Redis 在 vivo 推送平台的应用与优化实践

发表于 5月以前  | 总阅读数:251 次

一、推送平台特点

vivo推送平台是vivo公司向开发者提供的消息推送服务,通过在云端与客户端之间建立一条稳定、可靠的长连接,为开发者提供向客户端应用实时推送消息的服务,支持百亿级的通知/消息推送,秒级触达移动用户。

推送平台的特点是并发高、消息量大、送达及时性较高。目前现状最高推送速度140w/s,单日最大消息量150亿,端到端秒级在线送达率99.9%。

二、推送平台Redis使用介绍

基于vivo推送平台的特点,对并发和时效性要求较高,并且消息数量多,消息有效期短。所以,推送平台选择使用Redis中间件作为消息存储和中转,以及token信息存储。之前主要使用两个Redis集群,采用Redis Cluster 集群模式。两个集群如下:

对Redis的操作,主要包括如下几方面:

1)推送环节,在接入层存储消息体到msg Redis集群,消息过期时间为msg Redis存储消息的过期时间。

2)推送服务层经过一系列逻辑后,从msg Redis集群查出消息体,查询client Redis集群client信息,如果client在线,直接推送。如果client不在线,将消息id写到等待队列。

3)如果连接上来,推送服务层,读取等待队列消息,进行推送。

4)存储管理服务,会定期扫描cii索引,根据cii存储的最后更新时间,如果14天都没更新,说明是不活跃用户,会清理该token信息,同时清理该token对应的等待队列消息。

推送环节操作Redis流程图如下:

三、推送平台线上问题

如上面介绍,推送平台使用Redis主要msg集群和client集群,随着业务的发展,系统对性能要求越来越高,Redis出现一些瓶颈问题,其中msg Redis集群在优化前,规模已达到220个master,4400G容量。随着集群规模变大,维护难度增加,事故率变高。特别是4月份,某某明星离婚事件,实时并发消息量5.2亿,msg Redis集群出现单节点连接数、内存暴增问题,其中一个节点连接数达到24674,内存达到23.46G,持续30分钟左右。期间msg Redis集群读写响应较慢,平均响应时间500ms左右,影响到整体系统的稳定性和可用性,可用性降到85%。

四、推送平台Redis优化

Redis一般从以下几方面优化:

1) 容量:Redis属于内存型存储,相较于磁盘存储型数据库,存储成本较昂贵,正是由于内存型存储这个特性使得它读写性能较高,但是存储空间有限。因此,业务在使用时,应注意存储内容尽量是热数据,并且容量是可预先评估的,最好设置过期时间。在存储设计时,合理使用对应数据结构,对于一些相对大的value,可以压缩后存储。

2) 热key倾斜:Redis-Cluster把所有的物理节点映射到[0-16383]slot(槽)上,每个节点负责一部分slot。当有请求调用时,根据 CRC16(key) mod 16384的值,决定将key请求到哪个slot中。由于Redis-cluster这个特性,每个节点只负责一部分slot,因此,在设计key的时候应保证key的随机性,特别是使用一些hash算法映射key时,应保证hash值的随机分布。另外,控制热点key并发问题,可以采用限流降级或者本地缓存方式,防止热点key并发请求过高导致Redis热点倾斜。

3) 集群过大:Redis-Cluster采用无中心结构,每个节点保存数据和整个集群状态,每个节点都和其他所有节点连接。每个节点都保存所有节点与slot映射关系。当节点较多时,每个节点保存的映射关系也会变多。各节点之间心跳包的消息体内携带的数据越多。在扩缩容时,集群重新进行clusterSlots时间相对较长。集群会存在阻塞风险,稳定性受影响。因此,在使用集群时,应该尽量避免集群节点过多,最后根据业务对集群进行拆分。

这里有个问题:为什么Redis-Cluster使用16384个slot,而不是更多,最多可以有多少个节点?

官方作者给出了[解释] ,并且在解释中说明,Redis-Cluster不建议超过1000个主节点。

基于以上一些优化方向,和自身业务特性,推送平台从以下几方面开启Redis优化之路。

  • msg Redis集群容量优化;
  • msg Redis大集群根据业务属性拆分;
  • Redis热点key排查;
  • client Redis集群并发调用优化。

4.1 msg Redis集群容量优化

前文提及,msg Redis集群规模达到220个master、4400G容量,高峰期已使用容量达到3650G,使用了83%左右,如果后续推送提量,还需扩容,成本太高。于是对msg Redis集群存储内容进行分析,使用的分析工具是雪球开源RDB分析工具RDR 。github网址:这里不多介绍,大家可以去github网址下载相应的工具使用。这个工具可以分析Redis快照情况,包括:Redis不同结构类型容量、key数量、top 100 largest keys、前缀key数量和容量。

分析后的结论:msg Redis集群中,mi:开头的结构占比80%左右,其中单推消息占比80%。说明:

  • 单推:1条消息推送1个用户
  • 群推:1条消息可以重复推送多个用户,消息可以复用。

单推的特点是一对一推送,推送完或者推送失败(被管控、无效用户等)消息体就不再使用。

优化方案

  • 及时清理单推消息,如果用户已经收到单推消息,收到puback回执,直接删除Redis消息。如果单推消息被管控等原因限制发送,直接删除单推消息体。
  • 对于相同内容的消息,进行聚合存储,相同内容消息存储一条,消息id做标识推送时多次使用。

经过这个优化后,缩容效果较明显。全量上线后容量缩小了2090G,原最高容量为3650G,容量缩小了58%

4.2 msg Redis大集群根据业务属性拆分

虽然进行了集群容量优化,但是高峰期msg Redis压力依然很大。

主要原因

1)连接msg Redis的节点很多,导致高峰期连接数较高。

2)消息体还有等待队列都存储在一个集群,推送时都需要操作,导致Redis并发很大,高峰期cpu负载较高,到达90%以上。

3)老集群Redis版本是3.x,拆分后,新集群使用4.x版本。相较于3.x版本有如下优势:

  • PSYNC2.0:优化了之前版本中,主从节点切换必然引起全量复制的问题。
  • 提供了新的缓存剔除算法:LFU(Least Frequently Used),并对已有算法进行了优化。
  • 提供了非阻塞del和flushall/flushdb功能,有效解决删除了bigkey可能造成的Redis阻塞。
  • 提供了memory命令,实现对内存更为全面的监控统计。
  • 更节约内存,存储同样多的数据,需要更少的内存空间。
  • 可以做内存碎片整理,逐步回收内存。当使用Jemalloc内存分配方案的时候,Redis可以使用在线内存整理。

拆分方案根据业务属性对msg Redis存储信息进行拆分,把消息体和等待队列拆分出来,放到独立的两个集群中去。这样就有两种拆分方案。

方案一把等待队列从老集群拆分出来

只需推送节点进行修改,但是发送等待队列连续的,有状态,与clientId在线状态相关,对应的value会实时更新,切换会导致数据丢失。

方案二把消息体从老集群拆分出来

所有连接msg Redis的节点替换新地址重启,推送节点进行双读,等到老集群命中率为0时,直接切换读新集群。由于消息体的特点是只有写和读两个操作,没有更新,切换不用考虑状态问题,只要保证可以写入读取没问题。并且消息体容量具有增量属性,需要能方便快速的扩容,新集群采用4.0版本,方便动态扩缩容。

方案一 方案二
优点 涉及节点少,改造只在推送节点 1、数据不会丢失 2、消息体容量具有增量属性,消息体存4.0新集群,性能更好,后续运维更方便
缺点 会丢失数据 涉及节点多,但除了推送节点需要考虑双读外,其他节点只需配置中心修改msg Redis地址到新集群服务重启即可

考虑到对业务的影响及服务可用性,保证消息不丢失,最终我们选择方案二。采用双读单写方案设计:

由于将消息体切换到新集群,那在切换期间一段时间(最多30天),新的消息体写到新集群,老集群存储老消息体内容。这期间推送节点需要双读,保证数据不丢失。为了保证双读的高效性,需要支持不修改代码,不重启服务的动态规则调整措施。

大致规则分为4个:只读老、只读新、先读老后读新、先读新后读老。

设计思路:服务端支持4种策略,通过配置中心的配置决定走哪个规则。

规则的判断依据:根据老集群的命中数和命中率决定。上线初期规则配置“先读老再读新”;当老集群命中率低于50%,切换成"先读新后读老";当老集群命中数为0后,切换成“只读新”。

老集群的命中率和命中数通过通用监控增加埋点。

方案二流程图如下:

拆分后效果:

  • 拆分前,老msg Redis集群同时期高峰期负载95%以上。
  • 拆分后,同时期高峰期负载降低到70%,下降15%。

拆分前,msg Redis集群同时期高峰期平均响应时间1.2ms,高峰期存在调用Redis响应慢情况。拆分后,平均响应时间降低到0.5ms,高峰期无响应慢问题。

4.3 Redis热点key排查

前面有说过,4月某某明星热点事件,出现msg Redis单节点连接数、内存飙升问题,单节点节点连接数达到24674,内存达到23.46G。

由于Redis集群使用的虚拟机,起初怀疑是虚拟机所在宿主机存在压力问题,因为根据排查发现出现问题的节点所在宿主机上挂载Redis主节点很多,大概10个左右,而其他宿主机挂载2-4个左右主节点,于是对master进行了一轮均衡化优化,使每台宿主机分配的主节点都比较均衡。均衡化之后,整体有一定改善。但是,在推送高峰期,尤其是全速全量推送时,还是会偶尔出现单节点连接数、内存飙升问题。观察宿主机网卡出入流量,都没出现瓶颈问题,同时也排除了宿主机上其他业务节点的影响。因此怀疑还是业务使用Redis存在热点倾斜问题。

通过高峰期抓取调用链监控,从下图可以看到,我们11:49到12:59这期间调用msg Redis的hexists命令耗时很高,该命令主要是查询消息是否在mii索引中,链路分析耗时的key大都为mii:0。同时对问题节点Redis内存快照进行分析,发现mii:0容量占比很高,存在读取mii:0热点问题。

经过分析排查,发现生成消息id的雪花算法生成的messageId,存在倾斜问题,由于同一毫秒的序列值都是从0开始,并且序列长度为12位,所以对于并发不是很高的管理后台及api节点,生成的messageId基本都是最后12位为0。由于mii索引key是mi:${messageId%1024},messageId最后12位为0,messageId%1024即为0,这样就导致msg Redis中mii:0这个key很大,查询时命中率高,因此导致了Redis的热key问题。

优化措施

1)雪花算法改造,生成消息id时使用的sequence初始值不再是0,而是从0~1023随机取一个数,防止热点倾斜问题。

2)通过msg消息体中消息类型及消息体是否存在来替换调hexists命令。

最终效果:优化后,mii索引已分布均匀,Redis连接数很平稳,内存增长也较平稳,不再出现Redis单节点内存、连接数暴增问题。

4.4 client Redis集群并发调用优化

上游节点调用推送节点是通过clientId进行一致性hash调用的,推送节点会缓存clientInfo信息到本地,缓存时间7天,推送时,优先查询本地缓存,判断该client是否有效。对于重要且经常变更的信息,直接查询client Redis获取,这样导致推送高峰期,client Redis集群压力很大,并发高,cpu负载高。

优化前推送节点操作缓存和client Redis流程图:

优化方案:对原有clientInfo缓存进行拆分,拆分成三个缓存,采取分级方案。

  • cache还是保存原来clientInfo一些信息,这些信息是不经常变更的,缓存时间还是7天。
  • cache1缓存clientInfo经常变更的信息,如:在线状态、cn地址等。
  • cache2缓存ci加密部分参数,这部分缓存只在需要加密时使用,变更频率没那么高,只有连接时才会变更。

由于新增了缓存,需考虑缓存一致性问题,于是新增一下措施:

1)推送缓存校验,调用broker节点,根据broker的返回信息,更新和清理本地缓存信息。broker新增不在线、aes不匹配错误码。下次推送或者重试时,会重新从Redis中加载,获取最新的client信息。

2)根据手机端上行事件,connect和disconnect时,更新和清理本地缓存信息,下次推送或者重试时,会重新从Redis中加载,获取最新的client信息。

整体流程:消息推送时,优先查询本地缓存,缓存不存在或者已过期,才从client Redis中加载。推送到broker时,根据broker返回信息,更新或失效缓存。上行,收到disconnect、connect事件,及时更新或失效缓存,再次推送时重新从client Redis加载。

优化后推送节点操作缓存和client Redis流程图:

优化后效果

1)新增cache1缓存命中率52%,cache2缓存命中率30%。

2)client Redis并发调用量减少了近20%。

3)高峰期Redis负载降低15%左右。

五、总结

Redis由于其高并发性能和支持丰富的数据结构,在高并发系统中作为缓存中间件是较好的选择。当然,Redis是否能发挥高性能,还依赖业务是否真的理解和正确使用Redis。有如下几点需要注意:

1)由于Redis集群模式,每个主节点只负责一部分slot,业务在设计Redis key时要充分考虑key的随机性,均匀分散在Redis各节点上,同时应避免大key出现。另外,业务上应避免Redis请求热点问题,同一时刻请求打到少部分节点。

2)Redis实际吞吐量还与请求Redis的包数据大小,网卡有关,官方文档有相关说明,单个包大小超过1000bytes时,性能会急剧下降。所以在使用Redis时应尽量避免大key。另外,最好根据实际业务场景和实际网络环境,带宽和网卡情况进行性能压测,对集群实际吞吐量做摸底。

以我们client Redis集群为例:(仅供参考)

  • Network:10000Mb;
  • Redis Version:3.x;
  • Payload size:250bytes avg;
  • 命令:hset(25%)、hmset(10%)、hget(60%)、hmget(5%);
  • 性能情况:连接数5500、48000/s、cpu 95%左右。

Redis在实时分析这块支持较少,除了基本指标监控外,实时内存数据分析暂不支持。在实际业务场景下如果出现Redis瓶颈,往往监控数据也会缺失,定位问题较难。对Redis的数据分析只能依赖分析工具对Redis快照文件进行分析。因此,对Redis的使用依赖业务对Redis的充分认知,方案设计的时候充分考虑。同时根据业务场景对Redis做好性能压测,了解瓶颈在哪,做好监控和扩缩容准备。

END


https://mp.weixin.qq.com/s/tTtGN3hTQXAwuGNCDvwToQ

 相关推荐

集体大降薪?有员工吐槽:再降要去公园卖鱼

6月5日,一张券商降薪截图在社交媒体疯传。截图提到,当日上午,某中字头头部券商召开大会,除了MD外全员降薪,且降薪不只是降奖金,而是直接降底薪。按照职级不同,SA1降6K,SA3降8K,VP降8K—10K。据了解,降薪大概率整体属实,但具体幅度有所差异,且不同区域、不同业务条线目前掌握的降薪情况也不尽相同。

发布于:3天以前  |  1674次阅读  |  详细内容 »

或搭载骁龙 8 Gen2,李斌透露蔚来手机新进展

今日,蔚来 CEO 李斌在 2023 高通汽车技术与合作峰会上爆料,蔚来第二代技术平台的全系车型已标配第三代骁龙座舱平台。

发布于:13天以前  |  679次阅读  |  详细内容 »

Meta AI大模型能识别4000多种语言,称错误率仅有OpenAI产品的一半

Meta公司周一(5月22日)推出了一个开源AI语言模型——大规模多语言语音(Massively Multilingual Speech, MMS)模型,可以识别和产生1000多种语言的语音——比目前可用的模型增加了10倍。研究人员表示,他们的模型可以转换1000多种语言,但能识别4000多种语言。

发布于:15天以前  |  627次阅读  |  详细内容 »

“AI孙燕姿”火遍全网!孙燕姿发文回应:人类无法超越AI,你是可定制的

歌手孙燕姿在更新动态中回应了近日引发争议的“顶流AI歌手孙燕姿”,笑称粉丝已经接受她是“冷门”歌手,而AI成为了目前的顶流。

发布于:15天以前  |  596次阅读  |  详细内容 »

荣耀回应新设公司自研芯片传言:重点在终端侧核心软件、图形算法等研发

5月31日晚,荣耀方面对澎湃新闻记者表示,上海荣耀智能科技开发有限公司是荣耀位于上海的研究所,是荣耀在中国的5个研究中心之一,重点方向在终端侧核心软件、图形算法、通信、拍照等方面研究开发工作。荣耀强调,坚持以用户为中心,开放创新,与全球合作伙伴一起为用户提供最佳产品解决方案。

发布于:9天以前  |  320次阅读  |  详细内容 »

宣称“M1芯片速度最快”,苹果被罚20万元:M1 Pro和Max更快

据北京市市场监督管理局公示信息,5月24日,苹果电子产品商贸(北京)有限公司因发布虚假广告被北京市东城区市场监督管理局处以20万元的行政处罚。

发布于:8天以前  |  235次阅读  |  详细内容 »

因PC销售不景气,联想Q1裁员约5%

据外媒5月24日消息,全球最大的个人电脑制造商联想表示,在2023年1-3月期间,该公司裁员了约5%,这是由于PC市场不景气导致的。

发布于:13天以前  |  216次阅读  |  详细内容 »

博主发布“史上最清晰”小米汽车谍照:猎跑风格,体积“特别大”

日前,有网络博主号称拍摄到了小米首款汽车MS11的高清视频。从视频中可以看出,新车依旧包裹大面积的伪装,据该博主称,他之所以确定这是小米汽车,是因为靠近观察之后,发现它的三角形大灯轮廓和其最初手绘的小米汽车假想图几乎一模一样。

发布于:8天以前  |  215次阅读  |  详细内容 »

ChatGPT 之父警告:AI 可能灭绝人类,350 名 AI 权威签署联名公开信

超过 350 名从事人工智能工作的高管、研究人员和工程师签署了这份由非盈利组织人工智能安全中心发布的公开信,认为人工智能具备可能导致人类灭绝的风险,应当将其视为与流行病和核战争同等的社会风险。

发布于:10天以前  |  207次阅读  |  详细内容 »

错失英伟达后,木头姐预测:AI的下一波机会在软件

日前,以押注“颠覆性创新”著称的ARK Invest创始人Cathie Wood在接受媒体采访时表示,软件提供商将是人工智能狂潮的下一个受益板块。英伟达每卖出1美元的硬件,软件供应商SaaS供应商就会产生8美元的收入。

发布于:8天以前  |  204次阅读  |  详细内容 »

小米投资恩井汽车科技公司

小米产投管理合伙人孙昌旭对此表示,小米产投将充分运用产业资源,与恩井科技形成高度业务协同,助力公司实现跨越式发展。

发布于:11天以前  |  192次阅读  |  详细内容 »

阿里云首席安全科学家吴翰清离职,投身AI短视频创业

据报道,阿里巴巴研究员吴翰清已于近期离职,钉钉显示其离职时间是5月19日。在阿里内部,研究员的职级为P10。据消息人士透露,吴翰清离职后,选择AI短视频赛道创业,已经close一轮融资。对于上述消息,截至发稿,阿里尚未回应。

发布于:13天以前  |  190次阅读  |  详细内容 »

阿里巴巴否认裁员传言,今年预估新招15000人

阿里巴巴集团官微宣布,2023年六大业务集团总计需新招15000人,其中校招超过3000人。同时表示,“近日,关于淘宝天猫、阿里云、菜鸟、本地生活各个业务裁员谣言传得很厉害,但谣言就是谣言。我们的招聘正在紧锣密鼓的进行。”

发布于:13天以前  |  183次阅读  |  详细内容 »

李开复:AI2.0带来的市场机遇会比移动互联网大10倍

“现今每一个存在的应用都将被AI 2.0重构,我觉得整个AI大模型带来的机遇和技术浪潮,会比过去Windows和安卓大10倍。”李开复表示。

发布于:10天以前  |  177次阅读  |  详细内容 »

一文读懂苹果WWDC大会:头显Vision Pro正式发布,售价高达2.5万元

苹果发布Vision Pro头显,正式宣布开启空间计算时代;苹果还发布新款MacBook Air,新款Mac Studio,并展示了iOS17、iPadOS 17、macOS Sonoma和watchOS10等新系统;Vision Pro头显售价3499美元,将于2024年初正式在美国市场发售;华尔街并不看好Vision Pro,苹果股价周一创历史新高后由涨转跌。

发布于:3天以前  |  169次阅读  |  详细内容 »

车圈“地震”:长城汽车实名举报比亚迪,比亚迪强势回应

5月25日,长城汽车就比亚迪秦PLUS DM-i、宋PLUS DM-i采用常压油箱,涉嫌整车蒸发污染物排放不达标的问题进行举报。

发布于:13天以前  |  159次阅读  |  详细内容 »

贾跃亭开抖音号,IP 在美国,粉丝数量53.7万,关注前妻甘薇

近日,一个名为“贾跃亭”的抖音账号悄然出现,带有“FF创始人、合伙人、首席产品及用户生态官, LeEco 乐视创始人”等标签,IP 地址显示为美国。

发布于:10天以前  |  146次阅读  |  详细内容 »

英伟达史诗级暴涨后再放大招!推出E级AI超算,黄仁勋狂捧生成式AI

5月29日消息,继上周远超预期的财报业绩预测引得股价和市值史诗级暴涨后,今日,英伟达(NVIDIA)创始人兼CEO黄仁勋穿着标志性的皮衣,意气风发地出现在台北电脑展COMPUTEX 2023上,在主题演讲期间先是现场给自家显卡带货,然后一连公布涉及加速计算和人工智能(AI)的多项进展。

发布于:10天以前  |  146次阅读  |  详细内容 »

苹果官方:618将在天猫开启全球首次直播

近日,苹果位于天猫的Apple Store官方旗舰店挂出直播预告,表示将在5月31日晚19时开启官方直播,这也是苹果官方在电商平台的全球首次直播。

发布于:10天以前  |  145次阅读  |  详细内容 »

前京东集团副总裁梅涛成立生成式 AI 公司,投身多模态领域

前京东集团副总裁、京东探索研究院副院长梅涛自今年初离职后,确认在 AI 领域创业,成立生成式 AI 公司 HiDream.ai。

发布于:8天以前  |  144次阅读  |  详细内容 »
 相关文章
 目录