函数式编程的Java编码实践:利用惰性写出高性能且抽象的代码

发表于 2年以前  | 总阅读数:352 次

本文会以惰性加载为例一步步介绍函数式编程中各种概念,所以读者不需要任何函数式编程的基础,只需要对 Java 8 有些许了解即可。

一 抽象一定会导致代码性能降低?

程序员的梦想就是能写出 “高内聚,低耦合”的代码,但从经验上来看,越抽象的代码往往意味着越低的性能。机器可以直接执行的汇编性能最强,C 语言其次,Java 因为较高的抽象层次导致性能更低。业务系统也受到同样的规律制约,底层的数增删改查接口性能最高,上层业务接口,因为增加了各种业务校验,以及消息发送,导致性能较低。

对性能的顾虑,也制约程序员对于模块更加合理的抽象。

一起来看一个常见的系统抽象,“用户” 是系统中常见的一个实体,为了统一系统中的 “用户” 抽象,我们定义了一个通用领域模型 User,除了用户的 id 外,还含有部门信息,用户的主管等等,这些都是常常在系统中聚合在一起使用的属性:

public class User {
    // 用户 id
    private Long uid;
    // 用户的部门,为了保持示例简单,这里就用普通的字符串
    // 需要远程调用 通讯录系统 获得
    private String department;
    // 用户的主管,为了保持示例简单,这里就用一个 id 表示
    // 需要远程调用 通讯录系统 获得
    private Long supervisor;
    // 用户所持有的权限
    // 需要远程调用 权限系统 获得
    private Set<String> permission;
}

这看起来非常棒,“用户“常用的属性全部集中到了一个实体里,只要将这个 User 作为方法的参数,这个方法基本就不再需要查询其他用户信息了。但是一旦实施起来就会发现问题,部门和主管信息需要远程调用通讯录系统获得,权限需要远程调用权限系统获得,每次构造 User 都必须付出这两次远程调用的代价,即使有的信息没有用到。比如下面的方法就展示了这种情况(判断一个用户是否是另一个用户的主管):

public boolean isSupervisor(User u1, User u2) {
    return Objects.equals(u1.getSupervisor(), u2.getUid());
}

为了能在上面这个方法参数中使用通用 User 实体,必须付出额外的代价:远程调用获得完全用不到的权限信息,如果权限系统出现了问题,还会影响无关接口的稳定性。

想到这里我们可能就想要放弃通用实体的方案了,让裸露的 uid 弥漫在系统中,在系统各处散落用户信息查询代码。

其实稍作改进就可以继续使用上面的抽象,只需要将 department, supervisor 和 permission 全部变成惰性加载的字段,在需要的时候才进行外部调用获得,这样做有非常多的好处:

  • 业务建模只需要考虑贴合业务,而不需要考虑底层的性能问题,真正实现业务层和物理层的解耦

  • 业务逻辑与外部调用分离,无论外部接口如何变化,我们总是有一层适配层保证核心逻辑的稳定

  • 业务逻辑看起来就是纯粹的实体操作,易于编写单元测试,保障核心逻辑的正确性

但是在实践的过程中常会遇到一些问题,本文就结合 Java 以及函数式编程的一些技巧,一起来实现一个惰性加载工具类。

二 严格与惰性:Java 8 的 Supplier 的本质

Java 8 引入了全新的函数式接口 Supplier,从老 Java 程序员的角度理解,它不过就是一个可以获取任意值的接口而已,Lambda 不过是这种接口实现类的语法糖。这是站在语言角度而不是计算角度的理解。当你了解了严格(strict)与惰性(lazy)的区别之后,可能会有更加接近计算本质的看法。

因为 Java 和 C 都是严格的编程语言,所以我们习惯了变量在定义的地方就完成了计算。事实上,还有另外一个编程语言流派,它们是在变量使用的时候才进行计算的,比如函数式编程语言 Haskell。

所以 Supplier 的本质是在 Java 语言中引入了惰性计算的机制,为了在 Java 中实现等价的惰性计算,可以这么写:

Supplier<Integer> a = () -> 10 + 1;
int b = a.get() + 1;

三 Supplier 的进一步优化:Lazy

Supplier 还存在一个问题,就是每次通过 get 获取值时都会重新进行计算,真正的惰性计算应该在第一次 get 后把值缓存下来。只要对 Supplier 稍作包装即可:

/**
* 为了方便与标准的 Java 函数式接口交互,Lazy 也实现了 Supplier
*/
public class Lazy<T> implements Supplier<T> {

    private final Supplier<? extends T> supplier;

    // 利用 value 属性缓存 supplier 计算后的值
    private T value;

    private Lazy(Supplier<? extends T> supplier) {
        this.supplier = supplier;
    }

    public static <T> Lazy<T> of(Supplier<? extends T> supplier) {
        return new Lazy<>(supplier);
    }

    public T get() {
        if (value == null) {
            T newValue = supplier.get();

            if (newValue == null) {
                throw new IllegalStateException("Lazy value can not be null!");
            }

            value = newValue;
        }

        return value;
    }
}

通过 Lazy 来写之前的惰性计算代码:

Lazy<Integer> a = Lazy.of(() -> 10 + 1);
int b = a.get() + 1;
// get 不会再重新计算, 直接用缓存的值
int c = a.get();

通过这个惰性加载工具类来优化我们之前的通用用户实体:

public class User {
    // 用户 id
    private Long uid;
    // 用户的部门,为了保持示例简单,这里就用普通的字符串
    // 需要远程调用 通讯录系统 获得
    private Lazy<String> department;
    // 用户的主管,为了保持示例简单,这里就用一个 id 表示
    // 需要远程调用 通讯录系统 获得
    private Lazy<Long> supervisor;
    // 用户所含有的权限
    // 需要远程调用 权限系统 获得
    private Lazy<Set<String>> permission;

    public Long getUid() {
        return uid;
    }

    public void setUid(Long uid) {
        this.uid = uid;
    }

    public String getDepartment() {
        return department.get();
    }

    /**
    * 因为 department 是一个惰性加载的属性,所以 set 方法必须传入计算函数,而不是具体值
    */
    public void setDepartment(Lazy<String> department) {
        this.department = department;
    }
    // ... 后面类似的省略
}

一个简单的构造 User 实体的例子如下:

Long uid = 1L;
User user = new User();
user.setUid(uid);
// departmentService 是一个rpc调用
user.setDepartment(Lazy.of(() -> departmentService.getDepartment(uid)));
// ....

这看起来还不错,但当你继续深入使用时会发现一些问题:用户的两个属性部门和主管是有相关性,需要通过 rpc 接口获得用户部门,然后通过另一个 rpc 接口根据部门获得主管。代码如下:

String department = departmentService.getDepartment(uid);
Long supervisor = SupervisorService.getSupervisor(department);

但是现在 department 不再是一个计算好的值了,而是一个惰性计算的 Lazy 对象,上面的代码又应该怎么写呢?"函子" 就是用来解决这个问题的

四 Lazy 实现函子(Functor)

快速理解:类似 Java 中的 stream api 或者 Optional 中的 map 方法。函子可以理解为一个接口,而 map 可以理解为接口中的方法。

1 函子的计算对象

Java 中的 Collection<T>Optional<T>,以及我们刚刚实现Lazy<T>,都有一个共同特点,就是他们都有且仅有一个泛型参数,我们在这篇文章中暂且称其为盒子,记做 Box<T>,因为他们都好像一个万能的容器,可以任意类型打包进去。

2 函子的定义

函子运算可以将一个 T 映射到 S 的 function 应用到Box<T>上,让其成为 Box<S>,一个将 Box 中的数字转换为字符串的例子如下:

在盒子中装的是类型,而不是 1 和 "1" 的原因是,盒子中不一定是单个值,比如集合,甚至是更加复杂的多值映射关系。

需要注意的是,并不是随便定义一个签名满足 Box<S>map(Function<T,S> function) 就能让Box<T>成为函子的,下面就是一个反例:

// 反例,不能成为函子,因为这个方法没有在盒子中如实反映 function 的映射关系
public Box<S> map(Function<T,S> function) {
    return new Box<>(null);
}

所以函子是比 map 方法更加严格的定义,他还要求 map 满足如下的定律,称为 函子定律(定律的本质就是保障 map 方法能如实反映参数 function 定义的映射关系):

  • 单位元律:Box 在应用了恒等函数后,值不会改变,即 box.equals(box.map(Function.identity()))始终成立(这里的 equals 只是想表达的一个数学上相等的含义)

  • 复合律:假设有两个函数 f1 和 f2,map(x -> f2(f1(x))) 和 map(f1).map(f2) 始终等价

很显然 Lazy 是满足上面两个定律的。

3 Lazy 函子

虽然介绍了这么多理论,实现却非常简单:

   public <S> Lazy<S> map(Function<? super T, ? extends S> function) {
        return Lazy.of(() -> function.apply(get()));
    }

可以很容易地证明它是满足函子定律的。

通过 map 我们很容易解决之前遇到的难题,map 中传入的函数可以在假设部门信息已经获取到的情况下进行运算:

Lazy<String> departmentLazy = Lazy.of(() -> departmentService.getDepartment(uid));
Lazy<Long> supervisorLazy = departmentLazy.map(
    department -> SupervisorService.getSupervisor(department)
);

4 遇到了更加棘手的情况

我们现在不仅可以构造惰性的值,还可以用一个惰性值计算另一个惰性值,看上去很完美。但是当你进一步深入使用的时候,又发现了更加棘手的问题。 我现在需要部门和主管两个参数来调用权限系统来获得权限,而部门和主管这两个值都是惰性的值。先用嵌套 map 来试一下:

Lazy<Lazy<Set<String>>> permissions = departmentLazy.map(department ->
         supervisorLazy.map(supervisor -> getPermissions(department, supervisor))
);

返回值的类型好像有点奇怪,我们期待得到的是 Lazy<Set>,这里得到的却多了一层变成 Lazy<Lazy<Set>>。而且随着你嵌套 map 层数增加,Lazy 的泛型层次也会同样增加,三参数的例子如下:

Lazy<Long> param1Lazy = Lazy.of(() -> 2L);
Lazy<Long> param2Lazy = Lazy.of(() -> 2L);
Lazy<Long> param3Lazy = Lazy.of(() -> 2L);
Lazy<Lazy<Lazy<Long>>> result = param1Lazy.map(param1 ->
        param2Lazy.map(param2 ->
                param3Lazy.map(param3 -> param1 + param2 + param3)
        )
);

这个就需要下面的单子运算来解决了。

五 Lazy 实现单子 (Monad)

快速理解:和 Java stream api 以及 Optional 中的 flatmap 功能类似

1 单子的定义

单子和函子的重大区别在于接收的函数,函子的函数一般返回的是原生的值,而单子的函数返回却是一个盒装的值。下图中的 function 如果用 map 而不是 flatmap 的话,就会导致结果变成一个俄罗斯套娃--两层盒子。

单子当然也有单子定律,但是比函子定律要复杂些,这里就不做阐释了,他的作用和函子定律也是类似,确保 flatmap 能够如实反映 function 的映射关系。

2 Lazy 单子

实现同样很简单:

    public <S> Lazy<S> flatMap(Function<? super T, Lazy<? extends S>> function) {
        return Lazy.of(() -> function.apply(get()).get());
    }

利用 flatmap 解决之前遇到的问题:

Lazy<Set<String>> permissions = departmentLazy.flatMap(department ->
         supervisorLazy.map(supervisor -> getPermissions(department, supervisor))
);

三参数的情况:

Lazy<Long> param1Lazy = Lazy.of(() -> 2L);
Lazy<Long> param2Lazy = Lazy.of(() -> 2L);
Lazy<Long> param3Lazy = Lazy.of(() -> 2L);
Lazy<Long> result = param1Lazy.flatMap(param1 ->
        param2Lazy.flatMap(param2 ->
                param3Lazy.map(param3 -> param1 + param2 + param3)
        )
);

其中的规律就是,最后一次取值用 map,其他都用 flatmap。

3 题外话:函数式语言中的单子语法糖

看了上面的例子你一定会觉得惰性计算好麻烦,每次为了取里面的惰性值都要经历多次的 flatmap 与 map。这其实是 Java 没有原生支持函数式编程而做的妥协之举,Haskell 中就支持用 do 记法简化 Monad 的运算,上面三参数的例子如果用 Haskell 则写做:

do
    param1 <- param1Lazy
    param2 <- param2Lazy
    param3 <- param3Lazy
    -- 注释: do 记法中 return 的含义和 Java 完全不一样
    -- 它表示将值打包进盒子里,
    -- 等价的 Java 写法是 Lazy.of(() -> param1 + param2 + param3)
    return param1 + param2 + param3

Java 中虽然没有语法糖,但是上帝关了一扇门,就会打开一扇窗。在 Java 中可以清晰地看出每一步在做什么,理解其中的原理,如果你读过了本文之前的内容,肯定能明白这个 do 记法就是不停地在做 flatmap 。

六 Lazy 的最终代码

目前为止,我们写的 Lazy 代码如下:

public class Lazy<T> implements Supplier<T> {

    private final Supplier<? extends T> supplier;

    private T value;

    private Lazy(Supplier<? extends T> supplier) {
        this.supplier = supplier;
    }

    public static <T> Lazy<T> of(Supplier<? extends T> supplier) {
        return new Lazy<>(supplier);
    }

    public T get() {
        if (value == null) {
            T newValue = supplier.get();

            if (newValue == null) {
                throw new IllegalStateException("Lazy value can not be null!");
            }

            value = newValue;
        }

        return value;
    }

    public <S> Lazy<S> map(Function<? super T, ? extends S> function) {
        return Lazy.of(() -> function.apply(get()));
    }

    public <S> Lazy<S> flatMap(Function<? super T, Lazy<? extends S>> function) {
        return Lazy.of(() -> function.apply(get()).get());
    }
}

七 构造一个能够自动优化性能的实体

利用 Lazy 我们写一个构造通用 User 实体的工厂:

@Component
public class UserFactory {

    // 部门服务, rpc 接口
    @Resource
    private DepartmentService departmentService;

    // 主管服务, rpc 接口
    @Resource
    private SupervisorService supervisorService;

    // 权限服务, rpc 接口
    @Resource
    private PermissionService permissionService;

    public User buildUser(long uid) {
        Lazy<String> departmentLazy = Lazy.of(() -> departmentService.getDepartment(uid));
        // 通过部门获得主管
        // department -> supervisor
        Lazy<Long> supervisorLazy = departmentLazy.map(
            department -> SupervisorService.getSupervisor(department)
        );
        // 通过部门和主管获得权限
        // department, supervisor -> permission
        Lazy<Set<String>> permissionsLazy = departmentLazy.flatMap(department ->
            supervisorLazy.map(
                supervisor -> permissionService.getPermissions(department, supervisor)
            )
        );

        User user = new User();
        user.setUid(uid);
        user.setDepartment(departmentLazy);
        user.setSupervisor(supervisorLazy);
        user.setPermissions(permissionsLazy);
    }
}

工厂类就是在构造一颗求值树,通过工厂类可以清晰地看出 User 各个属性间的求值依赖关系,同时 User 对象能够在运行时自动地优化性能,一旦某个节点被求值,路径上的所有属性的值都会被缓存。

八 异常处理

虽然我们通过惰性让 user.getDepartment() 仿佛是一次纯内存操作,但是他实际上还是一次远程调用,所以可能出现各种出乎意料的异常,比如超时等等。

异常处理肯定不能交给业务逻辑,这样会影响业务逻辑的纯粹性,让我们前功尽弃。比较理想的方式是交给惰性值的加载逻辑 Supplier。在 Supllier 的计算逻辑中就充分考虑各种异常情况,重试或者抛出异常。虽然抛出异常可能不是那么“函数式”,但是比较贴近 Java 的编程习惯,而且在关键的值获取不到时就应该通过异常阻断业务逻辑的运行。

九 总结

利用本文方法构造的实体,可以将业务建模上需要的属性全部放置进去,业务建模只需要考虑贴合业务,而不需要考虑底层的性能问题,真正实现业务层和物理层的解耦。

同时 UserFactory 本质上就是一个外部接口的适配层,一旦外部接口发生变化,只需要修改适配层即可,能够保护核心业务代码的稳定。

业务核心代码因为外部调用大大减少,代码更加接近纯粹的运算,因而易于书写单元测试,通过单元测试能够保证核心代码的稳定且不会出错。

十 题外话:Java 中缺失的柯里化与应用函子(Applicative)

仔细想想,刚刚做了这么多,目的就是一个,让签名为 C f(A,B) 的函数可以无需修改地应用到盒装类型 Box和 Box 上,并且产生一个 Box,在函数式语言中有更加方便的方法,那就是应用函子。

应用函子概念上非常简单,就是将盒装的函数应用到盒装的值上,最后得到一个盒装的值,在 Lazy 中可以这么实现:

    // 注意,这里的 function 是装在 lazy 里面的
    public <S> Lazy<S> apply(Lazy<Function<? super T, ? extends S>> function) {
        return Lazy.of(() -> function.get().apply(get()));
    }

不过在 Java 中实现这个并没有什么用,因为 Java 不支持柯里化。

柯里化允许我们将函数的几个参数固定下来变成一个新的函数,假如函数签名为 f(a,b),支持柯里化的语言允许直接 f(a) 进行调用,此时返回值是一个只接收 b 的函数。

在支持柯里化的情况下,只需要连续的几次应用函子,就可以将普通的函数应用在盒装类型上了,举个 Haskell 的例子如下(<*> 是 Haskell 中应用函子的语法糖, f 是个签名为 c f(a, b) 的函数,语法不完全正确,只是表达个意思):

-- 注释: 结果为 box c
box f <*> box a <*> box b

参考资料

  • 在 Java 函数式类库 VAVR 中提供了类似的 Lazy 实现,不过如果只是为了用这个一个类的话,引入整个库还是有些重,可以利用本文的思路直接自己实现

  • 函数式编程进阶:应用函子 前端角度的函数式编程文章,本文一定程度上参考了里面盒子的类比方法:https://juejin.cn/post/6891820537736069134?spm=ata.21736010.0.0.595242a7a98f3U

  • 《Haskell函数式编程基础》

  • 《Java函数式编程》

本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:
https://mp.weixin.qq.com/s/e-9hrjWK513VJqqyeGLxrQ

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:8月以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:8月以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:8月以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:8月以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:8月以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:8月以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:8月以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:8月以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:8月以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:8月以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:8月以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:8月以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:8月以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:8月以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:8月以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:8月以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:8月以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:8月以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:8月以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:8月以前  |  398次阅读  |  详细内容 »
 相关文章
Java 中验证时间格式的 4 种方法 1年以前  |  3361次阅读
Java经典面试题答案解析(1-80题) 4年以前  |  2686次阅读
IDEA依赖冲突分析神器—Maven Helper 4年以前  |  2466次阅读
CentOS 配置java应用开机自动启动 3年以前  |  2465次阅读
SpringBoot 控制并发登录的人数教程 4年以前  |  2175次阅读
 目录