–353, 757

BCC, 356

bpftrace, 356–357

disks, 354–355

flags, 355–356

queued time, 353–354

tracepoints, 357–358

biopattern(8), 366–368

biosnoop(8), 2, 81–82, 358–359

BCC, 360

bpftrace, 360–361

queued time, 359–360

biostacks(8), 368–371, 665

biotop(8), 361–362

bitesize(8), 362–363

BCC, 363

bpftrace, 363–364

Blanco, Brenden, 85

blk cgroup, 680, 683–684

blkthrot(8), 683–684

blktrace(8), 349–350

block I/O, 342

block I/O errors, 371–373

block I/O latency, 346, 351

block I/O schedulers, 375–376

block I/O stack, 342–343

Borkmann, Daniel, 1, 17–18

BPF (Berkeley Packet Filter), 1

additional reading, 38

BCC, loading BPF programs and 
instrument events, 121

BTF, 37

“classic” BPF, 17–18

concurrency controls, 35–36

containers, BPF privileges, 673

CPU, 184–185

CPU tools, 198–238

disk I/O, 344–345

one-liners, 384–387

disk I/O tools, 351–384

dynamic instrumentation, 8–9

eBPF, 17–19

file systems, 280–281

helper functions, 31–33

instructions, 785–786

JIT compiler, 17–19

kernel modules versus, 21–22

kprobes, 48–49

limitations of, 38

maps, 144, 160, 184, 215

memory, BPF capabilities, 247–250

memory tools, 257–274

need for, 19–21

networking, 396–398

one-liners, 482–488

tools, 411–481

traditional tools, 399–410

observability, 2

performance tools and, 19–21

program types, 34–35

runtime internals, 19

sampling, 2

security

BPF capabilities, 490–493

configuring, 494–495

one-liners, 514–515

tools, 495–514

stack size, 38

static instrumentation, 9

sys interface, 36–37

syscall commands, 33–34

tcpdump(8), 16–17

tracepoints, 56–57

tracing, 2

BCC, 3–6, 12–14

bpftrace, 3–4, 10–14, 30–31, 35–36

dynamic tracing, 8–9
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free() tracing, 52

malloc() tracing, 52

program types, 34

static tracing, 9

tracepoints, 9

USDT, 9

user-space tracing, 52

visibility, 6–8

unprivileged BPF, 493

uprobes, 51–52

viewing instructions

bpftool(8), 23–30

bpftrace, 30–31

writing programs, 22–23

BPF API

helper functions, 31–33

map types, 35

program types, 34–35

syscall commands, 33–34

BPF CO-RE (BPF Compile Once-Run 

Everywhere), 37–38

BPF_HISTOGRAM, 750

BPF_PERF_OUTPUT, 87, 125, 750

bpf_probe_read, 33

BPF_RAW_TRACEPOINT, 57–58

bpf_trace_printk(), 87, 122–123, 750

bpfilter, 492

bpflist(8), 126–127

bpftool(8), 23–24, 127

bpftool btf, 29–30

bpftool perf, 24

bpftool prog dump jited, 29

bpftool prog dump xlated

linum mode, 27–28

visual mode, 28

xlated mode, 26–27

bpftool prog show, 25

Ftrace buffer, 124

bpftrace, 3–4, 13–14, 129–130

actions, 131–132

additions (planned), 174–175

application one-liners, 631–632

application tools and, 133

argdist(8), 228–229, 231

bash shell one-liners, 582

bashreadline(8), 500

biolatency(8), 356–357

biosnoop(8), 360–361

bitesize(8), 363–364

BPF one-liners

CPU one-liners, 239–240

file systems, 335–336

memory one-liners, 275

build process, 134–135

C, 526, 530–531

capable(8), 510–511

cheat sheet, 745–747

components of, 130

concurrency controls, 35–36

dcsnoop(8), 321–322

dcstat(8), 319–320

debugging, 176

debug mode, 177–179

print() debugging, 177

verbose mode, 179–180

directory structure, 130

disk I/O, one-liners, 385–386

event sources, 131

execsnoop(8), 201

explicit address modes, 173–174

ext4dist(8), 328–329

features, 131

Fedora and, 134

filelife(8), 299

fileslower(8), 307–308
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flow control, 154

filters, 154

If statements, 155

ternary operators, 154

unrolled loops, 155

Ftrace and, 132–133

future of, 173–175

general features, 132

gethostlatency(8), 461

installing, 133

internals, 175–176

Java one-liners, 569–570

javacalls(8), 566

kernel one-liners, 666–667

kernel requirements, 133

killsnoop(8), 623–624

kprobes, 48–49

LTTng and, 133

mdflush(8), 374–375

mysqld_qslower(8), 615–617

networking, one-liners, 482–484

offcputime(8), 223, 606

one-liners, 137–138

oomkill(8), 258–259

open(2) syscalls, 10–12

opensnoop(8), 290–291

operators, 155–156

page faults, 267

perf(1) and, 132

ply, 175

profile(8), 215–219, 553

programming, 138–139

actions, 142

avg() function, 169–170

built-in functions, 161–167

built-in variables, 156–160

clear() function, 172

comments, 140

count() function, 168–169

delete() function, 171–172

exit() function, 167

filters, 142

functions, 143, 161–173

hardware probes, 152–153

“Hello World!” statements, 142–143

hist() function, 170

interval probes, 153–154

join() function, 163

kaddr() function, 166

kprobes, 151

kretprobes, 151

kstack() function, 164–165

ksym() function, 165–166

lhist() function, 171

map functions, 144–145, 167–173

map variables, 160

max() function, 169–170

min() function, 169–170

positional parameters, 159–160

print() function, 172–173

printf() function, 162–163

probe format, 141

probe types, 148

probe wildcards, 141–142

profile probes, 153–154

program structure, 140

scratch variables, 160

software probes, 152

str() function, 163–164

sum() function, 169–170

system() function, 166–167

tracepoints, 148–150

uaddr() function, 166

uprobes, 151

uretprobes, 151

usage, 139–140

USAGE messages, 147–148

USDT, 150–151
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ustack() function, 164–165

usym() function, 165–166

variables, 143–144

vfs_read(), timing, 145–147

repository features, 132

runqlat(8), 206–207

runqlen(8), 209

shellsnoop(8), 501–502

slabratetop(8), 661

softirqs(8), 232

stackcount(8), 561–562

statsnoop(8), 292–293

syncsnoop(8), 293–294

syscount(8), 226

SystemTap and, 132–133

tcpaccept(8), 441–443

tcpconnect(8), 439

tcplife(8), 445–447

tcpretrans(8), 451–452

tools, 136

characteristics of, 136

documentation, 138

execution, 137

performance tools, 135

trace(8), 228–229

tracepoints, 56–57

ttysnoop(8), 503

Ubuntu distributions, 134

uprobes, 51–52

USDT, 61

-v option, 30–31

variables

built-in variables, 143, 156–160

map variables, 144, 160–161

scratch variables, 143, 160

vfsstat(8), 300–301

xfsdist(8), 326

BQL (Byte Queue Limits), 395

brkstack(8), 262–263

broken stack traces, 101–102, 738

BSD (Berkeley Software Distribution), 16

BTF (BPF Type Format), 37, 526

btrfsdist(8), 334

btrfsslower(8), 334

buffering, file system caches/buffers, 247

bufgrow(8), 331–332

built-in functions

bpftrace programming, 161–167

exit() function, 167

join() function, 163

kaddr() function, 166

kstack() function, 164–165

ksym() function, 165–166

printf() function, 162–163

str() function, 163–164

system() function, 166–167

uaddr() function, 166

ustack() function, 164–165

usym() function, 165–166

built-in variables, 143, 156–160

C
C, 522

BCC, C one-liners, 530

bpftrace, 526, 530–531

BTF, 526

debuginfo, 524–525

function offset tracing, 529

function symbols, 523–524

function tracing, 528–529

lightweight debuginfo, 525–526

one-liners, 530–531

stack traces, 526–528

tools, 523

USDT, 529

C BPF, 765–781
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C USDT, 529

C++585

caches

CPU caches, 183–184

dcache, 279

file system caches, 279–280

file system caches/buffers, 247

inode caches, 279

page caches, 279–280

cachestat(8), 82, 314–316, 665

callbacks, Xen, 699–700

CAP_SYS_ADMIN, 493, 508–509, 511

capable(8), 508–509

BCC, 510

bpftrace, 510–511

CE (Congestion Encountered), 462–463

CFQ (Completely Fair Queuing), 343

Cgroups, 394, 492–493

checklists, 72–73

BCC tool checklist, 79

biolatency(8), 81

biosnoop(8), 81–82

cachestat(8), 82

execsnoop(8), 80

ext4slower(8), 80–81

opensnoop(8), 79, 82

profile(8), 84

runqlat(8), 83

tcpaccept(8), 82

tcpretrans(8), 83

Linux 60-second analysis, 73

dmesg | tail, 74

free -m, 77

iostat -xz 1, 76–77

mpstat -P ALL 1, 75

pidstat(1), 75–76

sar -n DEV 1, 77–78

sar -n TCP,ETCP 1, 78

top(1), 78–79

uptime(1), 73–74

vmstat 1, 74–75

performance analysis, uptime(1), 73–74

Cilium, 492, 726

Clang, 22, 37

“classic” BPF, 17–18

classic schedulers (I/O), 343–344

clear() function, 172

cloud computing, PMC, 64

CloudFlare eBPF Prometheus Exporter, 721. 

See also Grafana and PCP

additional reading, 723

configuring, 722

ebpf Exporter

building, 721

monitoring instances, 722

queries, 722

color palettes (flame graphs), 42–43

comm variable, 157

comments, bpftrace programming, 140

compaction (page), memory, 247

compiled languages, 518

concurrency controls, 35–36

CONFIG_FRAME_POINTER, 522

congestion control (TCP), 394

connection life span, 396

containers, 671–673, 687

BPF capabilities, 673

BPF one-liners, 687

BPF privileges, 673

challenges, 673–675

container IDs, 674–675

FaaS, 675

orchestration, 675

strategies, 676
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tools, 680

blkthrot(8), 683–684

container-based tools, 677

docker stats, 678

host-based tools, 676

kubectl top, 678

overlayfs(8), 684–687

perf(1), 679

pidnss(8), 681–683

runqlat(8), 680–681

/sys/fs/cgroups, 679

systemd-cgtop(1), 677–678

CO-RE (Compile Once - Run Everywhere), 

37–38

count() function, 168–169

counting mode (PMC), 63

CPU, 181

additional reading, 184

BPF

capabilities, 184–185

one-liners, 238–241

caches, 183–184

event sources, 185

flame graphs, 194–195

Java, 549–551

offcputime(8), 221–222

profile(8), 217–219

fundamentals, 181–184

internals, 195

modes, 182

overhead, 185

scheduler, 182–183

strategies, 185–186

system mode, 182

thread pools, 590

tools, 186–187

argdist(8), 226–231

BPF tools, 198–238

brkstack(8), 262–263

cpudist(8), 211–212

cpufreq(8), 212–215

cpuunclaimed(8), 238

cpuwalk(8), 238

drsnoop(8), 271–272

event statistics, 196–197

execsnoop(8), 200–202

exitsnoop(8), 202–203

ffaults(8), 267–268

hardirqs(8), 232–233

hardware sampling, 192

hardware statistics, 189–191

hfaults(8), 273–274

kernel statistics, 187–189

llcstat(8), 237–238, 274

loads(8), 238

memleak(8), 259–261

mmapsnoop(8), 261–262

offcputime(8), 219–223

oomkill(8), 258–259

page faults, 264–267

profile(8), 215–219, 274

runqlat(8), 203–207

runqlen(8), 207–209

runqslower(8), 210

shmsnoop(8), 264

smpcalls(8), 233–237

softirqs(8), 231–232

swapin(8), 272–273

syscount(8), 224–226

timed sampling, 192–195

trace(8), 226–229

vltrace, 238

vmscan(8), 268–271

cpudist(8), 211–212

cpufreq(8), 212–215

cpustolen(8), 700–701
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cpuunclaimed(8), 238

cpuwalk(8), 238

criticalstat(8), 665

D
dcache (directory caches), 279

dcsnoop(8), 320–321

BCC, 321

bpftrace, 321–322

dcstat(8), 318–319

BCC, 319

bpftrace, 319–320

Deadline, 343

deadlock(8), 630

debugging

BCC tools, 121

bpftrace, 176

debug mode, 177–179

print() debugging, 177

verbose mode, 179–180

debug flags, 125–126

--ebpf option, 124–125

events, resetting, 127–128

File Descriptor leaks, 107–109

printf(), 122–124

debuginfo, 524–525

debuginfo files, 40

delete() function, 171–172

Desnoyers, Mathieu, 55–56

device drivers, 391

iwl device driver tracepoints, counting, 
487

ixgbevf device driver functions, 
counting, 486–487

device latency, 352–353, 360, 381

df(1), 282–283

direct reclaim, 246, 257, 269–272, 275

directories, bpftrace, 130

directory caches (dcache), 279

disk I/O, 341

block I/O stack, 342–343

BPF capabilities, 344–345

BPF one-liners

BCC, 384–385

bpftrace, 385–386

examples, 386–387

event sources, 345

fundamentals, 342–344

I/O schedulers, 343–344

performance, 344

strategies, 346

tools

bioerr(8), 371–373

biolatency(8), 352–358

biopattern(8), 366–368

biosnoop(8), 358–359

biostacks(8), 368–371

biotop(8), 361–362

bitesize(8), 362–364

blktrace(8), 349–350

BPF tools, 351–384

iosched(8), 375–376

iostat(1), 346–348

mdflush(8), 374–375

nvmelatency(8), 381–384

perf(1), 348–349

SCSI logging, 350

scsilatency(8), 377–379

scsiresult(8), 379–381

seeksize(8), 364–366

disks, biolatency(8), 354–355

dmesg | tail, 74

dmesg(1), 127

DNS (Domain Name Servers), 51, 395, 398, 

412, 419, 458, 460

Docker, ebpf Exporter, 721

docker stats, 678
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documentation

BCC tools, 115–119

bpftrace tools, 138

DProbes, 8

Drewry, Will, 17

drill-down analysis, 71

dropped events, 738–740

drsnoop(8), 271–272

DTrace Toolkit, 8

Dumazet, Eric, 17

DWARF, 40

dynamic instrumentation, 8–9

dynamic tracing, 8–9

Dynamic USDT (User-Level Statically 

Defined Tracing), 61–62

dynamic/static linking, 739

.dynsym, 523–524

E
eBPF (Extended BPF), 1–2, 17–18

ebpf Exporter

building, 721

monitoring instances, 722

--ebpf option, 124–125

ECN (Congestion Notification), 461–463

EDT (Early Departure Time), 395

ELF (Extensible Linking Format)

debuginfo files, 40

missing symbols (function names), 
troubleshooting, 739

elfsnoop(8), 497–498

eperm(8), 504–505

ethtool(8), 407–408

eu-unstrip(1), 525–526

event sources, 45

applications, 638–639

bpftrace, 131

CPU, 185

disk I/O, 345

Dynamic USDT, 61–62

file systems, 281

I/O types, 281

kprobes, 46, 48–49

additional reading, 49

functionality of, 46–47

interfaces, 47

tracepoint comparisons to, 53

memory, 248–249

networking, 397

PMC, 63

cloud computing, 64

counting mode, 63

overflow sampling, 64

PEBS, 64

tracepoints, 53, 56–57

additional reading, 58

BPF_RAW_TRACEPOINT, 57–58

format of, 53

functionality of, 55–56

instrumentation, 53–55

interfaces, 56

kprobe comparisons to, 53

uprobes, 49, 51–52

additional reading, 52

functionality of, 49–51

interfaces, 51

overhead, 52

USDT, 58, 61

additional reading, 61

Dynamic USDT, 61–62

functionality of, 60–61

instrumentation, 58–59

events

dropped events, 738–740

dumping, 2

frequency, 727–728
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per-event costs, 729–731

self-tests, 731

typical event frequencies, 728–729

missing events, 735–736

recording. See tracing

resetting, 127–128

statistics (CPU), 196–197

worker threads, 590

execsnoop(8), 2, 4–5, 80, 200–202, 496, 

595

BCC, 201

bpftrace, 201

-t option, 4–5

exit() function, 167

exitsnoop(8), 202–203

explicit address modes, bpftrace, 173–174

explicit congestion notification (ECN)

ext4 reads, counting, 339–340

ext4dist(8), 327–329, 334

ext4slower(8), 80–81, 334

F
FaaS (Function as a Service), containers, 

675

Facebook, 58

fanotify, 286

fast retransmits, 393

fatrace(1), 286–287

faults (page), 264–266

bpftrace, 267

flame graphs, 266

faults(8), 267–268

Fedora, bpftrace installations, 134

feedback loops, 740

FIFO (First-In, First-Out), 302–304, 311–313

File Descriptor

debugging leaks, 107–109

file descriptors to filenames, 296

file systems, 277, 280

BPF capabilities, 280–281

BPF one-liners

BCC, 334–335

bpftrace, 335–336

counting ext4 reads, 339–340

counting read syscalls, 336–337

counting XFS tracepoints, 338

distributing read syscall read bytes, 
337

examples, 336–340

buffering, memory, 247

caches, 247, 279–280

event sources, 281

file descriptors to filenames, 296

fundamentals, 278–280

I/O stacks, 278–279

memory, file system caches/buffers, 247

overhead, 281

read-ahead (prefetch), 280

strategies, 281–282

tools, 282–283, 286–287

BPF tools, 286–334

btrfsdist(8), 334

btrfsslower(8), 334

bufgrow(8), 331–332

cachestat(8), 314–316

dcsnoop(8), 320–322

dcstat(8), 318–320

df(1), 282–283

ext4dist(8), 327–329, 334

ext4slower(8), 334

filelife(8), 298–299

fileslower(8), 306–308

filetop(8), 308–310

filetype(8), 311–314

fmapfault(8), 297

fsrwstat(8), 304–305

icstat(8), 330–331
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mmapfiles(8), 294–295

mountsnoop(8), 322

nfsdist(8), 334

nfsslower(8), 334

opensnoop(8), 290

perf(1), 284–286

readahead(8), 332–333

scread(8), 295–296

statsnoop(8), 291–293

strace(1), 283–284

syncsnoop(8), 293–294

vfscount(8), 301–302

vfssize(8), 302–304

vfsstat(8), 299–301

writeback(8), 316–318

writesync(8), 310–311

xfsdist(8), 324–326

xfsslower(8), 323–324

zfsdist(8), 334

zfsslower(8), 334

VFS, 278–279

write-back, 280

filelife(8), 298

BCC, 298

bpftrace, 299

filenames, file descriptors to filenames, 296

fileslower(8), 306

BCC, 307

bpftrace, 307–308

filetop(8), 308–310

filetype(8), 311–314, 481

filters

bpftrace flow control, 154

bpftrace programming, 142

Firecracker, 672

flags, biolatency(8), 355–356

flame graphs, 42–43

color palettes, 42–43

CPU flame graphs, 194–195

Java, 549–551

offcputime(8), 221–222

profile(8), 217–219

mouse-overs, 44

Netflix, 44

off-CPU time flame graphs, 556–559, 
605–606

off-wake time flame graphs, 652

page fault flame graphs, 560–561

page faults, 266

search button, 44

stackcount(8), 100–101

zooming, 44

FlameScope, 44

flow control, bpftrace, 154

filters, 154

If statements, 155

operators, 155–156

ternary operators, 154

unrolled loops, 154

fmapfault(8), 297

Folly, USDT instrumentation, 58–59

frame pointer-based stacks, 39–41

free -m, 77

free() tracing, 52

free(1), 252–253

frequency of events, 727–728

fsrwstat(8), 304–305

Ftrace, 7, 640

bpftrace and, 132–133

buffer, 124

CPU event statistics, 198

function counting, 640–641

function graphing, 642–643

resetting events, 127–128

stack traces, 641–642
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funccount(8), 94, 229–230, 656–657

examples, 94–96

one-liners, 97

syntax, 97

usage, 98

functions

argument testing (bashfunc.bt), 573–575

avg() function, 169–170

bpftrace programming, 143

built-in functions, 161–167

map functions, 144–145, 167–173

clear() function, 172

count() function, 168–169

counting

bash shell, 572–573

Ftrace, 640–641

delete() function, 171–172

entry arguments, Golang, 587

exit() function, 167

graphing, Ftrace, 642–643

hist() function, 170

join() function, 163

kaddr() function, 166

kstack() function, 164–165

ksym() function, 165–166

latency (bashfunclat.bt), 576–577

lhist() function, 171

map functions, 144–145

max() function, 169–170

min() function, 169–170

missing functions when tracing, 739

offset tracing, C, 529

print() function, 172–173

printf() function, 162–163

returns, Golang, 588

str() function, 163–164

sum() function, 169–170

symbols, C, 523–524

system() function, 166–167

tracing

C, 528–529

Golang, 586–587

JavaScript (Node.js), 584

uaddr() function, 166

ustack() function, 164–165

usym() function, 165–166

G
gethostlatency(8), 460

BCC, 460

bpftrace, 461

Golang, 585

function entry arguments, 587

function returns, 588

function tracing, 586–587

stack walking, 585

symbols, 585

USDT, 588

Goldshtein, Sasha, 58

Google, 51

Grafana and PCP (Performance Co-Pilot), 

718. See also CloudFlare eBPF 

Prometheus Exporter

additional reading, 721

archived data sources, 719

configuring, 719

data connections, 719–720

ebpf Exporter queries, 722

installing, 719

live data sources, 719

viewing data, 719–720

gray rats, 732–733

GRO (Generic Receive Offload), 394, 479

GSO (Generic Software Offload), 394, 479
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H
Hamel, Dale, 62

hardirq(8), 665

hardirqs(8), 232–233, 481

hardware

CPU hardware

caches, 183–184

sampling, 192

statistics, 189–191

HVM

HVM exit tracing, 701–702

Xen HVM, 697, 701–702

memory, hardware statistics, 255–256

probes, bpftrace programming, 
152–153

heat maps, 711–713

“Hello World!” statements, bpftrace 

programming, 142–143

helper functions, 31–33

Hertz, 49 and 99 Hertz sampling, 731

hfaults(8), 273–274

Hiramatsu, Masami, 47

hist() function, 170

histograms, 20–21

hrtimer starts, counting, 668

huge page faults, 257, 273–274

huge pages, 244

HVM (Hardware Virtual Machines)

HVM exit tracing, 701–702

PVHVM, 690–691

Xen HVM, 697, 701–702

hypercalls

latency, 693, 695–696

Xen

Xen HVM, 697, 701–702

Xen PV, 693–694, 696

hypervisors, 689

AWS EC2, 691

BPF capabilities, 691

configuring, 689–690

KVM, 690–692, 702–706

native (bare-metal) hypervisors, 690

Nitro hypervisor, 690–691

paravirtualization, 690

PVHVM, 690–691

QEMU, 690

strategies, 691–692

tools

callbacks, 699–700

cpustolen(8), 700–701

guest BPF tools, 693–702

host BPF tools, 702–706

kvmexits(8), 702–706

traditional tools, 692

Xen HVM, 697, 701–702

Xen PV, 693–696

xenhyper(8), 697–699

Xen, 690

callbacks, 699–700

cpustolen(8), 700–701

hypercalls, 693–696

Xen HVM, 697, 701–702

Xen PV, 693–694, 696

xenhyper(8), 697–699

I
ICMP (Internet Control Message Protocol), 

391

icstat(8), 330–331

ieee80211scan(8), 479–481

If statements, bpftrace flow control, 155

inject(8), 665

inlining, 552–553, 739
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inode caches, 279

installing

BCC, 88–89

kernel requirements, 88

RHEL distributions, 89

Ubuntu distributions, 88–89

bpftrace, 133

Grafana and PCP, 719

Vector and PCP, 715

Intel VT-x, 690

interface stability issues, 9

interpreted languages, 520

interval probes, bpftrace programming, 

153–154

I/O

block I/O, 342

block I/O errors, 371–373

block I/O latency, 346, 351

block I/O schedulers, 375–376

block I/O stack, 342–343

schedulers, 343–344

stacks, 278–279

types, event sources, 281

I/O Visor, 4

ioprofile(8), 611–614

iosched(8), 375–376

iostat -xz 1, 76–77

iostat(1), 346–348

IP (Internet Protocol), 391, 405, 419, 

421, 441

IPv4, 414, 418, 430–431, 438, 440, 
461–466, 483

IPv6, 409, 419, 438, 441, 445, 
463–464, 488

ip(8), 402

IPC (Instructions Per Cycle), 44

ipecn(8), 461–463

IRQ (Interrupt Requests), 639, 665

iwl device driver tracepoints, counting, 487

ixgbevf device driver functions, counting, 

486–487

J
Java, 531

inlining, 552–553

javacalls(8), 565–566

javaflow(8), 566–567

javagc(8), 568

javaobjnew(8), 568–569

javastat(8), 562–563

javathreads(8), 563–564

jnistacks(8), 533–535

libjvm tracing, 532–533

library stacks, 543

method symbols, 537–538

async-profile, 539

automation, 537–539

JVM symbol dumps, 539

kernel support, 539

making stale method symbols visible, 
539

stack traces, 542–543

timestamped symbol logging, 539

offcputime(8), 553–559

one-liners, 569–570

profile(8), 549–553

stack traces, 539–540

method symbols, 542–543

PreserveFramePointer, 540–541

stackcount(8), 559–562

thread names, 536–537

tools, 531–532

USDT probes, 543–549

javacalls(8), 565

BCC, 565–566

bpftrace, 566
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javaflow(8), 566–567

javagc(8), 568

javaobjnew(8), 568–569

JavaScript (Node.js), 583

function tracing, 584

stack walking, 584

symbols, 584

USDT probes, 583–584

javastat(8), 562–563

javathreads(8), 563–564

JIT (Just-in-Time) compiler, 17–19, 29, 

37, 62, 519–520, 739

jnistacks(8), 533–535

join() function, 163

JVM (Java Virtual Machines), 531

libjvm tracing, 532–533

symbol dumps, 539

K
kaddr() function, 166

Kata Containers, 672

kernels, 635–636

BCC kernel requirements, 88

BPF capabilities, 638–639

BPF one-liners, 666–668

bpftrace kernel requirements, 133

bypass, 391

challenges, 668–669

CPU kernel statistics, 187–189

event sources, 638–639

fundamentals, 636–638

hrtimer starts, counting, 668

internals, networking, 392

Java method symbols, 539

locks, 637

memory

allocation, 637

kernel logs, 251–252

kernel statistics, 252–255

modules versus BPF, 21–22

off-wake time flame graphs, 652

spin locks, 656–657

strategies, 638–639

syscalls, counting, 667–668

tasklets, 637–638, 664–665

tools, 640, 644–645, 647–648

biostacks(8), 665

cachestat(8), 665

criticalstat(8), 665

Ftrace, 640–643

funccount(8), 656–657

hardirq(8), 665

inject(8), 665

kmem(8), 657–658

kpages(8), 658–659

loads(8), 646–647

memleak(8), 659–660

mheld(8), 652–653, 655–656

mlock(8), 652–655

numamove(8), 661–662

offwaketime(8), 650–652

perf sched, 643–644

runqlat(8), 665

skblife(8), 665

slabratetop(8), 660–661

slabtop(1), 644

softirq(8), 665

syscount(8), 665

tasklets, 664–665

vfsstat(8), 665

vmscan(8), 665

wakeuptime(8), 649–650

workq(8), 663–664

xcalls(8), 665

wakeups, 636

work queues, 637–638

kernel.unprivileged_bpf_disabled, 494

killsnoop(8), 623
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kmem(8), 657–658

kpages(8), 658–659

kprobes, 8–9, 46, 48–49

additional reading, 49

bpftrace programming, 151

functionality of, 46–47

interfaces, 47

tracepoint comparisons to, 53

kretprobes, 9, 151

KRSI (Kernel Runtime Security 

Instrumentation), 492

kstack() function, 164–165

kstack variable, 157–159

kswapd (page-out daemon), memory, 246

ksym() function, 165–166

kubectl top, 678

kubectl-trace, 723

additional reading, 726

tracing nodes, 723–724

tracing pods/containers, 724–726

Kubernetes, 460, 709, 721–724

KVM (Keyboard, Video, Mouse), 690

cpustolen(8), 700–701

guest CPU, 706–707

hypervisors, 692

kvmexits(8), 702–706

Nitro hypervisor, 690–691

kvmexits(8), 702–706

Kyber, 343

L
Landlock, 492

languages, 517–518, 583

bash shell, 570–571

/bin/bash, 577–581

/bin/bash USDT, 581–582

function argument testing 
(bashfunc.bt), 573–575

function counting, 572–573

function latency (bashfunclat.bt), 
576–577

one-liners, 582

preparation, 571

sample program, 571–572

tools, 570, 573–577

BPF capabilities, 521

C, 522

BCC, C one-liners, 530

bpftrace, 526

bpftrace, C one-liners, 530–531

BTF, 526

debuginfo, 524–525

function offset tracing, 529

function symbols, 523–524

function tracing, 528–529

lightweight debuginfo, 525–526

one-liners, 530–531

stack traces, 526–528

tools, 523

USDT, 529

C++585

compiled languages, 518

Golang, 585

function entry arguments, 587

function returns, 588

function tracing, 586–587

stack walking, 585

symbols, 585

USDT, 588

interpreted languages, 520

Java, 531

javacalls(8), 565–566

javaflow(8), 566–567

javagc(8), 568

javaobjnew(8), 568–569

javastat(8), 562–563



ptg30854589

823loops

javathreads(8), 563–564

jnistacks(8), 533–535

libjvm tracing, 532–533

library stacks, 543

method symbols, 537–539

offcputime(8), 553–559

one-liners, 569–570

profile(8), 549–553

stack traces, 539–543

stackcount(8), 559–562

thread names, 536–537

tools, 531–532

USDT probes, 543–549

JavaScript (Node.js), 583

function tracing, 584

stack walking, 584

symbols, 584

USDT probes, 583–584

JIT compiled languages, 519–520

strategies, 521–522

tools, 522

latency

connection lifespans, 396

device latency, 352–353, 360, 381

hypercall latency, 693, 695–696

name resolution latency, 395

networking latency measurements, 
395–396

ping latency, 395

RTT, 396

TCP connection latency, 396

TCP first byte latency, 396

LBR (Last Branch Record), 40

leaks, File Descriptor leaks, debugging, 

107–109

lhist() function, 171

libc frame pointers, 613–614

libjvm tracing, 532–533

libpthread conditional variable functions, 

counting, 632–633

libpthread stacks, offcputime(8), 556

library stacks, Java, 543

lightweight debuginfo, 525–526

linking (static/dynamic), 739

linum mode, bpftool prog dump xlated, 

27–28

Linux 60-second analysis, 73

dmesg | tail, 74

free -m, 77

iostat -xz 1, 76–77

mpstat -P ALL 1, 75

pidstat(1), 75–76

sar -n DEV 1, 77–78

sar -n TCP,ETCP 1, 78

top(1), 78–79

uptime(1), 73–74

vmstat 1, 74–75

LLC (Last Level Cache), 63–64

llcstat(8), 237–238, 274

LLVM (Low Level Virtual Machines), 

22–23, 37

load averages

CPU kernel statistics, 187

uptime(1), 73–74

loads(8), 238, 646–647

locks

applications, 590

kernel locks, 637

mutex locks, 590, 594, 624–632, 652–653

spin locks, 656–657

logical I/O, 278, 281

logs (kernel), memory, 251–252

loops

feedback loops, 740

unrolled loops, bpftrace flow 
control, 154
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LSM (Linux Security Module), 418

ltrace(1), 7

LTTng and bpftrace, 133

M
malloc() tracing, 52

malware, 489, 496, 503

man pages

BCC tools, 115–119

opensnoop(8), 115–119

map functions

avg() function, 169–170

bpftrace programming, 144–145, 167–173

clear() function, 172

count() function, 168–169

delete() function, 171–172

hist() function, 170

lhist() function, 171

max() function, 169–170

min() function, 169–170

print() function, 172–173

sum() function, 169–170

map variables, 144, 160–161

Marchini, Matheus, 58, 62

max() function, 169–170

mdflush(8), 374–375

BCC, 374

bpftrace, 374–375

memleak(8), 259–261, 659–660

memory, 243, 275–276

additional reading, 247

allocators, 244–245

BPF

capabilities, 247–250

one-liners, 274–275

event sources, 248–249

file system caches/buffers, 247

fundamentals, 244–247

kernel memory allocation, 637

kswapd (page-out daemon), 246

NUMA, 182, 645, 661–662

OOM killer, 247, 251–252

overhead, 249–250

pages, 245–246

page allocators, 637

page compaction, 247

sampling, 255–256

slab allocators, 637

strategies, 250

swap devices, 246–247

swapping, 245–246

tools, 250–251

BPF tools, 257–274

free(1), 252–253

hardware statistics, 255–256

kernel logs, 251–252

kernel statistics, 252–255

pmap(1), 253–254

ps(1), 253

sampling, 255–256

sar(1), 254–255

swapon(8), 252

vmstat(1), 254

method symbols, Java, 537–538

async-profile, 539

automation, 537–539

JVM symbol dumps, 539

kernel support, 539

stale method symbols, making 
visible, 539

stack traces, 542–543

timestamped symbol logging, 539

mheld(8), 652–653, 655–656

min() function, 169–170

missing events, 735–736

missing function names (symbols), 738–739
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missing functions when tracing, 739

missing stack traces, 737–738

missing symbols (function names), 

738–739

mlock(8), 652–655

mmapfiles(8), 294–295

mmapsnoop(8), 261–262

MMU (Memory Management Units), 183

modsnoop(8), 498–499

monitoring security, 491–492

mount(8), 283

mountsnoop(8), 322

mouse-overs (flame graphs), 44

mpstat -P ALL 1, 75

mpstat(1), CPU kernel statistics, 189

mq-deadline, 343

multi-queue schedulers (I/O), 343–344, 

371, 376, 378–379

multi-threaded applications, 590, 601

mutex locks, 590, 594, 624–632, 

652–653

MySQL

probes, 591

server, application example, 591

mysqld_clat(8), 617–620

mysqld_qslower(8), 614–615

BCC, 615

bpftrace, 615–617

uprobes, 616–617

N
Nagle, 395

Nakryiko, Andrii, 37–38

name resolution latency, 395

naptime(8), 629–630

native (bare-metal) hypervisors, 690

net.core.bpf_jit_enable, 494

net.core.bpf_jit_harden, 494

net.core.bpf_jit_kallsyms, 494

net.core.bpf_jit_limit, 494–495

Netflix

execsnoop(8), 5

flame graphs, 44

net.ipv4.tcp_rmem, 430

netsize(8), 470–472

netstat(8), 403–405

nettxlat, 473–475

network stack, 390–391

networking, 389

additional reading, 396

BPF capabilities, 396–398

BPF one-liners

BCC, 482

bpftrace, 482–484

counting iwl device driver 
tracepoints, 487

counting ixgbevf device driver 
functions, 486–487

counting transmit kernel stack traces, 
484–486

BQL, 395

device drivers, 391

EDT, 395

event sources, 397

fundamentals, 390–396

ICMP, 391

IP, 391

kernel bypass, 391

kernel internals, 392

latency measurements, 395–396

Nagle, 395

network stack, 390–391

NIC, 391

overhead, 398

pacing, 395

performance optimizations, 395
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/proc/interrupt, 410

/proc/net, 409–410

queuing discipline, 391, 394–395

receive and transmit scaling, 392

sockets, 391–392

strategies, 398–399

TCP, 391

backlogs, 392–393

congestion control, 394

retransmits, 393

send and receiver buffers, 393–394

tools

BPF tools, 411–481

ethtool(8), 407–408

filetype(8), 481

gethostlatency(8), 460–461

hardirqs(8), 481

ieee80211scan(8), 479–481

ip(8), 402

ipecn(8), 461–463

netsize(8), 470–472

netstat(8), 403–405

nettxlat, 473–475

nicstat(1), 406–407

nstat(8), 402–403

profile(8), 481

qdisc-cbq, 468–469

qdisc-cbs, 468–469

qdisc-codel, 468–469

qdisc-fq(8), 466–468

qdisc-red, 468–469

qdisc-tbf, 468–469

sar(1), 405–406

skbdrop(8), 475–477

skblife(8), 477–479

so1stbyte(8), 435–437

soaccept(8), 422–424

socketio(8), 424–426

socksize(8), 426–429

sockstat(8), 412–414

soconnect(8), 419–421

soconnlat(8), 432–435

sofamily(8), 414–416

softirqs(8), 481

solisten(8), 481

soprotocol(8), 416–418

sormem(8), 429–431

spfdsnoop(8), 481

ss(8), 400–401

superping(8), 463–466

tcpaccept(8), 440–443

tcpconnect(8), 437–439

tcpdates(8), 481

tcpdump(8), 408–409

tcplife(8), 443–447

tcpnagle(8), 456–458

tcpretrans(8), 450–452

tcpsnoop(8), 449

tcpsynbl(8), 453–454

tcptop(8), 448

tcpwin(8), 454–456

traditional tools, 399–410

udpconnect(8), 458–459

tracing mistakes (common), 399

TSQ, 395

UDP, 391

XDP, 391

NFS, 334

nfsdist(8), 334

nfsslower(8), 334

NIC (Network Interface Cards), 391

nicstat(1), 406–407

Nitro hypervisor, 690–691

Node.js, 62

non-blocking sockets, 419–420

non-interruptible I/O, offcputime(8), 647–648
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Noop, 343

nstat(8), 402–403

NUMA (Non-Uniformed Memory Access), 

182, 645, 661–662

numamove(8), 661–662

nvmelatency(8), 381–384

O
objcopy(1)

observability, 2

off-CPU time flame graphs, 556–559, 

605–606

offcpuhist(8), 607–610

offcputime(8), 219–221, 603–605

BCC, 222–223

bpftrace, 223

CPU flame graphs, 221–222

Java, 553–559

libpthread stacks, 556

non-interruptible I/O, 647–648

off-CPU time flame graphs, 556–559, 
605–606

off-wake time flame graphs, 652

offwaketime(8), 650–652

one-liners

applications, 631–633

bash shell, 582

BPF

CPU one-liners, 238–241

memory one-liners, 274–275

security one-liners, 514–515

bpftrace, 137–138

C, 530–531

containers, 687

Java, 569–570

kernels, 666–668

OOM killer, 247, 251–252

oomkill(8), 258–259

open(2) syscalls, bpftrace, 10–12

OpenJDK, 517, 524–525, 532–533, 535

opensnoop(8), 2, 80, 92, 124–125, 

503–504

BCC, 12–14, 290

bpftrace, 290–291

file systems, 289–291

man pages, 115–119

operators, bpftrace, 155–156

OracleJDK, 517

ORC (Oops Rewind Capability), 40

OS queued time

biolatency(8), 353–354

biosnoop(8), 359–360

osquery eBPF, 726

overflow sampling, 64

overhead

applications, 592

CPU, 185

event frequency, 727–728

per-event costs, 729–731

self-tests, 731

typical event frequencies, 728–729

file systems, 281

networking, 398

overlayfs(8), 684–687

P
pacing (network performance), 395

packet sniffing, 408–409, 471

page allocators, 637

page caches, 279–280

page compaction, memory, 247

page faults, 264–266

bpftrace, 267

flame graphs, 266, 560–561

page migrations, 645, 661–662

page-out daemon (kswapd), memory, 246
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PAM session starts, tracing, 515

parameters (positional), built-in variables, 

159–160

paravirtualization (PV)

hypervisors, 690

PVHVM, 690–691

Xen hypercalls, 693–694, 696

PCP (Performance CoPilot)

Grafana and PCP, 718

additional reading, 721

archived data sources, 719

configuring, 719

data connections, 719–720

ebpf Exporter queries, 722

installing, 719

live data sources, 719

viewing data, 719–720

Vector and PCP, 709–710

additional reading, 718

BCC tools, 714

data connections, 715–717

installing, 715

internals, 714–715

PMCD, 714–715

PMDA, 709–710, 717–718

viewing data, 715–717

visualizations, 709–714

PEBS (Precise Event-Based Sampling), 64

per-event costs, 729–731

perf(1), 7, 284–286, 348–349, 679

bpftrace and, 132

CPU

event statistics, 196–197

hardware statistics, 189–191

timed sampling, 192–193

--perf_basic_prof, 584

perf_events, 64–65

perf sched, 643–644

performance

BCC tools, 89–90

BQL, 395

disk I/O, 344

EDT, 395

Nagle, 395

networking performance optimizations, 
395

pacing, 395

tools

BPF and, 19–21

bpftrace, 135

TSQ, 395

performance analysis, 72–73

activities, 68–69

BCC tool checklist, 79

biolatency(8), 81

biosnoop(8), 81–82

cachestat(8), 82

execsnoop(8), 80

ext4slower(8), 80–81

opensnoop(8), 79, 82

profile(8), 84

runqlat(8), 83

tcpaccept(8), 82

tcpretrans(8), 83

checklists, uptime(1), 73–74

drill-down analysis, 71

goals of, 67–68

Linux 60-second analysis, 73

dmesg | tail, 74

free -m, 77

iostat -xz 1, 76–77

mpstat -P ALL 1, 75

pidstat(1), 75–76

sar -n DEV 1, 77–78

sar -n TCP,ETCP 1, 78

top(1), 78–79
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uptime(1), 73–74

vmstat 1, 74–75

methodologies, 69

multiple performance issues, 69

USE method, 72

workload characterization, 70–71

physical I/O, 278, 281

physical memory, 244–245, 247, 250, 253

PID namespace, 710

pid variable, 157

pidnss(8), 681–683

pidstat(1), 75–76

ping latency, 395

pinning, 36–37

Pluggable authentication modules (PAM)

PLUMgrid, 17

ply, 3–4, 175, 726

pmap(1), 253–254

PMC (Performance Monitoring Counters), 63

cloud computing, 64

counting mode, 63

CPU internals, 195

overflow sampling, 64

PEBS, 64

PMCD (Performance Metrics Collector 

Daemon), 714–715

PMDA (Performance Metrics Domain 

Agent), 715, 717–718

pmheld(8), 624–629

pmlock(8), 624–628

policy enforcement, 492–493

positional parameters, built-in variables, 

159–160

prefetch (read-ahead), 280

PreserveFramePointer, 540–541

print() function, 172–173, 177

printf() function, 122–124, 162–163

printing, troubleshooting missing symbols 

(function names), 738

privilege escalation, 496, 501–502, 

512–514 

probes

bpftrace cheat sheet, 745–746

hardware probes, 152–153

interval probes, 153–154

kprobes, 151

kretprobes, 151

probe format, 141

probe types, 148

probe wildcards, 141–142

profile probes, 153–154

software probes, 152

tracepoints, 148–150

uprobes, 151

uretprobes, 151

USDT, 150–151

MySQL probes, 591

USDT, 248–249, 519–520, 583–584

/proc/interrupt, 410

/proc/net, 409–410

profile probes, bpftrace programming, 

153–154

profile(8), 2, 84, 215–217, 274, 481, 

598–600

bpftrace, 215–219, 553

CPU flame graphs, 217–219, 549–551

inlining, 552–553

Java, 549–553

programming, simplicity in, 735

protocols

application protocols, 397

ICMP, 391

IP, 391, 411, 416, 422–424, 438

keep-alive strategies, 396

kernel bypass, 391

Network I/O, 389

network protocols, 392

packet rates, 405
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processing, 399

soaccept, 422–424

socketio(8), 424–426

soconnect(8), 419–421

soprotocol(8), 416–418

TCP, 391

UDP, 459

tcpaccept, 443

tracepoints, 397

transport protocols, 411

UDP, 391

ps(1), 253

PV (Paravirtualization)

hypervisors, 690

PVHVM, 690–691

Xen hypercalls, 693–694, 696

Q
qdisc: class based queueing (CBQ)

qdisc: fair queue (FQ)

qdisc-cbq, 468–469

qdisc-cbs, 468–469

qdisc-codel, 468–469

qdisc-fq(8), 466–468

qdisc-red, 468–469

qdisc-tbf, 468–469

QEMU, 690

queued time

biolatency(8), 353–354

biosnoop(8), 359–360

queuing discipline, networking, 391, 

394–395

R
raw tracepoints, 57–58

RBP, frame pointer-based stacks, 39–40

read syscalls, counting, 336–337

read-ahead (prefetch), 280

readahead(8), 332–333

receive and transmit scaling, 392

Red Hat Enterprise Linux 7.6 (RHEL), BCC 

installations, 89

repositories, bpftrace, 132

resetting events, 127–128

retransmits (TCP), 393

fast retransmits, 393

timer-based retransmits, 393

RHEL (Red Hat Enterprise Linux 7.6), BCC 

installations, 89

RLIMIT_MEMLOCK, 775–776, 780

Robertson, Alastair, 129

RSS (Resident Set Size), 245, 247, 250, 

253, 264

RTT (Round Trip Time), 396

runqlat(8), 83, 203–204, 644, 665, 

680–681, 711, 717, 720, 722

BCC, 205–206

bpftrace, 206–207

misconfigured builds, 204–205

runqlen(8), 207–208, 713

BCC, 208–209

bpftrace, 209

runqslower(8), 210

rwbs, 343

S
sampling, 2

49 and 99 Hertz sampling, 731

memory, 255–256

sar -n DEV 1, 77–78

sar -n TCP,ETCP 1, 78

sar(1), 254–255, 405–406

scaling

receive and transmit scaling, 392

socket accept scaling, 392

scheduler (CPU), 182–183
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scratch variables, 143, 160

scread(8), 295–296

SCSI logging, 350

scsilatency(8), 377–379

scsiresult(8), 379–381

search button, flame graphs, 44

seccomp (secure computing), 17, 492

security, 489–490

audit events, counting, 514–515

BPF capabilities, 490–493

BPF one-liners, 514–515

bpfilter, 492

Cilium, 492

configuring, 494–495

KRSI, 492

Landlock, 492

monitoring, 491–492

PAM session starts, tracing, 515

policy enforcement, 492–493

seccomp, 492

strategies, 495

tools

bashreadline(8), 499–500

capable(8), 508–511

elfsnoop(8), 497–498

eperm(8), 504–505

execsnoop(8), 496

modsnoop(8), 498–499

opensnoop(8), 503–504

setuids(8), 512–514

shellsnoop(8), 500–502

tcpaccept(8), 505–506

tcpconnect(8), 505–506

tcpreset(8), 506–508

ttysnoop(8), 502–503

unprivileged BPF, 493

zero-day vulnerability detection, 491

SEDA (Staged Event-Driven Architecture), 590

seeksize(8), 364–366

send and receiver buffers (TCP), 393–394

sequential I/O, 351, 363, 365–368

service thread pools, 590

setuids(8), 512–514

shared memory, 246–264

shellsnoop(8), 500–501

BCC, 501

bpftrace, 501–502

shmsnoop(8), 264

short-lived files, 444

short-lived processes, 595

signals(8), 621–622

simplicity in programming, 735

single-purpose tools, 91–93

sk_buff, 392, 412, 462–469, 474, 

477–479, 488

skbdrop(8), 475–477

skblife(8), 477–479, 665

SLAB, 637, 640, 644–645, 657, 660–661

slabratetop(8), 660

BCC, 660

bpftrace, 661

slabtop(1), 644

sleeps, applications, 591

smpcalls(8), 233–237

SNMP (Simple Network Management 

Protocol), 402–403

snoop(1M), 2

snooping, 2

so1stbyte(8), 435–437

soaccept(8), 422–424

socketio(8), 424–426

sockets

accept scaling, 392

connection latency, 411, 432

first byte latency, 411

networking, 391

receive queue, 429
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socksize(8), 426–429

sockstat(8), 412–414

soconnect(8), 419–421

soconnlat(8), 432–435

sofamily(8), 414–416

softirq(8), 665

softirqs(8), 231–232, 481

software

probes, bpftrace programming, 152

target software, writing, 733–734

solisten(8), 481

soprotocol(8), 416–418

sormem(8), 429–431

spfdsnoop(8), 481

spin locks, 656–657

SR-IOV (Single Root I/O Virtualization), 

690–691

ss(8), 400–401

stack size (BPF), 38

stack traces, 519–520

additional reading, 41

broken stack traces, 101–102, 738

C, 526–528

debuginfo files, 40

frame pointer-based stacks, 39–40

Ftrace, 641–642

Java, 539–540

method symbols, 542–543

PreserveFramePointer, 540–541

LBR, 40

missing stack traces, 737–738

ORC, 40

symbols, 41

transmit kernel stack traces, counting, 
484–486

walking, 39

Golang, 585

JavaScript (Node.js), 584

stackcount(8), 99

bpftrace, 561–562

examples, 99–100

flame graphs, 100–101

Java, 559–562

one-liners, 102–103

page fault flame graphs, 560–561

stack traces (broken), 101–102

syntax, 102

usage, 103–104

staged event-driven architecture (SEDA)

stale method symbols, making visible, 539

Starovoitov, Alexei, 1, 17–18, 57–58, 85

static instrumentation, 9

static jump patching, 55–56

static tracing, 9

static/dynamic linking, 739

statsnoop(8)

BCC, 291–292

bpftrace, 292–293

file systems, 291–293

stolen CPU time, 700–701

str() function, 163–164

strace(1), 2, 7, 283–284

strip(1), 739

struct bio, 342, 375

struct dentry, 295, 299

struct file, 425

struct icmp6hdr, 465

struct icmphdr, 464

struct ieee80211_channel, 480

struct iphdr, 462, 464

struct ipv6hdr, 465

struct kiocb, 327

struct kmem_cache, 661

struct linux_binprm, 498

struct module, 499

struct nameidata, 321–322
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struct nvme_command, 384

struct oom_control, 258–259

struct qstr, 321–322

struct request, 342, 357, 370, 376, 

383–384

struct scsi_cmnd, 378

struct sk_buff, 462–467, 469, 

474, 488

struct sock, 399, 418, 442, 445, 452, 

454, 456

struct sockaddr, 415–416, 421, 423, 459

struct sockaddr_in, 421, 423, 459

struct sockaddr_in6, 421, 423, 459

struct task_struct, 609, 630

struct tcp_sock, 446–447, 456, 488

struct tcphdr, 488

struct vm_fault, 297

sum() function, 169–170

superping(8), 463–466

swap devices, memory, 246–247

swapin(8), 272–273

swapon(8), 252

swapping memory, 245–246

symbols

Golang, 585

JavaScript (Node.js), 584

stack trace walking, 41

.symtab, 523–526

synchronous writes, 356, 387

syncsnoop(8), 293

BCC, 293

bpftrace, 293–294

sys interface, 36–37

syscalls, 734–735

commands, 33–34

counting, 667–668

read syscalls

counting, 336–337

distributing read bytes, 337

syscount(8), 224–225, 610–611, 665

BCC, 225

bpftrace, 226

Sysdig, 726

/sys/fs/cgroups, 679

sysfs Interface, 36–37

system() function, 166–167

system mode, CPU, 182

systemd-cgtop(1), 677–678

SystemTap, bpftrace and, 132–133

T
tabular data, Vector and PCP, 713–714

tail-call optimization, 739

target software, writing, 733–734

TASK_INTERRUPTIBLE, 647

TASK_RUNNING, 647

TASK_UNINTERRUPTIBLE, 647

tasklets, kernels, 637–638, 664–665

tc qdisc, 488

TCP (Transmission Control Protocol), 391

active connections, 405, 410–411, 437

backlogs, 392–393

congestion control, 394

connection latency, 396

first byte latency, 396

nagle, 412, 456–457

passive connections, 411, 440

reset, 506–507

retransmits, 393

send and receiver buffers, 393–394

send congestion window, 412, 454

TCP SYN backlog, 393, 412, 453

tcp_set_state(), 444–445

tcpaccept(8), 82, 440–443, 505–506

BCC, 441

bpftrace, 441–443
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tcpconnect(8), 82, 437–438, 505–506

BCC, 439

bpftrace, 439

tcpdates(8), 481

tcpdump(8), 2, 408–409

-d option, 17

tcplife(8), 443–445, 713, 717–718

BCC, 445

bpftrace, 445–447

tcpnagle(8), 456–458

tcpreset(8), 506–508

tcpretrans(8), 83, 450

BCC, 451

bpftrace, 451–452

tcpsnoop(8), 449

tcpsynbl(8), 453–454

tcptop(8), 448

tcpwin(8), 454–456

ternary operators, bpftrace flow control, 154

threads

management, applications, 590

names, Java, 536–537

threaded(8), 601–602

threadsnoop(8), 595–597

time

CPU timed sampling, 192–195

queued time

biolatency(8), 353–354

biosnoop(8), 359–360

RTT, 396

stolen CPU time, 700–701

vfs_read(), timing, 145–147

timer-based retransmits, 393

timestamped symbol logging, 539

tips and tricks. See also troubleshooting, 

732–733

49 and 99 Hertz sampling, 731

event frequency, 727–728

per-event costs, 729–731

self-tests, 731

typical event frequencies, 728–729

programming, simplicity in, 735

syscalls, 734–735

target software, writing, 733–734

yellow pigs, 732–733

tiptop(1), 188

tlbstat, CPU hardware statistics, 191

tools

application tools, 593–594

bpftrace and, 133

deadlock(8), 630

execsnoop(8), 595

ioprofile(8), 611–614

killsnoop(8), 623–624

mysqld_clat(8), 617–620

mysqld_qslower(8), 614–617

naptime(8), 629–630

offcpuhist(8), 607–610

offcputime(8), 603–607

pmheld(8), 624–629

pmlock(8), 624–628

profile(8), 598–600

signals(8), 621–622

syscount(8), 610–611

threaded(8), 601–602

threadsnoop(8), 595–597

bash shell tools, 570

bashfunc.bt, 573–575

bashfunclat(8), 576–577

BCC tools

argdist(8), 110–114

bpflist(8), 126–127

bpftool(8), 127

characteristics of, 91

debugging tools, 121–127

developing, 119

dmesg(1), 127
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documentation, 115–119

funccount(8), 94–98

highlighted tools, 90–91

internals, 120–128

man pages, 115–119

multi-purpose tools, 93–114

opensnoop(8), 92, 115–119, 124–125

performance tools, 89–90

printf() debugging, 122–124

single-purpose tools, 91–93

stackcount(8), 99–104

trace(8), 104–110

bpftrace tools, 136

characteristics of, 136

documentation, 138

execution, 137

performance tools, 135

C tools, 523

container tools, 680

blkthrot(8), 683–684

container-based tools, 677

docker stats, 678

host-based tools, 676

kubectl top, 678

overlayfs(8), 684–687

perf(1), 679

pidnss(8), 681–683

runqlat(8), 680–681

/sys/fs/cgroups, 679

systemd-cgtop(1), 677–678

CPU tools, 186–187

argdist(8), 226–231

BPF tools, 198–238

brkstack(8), 262–263

cpudist(8), 211–212

cpufreq(8), 212–215

cpuunclaimed(8), 238

cpuwalk(8), 238

drsnoop(8), 271–272

event statistics, 196–197

execsnoop(8), 200–201

exitsnoop(8), 202–203

ffaults(8), 267–268

hardirqs(8), 232–233

hardware sampling, 192

hardware statistics, 189–191

hfaults(8), 273–274

kernel statistics, 187–189

llcstat(8), 237–238, 273–274

loads(8), 238

memleak(8), 259–261

mmapsnoop(8), 261–262

offcputime(8), 219–223

oomkill(8), 258–259

page faults, 264–267

profile(8), 215–219, 274

runqlat(8), 203–207

runqlen(8), 207–209

runqslower(8), 210

shmsnoop(8), 264

smpcalls(8), 233–237

softirqs(8), 231–232

swapin(8), 272–273

syscount(8), 224–226

timed sampling, 192–195

trace(8), 226–229

vltrace, 238

vmscan(8), 268–271

disk I/O tools

bioerr(8), 371–373

biolatency(8), 352–358

biopattern(8), 366–368

biosnoop(8), 358–359

biostacks(8), 368–371

biotop(8), 361–362

bitesize(8), 362–364



ptg30854589

836 tools

blktrace(8), 349–350

BPF tools, 351–384

iosched(8), 375–376

iostat(1), 346–348

mdflush(8), 374–375

nvmelatency(8), 381–384

perf(1), 348–349

SCSI logging, 350

scsilatency(8), 377–379

scsiresult(8), 379–381

seeksize(8), 364–366

--ebpf option, 124–125

file system tools, 282–283, 286–287

BPF tools, 286–334

btrfsdist(8), 334

btrfsslower(8), 334

bufgrow(8), 331–332

cachestat(8), 314–316

dcsnoop(8), 320–322

dcstat(8), 318–320

df(1), 282–283

ext4dist(8), 327–329, 334

ext4slower(8), 334

filelife(8), 298–299

fileslower(8), 306–308

filetop(8), 308–310

filetype(8), 311–314

fmapfault(8), 297

fsrwstat(8), 304–305

icstat(8), 330–331

mmapfiles(8), 294–295

mountsnoop(8), 322

nfsdist(8), 334

nfsslower(8), 334

opensnoop(8), 290

perf(1), 284–286

readahead(8), 332–333

scread(8), 295–296

statsnoop(8), 291–293

strace(1), 283–284

syncsnoop(8), 293–294

vfscount(8), 301–302

vfssize(8), 302–304

vfsstat(8), 299–301

writeback(8), 316–318

writesync(8), 310–311

xfsdist(8), 324–326

xfsslower(8), 323–324

zfsdist(8), 334

zfsslower(8), 334

hypervisor tools

callbacks, 699–700

cpustolen(8), 700–701

guest BPF tools, 693–702

host BPF tools, 702–706

kvmexits(8), 702–706

traditional tools, 692

Xen HVM, 697, 701–702

Xen PV, 693–696

xenhyper(8), 697–699

Java tools, 531–532

javacalls(8), 565–566

javaflow(8), 566–567

javagc(8), 568

javaobjnew(8), 568–569

javastat(8), 562–563

javathreads(8), 563–564

offcputime(8), 553–559

profile(8), 549–553

stackcount(8), 559–562

kernel tools, 640, 644–645, 647–648

biostacks(8), 665

cachestat(8), 665

criticalstat(8), 665

Ftrace, 640–643

funccount(8), 656–657
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hardirq(8), 665

inject(8), 665

kmem(8), 657–658

kpages(8), 658–659

loads(8), 646–647

memleak(8), 659–660

mheld(8), 652–653, 655–656

mlock(8), 652–655

numamove(8), 661–662

offwaketime(8), 650–652

perf sched, 643–644

runqlat(8), 665

skblife(8), 665

slabratetop(8), 660–661

slabtop(1), 644

softirq(8), 665

syscount(8), 665

tasklets, 664–665

vfsstat(8), 665

vmscan(8), 665

wakeuptime(8), 649–650

workq(8), 663–664

xcalls(8), 665

language tools, 522

memory tools, 250–251

BPF tools, 257–274

free(1), 252–253

hardware statistics, 255–256

kernel logs, 251–252

kernel statistics, 252–255

pmap(1), 253–254

ps(1), 253

sampling, 255–256

sar(1), 254–255

swapon(8), 252

vmstat(1), 254

networking tools

ethtool(8), 407–408

filetype(8), 481

gethostlatency(8), 460–461

hardirqs(8), 481

ieee80211scan(8), 479–481

ip(8), 402

ipecn(8), 461–463

netsize(8), 470–472

netstat(8), 403–405

nettxlat, 473–475

nicstat(1), 406–407

nstat(8), 402–403

profile(8), 481

qdisc-cbq, 468–469

qdisc-cbs, 468–469

qdisc-codel, 468–469

qdisc-fq(8), 466–468

qdisc-red, 468–469

qdisc-tbf, 468–469

sar(1), 405–406

skbdrop(8), 475–477

skblife(8), 477–479

so1stbyte(8), 435–437

soaccept(8), 422–424

socketio(8), 424–426

socksize(8), 426–429

sockstat(8), 412–414

soconnect(8), 419–421

soconnlat(8), 432–435

sofamily(8), 414–416

softirqs(8), 481

solisten(8), 481

soprotocol(8), 416–418

sormem(8), 429–431

spfdsnoop(8), 481

ss(8), 400–401

superping(8), 463–466

tcpaccept(8), 440–443
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tcpconnect(8), 437–439

tcpdates(8), 481

tcpdump(8), 408–409

tcplife(8), 443–447

tcpnagle(8), 456–458

tcpretrans(8), 450–452

tcpsnoop(8), 449

tcpsynbl(8), 453–454

tcpwin(8), 454–456

traditional tools, 399–410

udpconnect(8), 458–459

performance tools, bpftrace, 135

security tools

bashreadline(8), 499–500

capable(8), 508–511

elfsnoop(8), 497–498

eperm(8), 504–505

execsnoop(8), 496

modsnoop(8), 498–499

opensnoop(8), 503–504

setuids(8), 512–514

shellsnoop(8), 500–502

tcpaccept(8), 505–506

tcpconnect(8), 505–506

tcpreset(8), 506–508

ttysnoop(8), 502–503

top(1), 2, 78–79, 188

trace(8), 104, 226–227

bpftrace, 226, 228–229

examples, 104–105

File Descriptor leaks, debugging, 107–109

one-liners, 106

structs, 107

syntax, 105–106

usage, 109–110

tracepoints, 9, 53, 56–57

additional reading, 58

biolatency(8), 357–358

BPF_RAW_TRACEPOINT, 57–58

bpftrace programming, 148–150

format of, 53

functionality of, 55–56

instrumentation, 53–55

interfaces, 56

iwl device driver tracepoints, counting, 
487

kprobe comparisons to, 53

XFS tracepoints, counting, 338

tracing, 2

BCC, 3–4

biolatency(8), 5–6

execsnoop(8), 4–5

opensnoop(8), 12–14

bpftrace, 10–14

dynamic tracing, 8–9

free() tracing, 52

HVM exit tracing, 701–702

malloc() tracing, 52

missing functions when tracing, 739

networking, common tracing mistakes, 
399

PAM session starts, 515

program types, 34

static tracing, 9

user-space tracing, 52

visibility, 6–8

transmit kernel stack traces, counting, 

484–486

troubleshooting. See also tips and tricks

events

dropped events, 738–740

missing events, 735–736

feedback loops, 740

missing functions when tracing, 739

missing symbols (function names), 
738–739

stack traces

broken stack traces, 738

missing stack traces, 737–738
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TSO (TCP Segmentation Offload), 394, 471

TSQ (TCP Small Queues), 395

ttysnoop(8), 502

BCC, 502–503

bpftrace, 503

U
uaddr() function, 166

Ubuntu

BCC installations, 88

bpftrace, 134

UDP (User Datagram Protocol), 391

udpconnect(8), 458–459

uid variable, 157

unprivileged BPF, 493

unrolled loops, bpftrace flow control, 155

unstable interfaces, 466

unstable kernels, 449

unstable struct internals, 475

uprobes, 8–9, 49, 51–52

additional reading, 52

bpftrace programming, 151

functionality of, 49–51

interfaces, 51

mysqld_qslower(8), 616–617

overhead, 52

uptime(1), load averages, 73–74

uretprobes, 9, 151

USAGE messages, bpftrace programming, 

147–148

USDT (User-Level Statically Defined 

Tracing), 9, 58, 61, 120–121

additional reading, 61

/bin/bash USDT, 581–582

bpftrace programming, 150–151

C, 529

Dynamic USDT, 61–62

functionality of, 60–61

Golang, 588

instrumentation, 58–59

memory event sources, 248–249

probes, 519–520

Java, 543–549

JavaScript (Node.js), 583–584

USE method, 72

user-space tracing, 52

ustack() function, 164–165

ustack variable, 157–159

usym() function, 165–166

UTS namespace, 675, 687

V
variables

bpftrace programming

built-in variables, 143, 156–160

map variables, 144, 160–161

positional parameters, 159–160

scratch variables, 143, 160

built-in variables, 143, 156–160

comm variable, 157

kstack variable, 157–159

map variables, 144

pid variable, 157

scratch variables, 143, 160–161

uid variable, 157

ustack variable, 157–159

Vector and PCP (Performance Co-Pilot), 

709–710

additional reading, 718

BCC tools, 714

data connections, 715–717

installing, 715

internals, 714–715

PMCD, 714–715
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PMDA, 709–710, 717–718

viewing data, 715–717

visualizations, 709–710

heat maps, 711–713

tabular data, 713–714

verbose mode, bpftrace debugging, 

179–180

VFS (Virtual File Systems), 278–279

vfs_read(), timing, 145–147

vfscount(8), 301–302

vfssize(8), 302–304

vfsstat(8), 299–300, 665

BCC, 300

bpftrace, 300–301

virtual memory, 244–245, 253, 276

virtualization

AMD-V, 690

HVM

exit tracing, 701–702

PVHVM, 690–691

Xen HVM, 697, 701–702

JVM, 531

libjvm tracing, 532–533

symbol dumps, 539

LLVM, 22–23, 37

SR-IOV, 690–691

visibility, BPF tracing, 6–8

visual mode, bpftool prog dump xlated, 28

visualizations, Vector and PCP, 710

heat maps, 711–713

tabular data, 713–714

vltrace, 238

VM (Virtual Machines)

HVM

exit tracing, 701–702

PVHVM, 690–691

Xen HVM, 697, 701–702

JVM, 531

libjvm tracing, 532–533

symbol dumps, 539

LLVM, 22–23, 37

vmscan(8), 268–271, 665

vmstat(1), 74–75, 254

vulnerability detection (zero-day), 491

W
wakeups, kernels, 636

wakeuptime(8), 649–650

WiFi, 412, 479–481

wildcard characters

C, bpftrace, 526

probe, bpftrace programming, 141–142

work queues, applications, 637–638

workload characterization, 5, 70–71

workq(8), 663–664

write-back, 280

writeback(8), 316–318

writesync(8), 310–311

writing

BPF programs, 22–23

target software, 733–734

X
xcalls(8), 665

XDP (eXpress Data Path), 391

Xen, 690

callbacks, 699–700

cpustolen(8), 700–701

hypercalls, Xen PV, 693–694

Xen HVM, 697, 701–702

Xen PV, 693–696

xenhyper(8), 697–699

XFS tracepoints, counting, 338
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Y
yellow pigs, 732–733

Z
zero-day vulnerability detection, 491

zfsdist(8), 334

zfsslower(8), 334

zooming, flame graphs, 44

xfsdist(8), 324–325

BCC, 325–326

bpftrace, 326

xfsslower(8), 323–324

xlated mode, bpftool prog dump xlated, 

26–27

-XX:+ExtendedDTraceProbes, 548, 563, 

565–567, 569

-XX:+PreserveFramePointer, 540, 543, 549
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